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A B S T R A C T   

The Danaopo Zn-Pb deposit, hosted in algal limestone, is the second largest Zn-Pb deposit (150 Mt ores at an 
average grade of 3.06% Zn + Pb) in the western Hunan-eastern Guizhou metallogenic belt (WHEGMB). Here we 
investigate the trace elements of sphalerite and C-O isotopes and rare earth elements (REEs) of calcite in the 
Danaopo deposit, aiming to present insights into the mineralization potentiality of critical metals and origin of 
Zn-Pb deposits in the WHEGMB. In-situ trace element reveals the inhomogeneous distribution of critical metals 
within sphalerite, including Cd (1520 to 11570 ppm), Ge (0.73 to 236 ppm), Ga (0.04 to 26.90 ppm), and Tl 
(0.01 to 3.62 ppm). Cd and Ge exceed the Chinese comprehensive utilization standard. The LA-ICPMS elemental 
map and inter-element correlations suggest that Cd and Ge enter sphalerite lattice via the substitution of Zn2+ ↔ 
Cd2+ and 4Zn2+ ↔ Ge4+ + 2Fe2+ + □ (vacancy), respectively. The δ13CPDB (-3.93 to − 0.12‰) values of the ore- 
stage calcite indicate that the carbon in hydrothermal fluids primarily originates from the dissolution of 
Cambrian algal limestone. Calculated δ18Ofluid (+5.23 to + 9.95‰) values on calcites lies between the oxygen 
isotopic compositions of the algal limestone (+18.76 to + 23.87‰) and the basinal hot brine (+4 to + 10‰), 
implying that the oxygen was sourced from a binary mixing of ore-host rocks and basin brine. Besides, the REE 
distribution pattern of Cal-I falls within the field of ore-host rocks. In contrast, Cal-II is plotted between the 
Cambrian ore-host and Proterozoic Banxi Group to Cambrian Niutitang Formation footwall. These findings 
suggest that REE of Cal-I was mainly sourced from country carbonate rocks, while Cal-II has mixed REE origins 
from ore-host rocks and footwall sedimentary and metamorphic basement rocks. Overall, based on detailed 
deposit geology, sphalerite trace elements, and calcite C-O and REE evidences, this study concludes that the 
Danaopo is a classic Mississippi Valley-type (MVT) Zn-Pb deposit with a low-temperature and low fO2 reductive 
ore-forming fluid.   

1. Introduction 

The world-class western Hunan-eastern Guizhou metallogenic belt 
(WHEGMB) is located in the southeastern Yangtze block (Fig. 1a) and 
contains over 300 carbonate hosted Zn-Pb deposits with a total of > 600 
million tonnes (Mt) sulfide ores at an average grade of 4% Zn + Pb (Li 
et al., 2014; Wu et al., 2021; Hu et al., 2022). The western Hunan mining 
area alone has>20.0 Mt Zn-Pb metals, which can be further divided into 
four Zn-Pb-(Hg) orefields from north to south, including Luota (~2.0 

Mt), Baojing (~1.0 Mt), Huayuan (~15.0 Mt), and Fenghuang (~2.0 Mt) 
(Fig. 1c; Yang and Lao, 2007; Kuang et al., 2015). The giant Zn-Pb 
mineralization in western Hunan was formed during the Caledonian 
collision orogeny (ca. 490 ~ 410 Ma; Duan et al., 2014; Yao and Li, 
2016; Tan et al., 2018; Zhou et al., 2021), making it one of the most 
important lead and zinc production bases in China (Zhou et al., 2014). 
Sphalerites from these Zn-Pb deposits associated with rich endowment 
of critical metals including cadmium (Cd), gallium (Ga), and germanium 
(Ge), such as Ga-Ge enriched Luota orefield (Wu et al., 2021) and Cd- 
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(Ge) enriched Huayuan orefield (Wei et al., 2021c). 
Previous studies on Zn-Pb deposits at WHEGMB were focused mainly 

on unraveling the mineralization features, metal sources, formation age, 
and precipitation mechanism (Schneider et al., 2002; Duan et al., 2014; 
Cao et al., 2017; Zhou et al., 2018a, 2022; Hu et al., 2022 and reference 
therein). However, the nature of ore-forming fluids and the ore genesis 
of these Zn-Pb deposits are still debated. For instance, the ore genesis has 
been disputed as sedimentary rework type (Li, 1992), synsedimentary- 
type (Luo et al., 2009), or Mississippi Valley Type (MVT) (Cai et al., 
2014; Hu et al., 2022). The occurrence and distribution of critical metals 
in western Hunan are still unclear, which has led to the neglect of the 
comprehensive utilization of critical metals in this area. 

The Danaopo deposit is a recently discovered Cd-Ge-bearing Zn-Pb 

deposit with identified Zn + Pb of approximately 4.57 Mt, making it one 
of the largest deposits in the Huayuan orefield. The Zn-Pb orebodies are 
located in the algal limestone of the Lower Cambrian Qingxudong For-
mation (Fm) and the formation and distribution of these orebodies are 
primarily dominated by the Huayuan-Zhangjiajie regional fault (Wei 
et al., 2020). Our previous study conducted on the Danaopo deposit 
suggested that the reduced sulfur was sourced from thermochemical 
sulfate reduction (TSR) of coeval seawater sulfates in the ore host 
sequence. The ore lead and zinc were originated from the mixing of 
various metal sources, including metamorphic basement rocks of the 
Proterozoic Banxi Group, footwall black shale of the Lower Cambrian 
Niutitang Fm, and ore-host algal limestone, based on detailed geology 
and sulfide in-situ S-Pb isotopes (Wu et al., 2021). However, the origin of 

Fig. 1. (a) Tectonic map of China (modified after Zhou et al., 2013). (b) Geological sketch map of the Yangtze block (modified after Luo et al., 2020); (c) Regional 
geologic map of the WHEGMB, showing the distributions of strata, major structures, and Zn-Pb deposits (modified after Yang and Lao, 2007). 

T. Wu et al.                                                                                                                                                                                                                                      



Ore Geology Reviews 158 (2023) 105494

3

Fig. 2. Geologic map of the Danaopo deposit, showing the distributions of strata, faults, drill holes, as well as the details of cross-section of the exploration line No. 
45 (modified after Yu et al., 2014; Wu et al., 2021). 
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ore-forming fluid, the economic potential of critical metals, and the ore 
genesis at Danaopo remain poorly constrained. 

Here, we conducted LA-ICPMS trace elements of sphalerite and 
calcite, as well as calcite C-O isotopes on the Danaopo deposit to trace 
the source of carbon, oxygen and rare earth elements (REEs) in ore- 
forming fluids, investigate the occurrence and distribution of critical 
metals in sphalerite, and determine its deposit genesis. The findings will 
provide further insights on understanding the origin of the Danaopo 
deposit and an effective basis for comprehensive utilization of critical 
metals in the Huayuan orefield. 

2. Geological setting 

The Yangtze block is an essential part of the South China block 
(Fig. 1a; Zhou et al., 2013), which is mainly bounded by four terranes, 
including the Cathaysia block to southeast, Qinling microplate to north, 
Songpan-Ganzi microplate to northwest, and Sanjiang microplate to 
west (Zhou et al., 2018c; Luo et al., 2020; Fig. 1b). The WHEGMB, 
adjacent to the NE-trending Xuefeng uplift, is situated in the south-
eastern Yangtze block (Fig. 1b). The southeastern Yangtze terrane is 
composed of the Meso-Neoarchean crystalline basement, Proterozoic 
metamorphic basement, and sedimentary covers. The crystalline base-
ment is composed of the Kongling Group gneiss and amphibolite, the 
metamorphic basement is made up of the Banxi Group sandstone, silty 
slate and sedimentary tuff, and the sedimentary covers are composed of 

the Sinian to Quaternary clastic and carbonate rocks (Duan et al., 2014). 
Multi-stage folds and faults were formed during the Wuling, Caledonian, 
Hercynian and Indosinian-Yanshanian orogenic episodes and are 
broadly distributed in the WHEGMB (Fig. 1c; Li et al., 2014). Regional 
magmatism occurred in the Neoproterozoic era, but it was minor 
(840–503 Ma; Zhang et al., 2014; Wang et al., 2008) and unrelated to 
Zn-Pb mineralization (Yang and Lao, 2007). 

The Danaopo Zn-Pb deposit in the northeastern Huayuan orefield is 
positioned in the middle of the WHEGMB (Fig. 1b and c). Exposed 
stratigraphy in the ore region consist mainly of the Lower Cambrian 
Shipai and Qingxudong Formations (Fms), as well as the Middle 
Cambrian Gaotai and Loushanguan Fms (Fig. 2). The Shipai Fm is pri-
marily made up of silty shale (Fig. 2). The Qingxudong Fm, which occurs 
as thick to skinny bedded and normally involves algal/leopard/argilla-
ceous/sandy/gravel limestone and argillaceous/laminated micritic 
dolostone, is the primary ore-host in the entire WHEGMB (Fig. 2). The 
Gaotai and Loushanguan Fms are composed of thick-bedded to thin 
argillaceous dolostone and thick-bedded laminated argillaceous dolo-
stone, respectively (Fig. 2). The NE-, NW- and ENE-trending faults are 
well developed at Danaopo (Fig. 2; Mao, 2016). The NE-trending dextral 
strike-slip normal faults (F1-group; Fig. 2) were generated by syn-ore 
movement of the Huayuan-Zhangjiajie fault belt, which were considered 
as regional ore-fluid conduits (Wei et al., 2020). The F1-generated open- 
space structures (i.e., joints, fractures and pores) in the ore-host algal 
limestone provided metal deposition site for the ore-forming fluid (Fu, 

Fig. 3. Field (a-b), hand-specimen (c-d), microscope (e-h), and SEM (i-l) photographs of occurrence and textures of sulfide orebodies and ores at Danaopo: (a, c) 
piebald sphalerite in algal limestone; (b, d) sphalerite vein in algal limestone; (e, f, i, j) anhedral Sp-I and Py-I occur as metasomatic relict in Cal; (g, h, k) subhedral- 
anhedral Py-I filled and enclosed by coarse-veined Sp-II; (l) diagenetic barite replaced by coarse-veined Sp-II. Abbreviations: Py-I: pyrite in early ore-stage; Sp-II: 
sphalerite in main ore-stage; Cal: calcite; Bar: barite. 
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2011). The Zn-Pb orebodies were locally crosscut by the post-ore NW- 
trending reverse faults (F2-group) and ENE-trending normal faults (F3- 
group) in the Danaopo deposit (Fig. 2; Chen et al., 2018). 

Twenty-five Zn-Pb orebodies at Danaopo have been identified as 
stratoid and lenticular shapes, containing approximately 150 Mt ore 
with an average of 3.1% Zn + Pb (Fig. 2; Yu et al., 2014; Mao, 2016). 
These orebodies include mainly sulfide ores with minor oxide ores. The 
sulfide ores exhibit textures of subhedral to anhedral granular/replaced/ 
poikilitic/cataclastic, and are composed of metallic minerals (incl. 
sphalerite, galena, and pyrite) and non-metallic minerals (incl. calcite, 
dolomite, barite, and fluorite) (Fig. 2a-l; Wu et al., 2021). Besides, 
diagenetic, hydrothermal, and supergene periods were identified during 
the Danaopo Zn-Pb mineralization. There are three mineralization 
stages that make up the hydrothermal ore-forming period, i.e., early (I), 
major (II), and late (III) ore-stage (the details were shown in Wu et al., 
2021). The Danaopo sphalerites were primarily formed during the main 
ore-stage (Sp-II), with a minor contribution from the early ore-stage (Sp- 
I). The Sp-I occurred as anhedral piebald that was enclosed or locally 

replaced by early stage calcite (Cal-I) (Fig. 3 a, c, e, f, i, and j). The Sp-II 
was mainly in thick-veined shape and distributed in the edge of main 
ore-stage lump calcite (Cal-II) (Fig. 3 b, d, g, h, k, and l). 

3. Analytical procedures 

3.1. Sample preparation 

The representative samples studied in this investigation were gath-
ered from three drill holes (i.e., ZK4541, ZK3725, and ZK8529) in the 
Danaopo deposit. A total of eleven polished thin sections that include 
two generations of sphalerite and calcite were chose for LA-ICPMS trace 
element analyses. Additionally, two representative sphalerite grains 
from the early and main ore stages were selected for LA-ICPMS element 
maps. Nineteen ore-stage calcite and four post-ore calcite were manually 
handpicked from sulfide ores and carbonate wallrocks using micro-drill 
in order to undertake C-O isotope studies. 

Table 1 
In-situ trace element composition of sphalerite at Danaopo (×10− 6).  

Sample Ore-stage Location  Mn Fe Cu Ga Ge Ag Cd Sn Sb Pb Tl 

DNP-1-14 (n = 12) I ZK4541 Min. 0.12 409 0.68  0.30 1.70  0.05 4220 0.11 <DL 160  0.01 
(180 m) Max. 65.7 4110 50.7  23.8 76.2  2.05 8990 0.18 <DL 449  0.91  

Mean 10.4 1111 24.4  5.98 17.3  1.29 5756 0.15 <DL 252  0.28  
S.D. 19.0 1221 15.5  7.72 20.7  0.55 1463 0.03 <DL 82.1  0.31 

DNP-2-02 (n = 9) I ZK3725 Min. 0.12 227 0.51  0.04 0.73  0.04 3151 0.08 <DL 163  0.01 
(416 m) Max. 0.75 4830 28.2  25.6 6.16  1.17 9020 0.89 <DL 307  0.13  

Mean 0.38 851 8.13  3.56 2.37  0.38 5745 0.38 <DL 235  0.04  
S.D. 0.26 1499 10.6  8.91 2.54  0.46 1901 0.29 <DL 43.7  0.05 

DNP-3-01 (n = 7) I ZK8529 Min. 0.33 349 36.7  1.64 4.56  0.27 3930 0.16 0.18 87.3  0.06 
(309 m) Max. 70.5 690 82.5  26.9 27.6  0.68 7618 1.12 0.55 337  0.78  

Mean 23.8 494 56.6  12.6 13.7  0.48 5948 0.61 0.32 170  0.32  
S.D. 29.1 103 17.5  10.1 9.15  0.12 1155 0.39 0.20 82.3  0.29 

DNP-3-08 (n = 7) I ZK8529 Min. 2.47 488 20.0  2.16 1.51  1.31 5040 0.47 <DL 71.2  0.17 
(234 m) Max. 201 974 74.0  20.8 14.6  6.03 11,570 2.84 <DL 232  1.08  

Mean 105 659 42.8  10.6 6.24  3.20 7533 1.43 <DL 147  0.61  
S.D. 74.0 165 17.5  7.55 4.54  1.62 2230 0.86 <DL 54.0  0.31 

(n = 35) I  Min. 0.12 227 0.51  0.04 0.73  0.04 3151 0.08 0.18 71.2  0.00  
Max. 201 4830 82.5  26.9 76.2  6.03 11,570 2.84 0.64 449  1.08  
Mean 32.8 830 30.5  7.71 12.1  1.30 6147 0.65 0.38 210  0.31  
S.D. 54.8 1037 23.2  8.81 15.0  1.33 1777 0.66 0.20 79.0  0.32 

DNP-1-04 (n = 7) II ZK4541 Min. 2.05 1110 2.02  0.11 15.8  0.04 1520 0.10 <DL 234  0.17 
(222 m) Max. 183 8160 121  17.4 101  4.68 9210 1.10 <DL 338  1.23  

Mean 46.7 4204 59.8  7.68 62.0  2.35 5068 0.36 <DL 294  0.59  
S.D. 64.0 2959 43.0  5.64 39.0  1.50 3204 0.42 <DL 43.0  0.37 

DNP-1-07 (n = 8) II ZK4541 Min. 11.0 4000 8.60  1.66 36.1  0.74 2230 0.10 <DL 235  0.36 
(220 m) Max. 42.1 5950 17.0  5.82 116  2.31 7830 0.47 <DL 416  1.35  

Mean 20.7 5211 13.0  2.87 69.8  1.50 4258 0.25 <DL 314  0.76  
S.D. 10.4 687 3.01  1.35 26.3  0.48 1798 0.16 <DL 61.6  0.32 

DNP-1-08 (n = 9) II ZK4541 Min. 0.39 428 1.54  0.75 20.0  0.16 2391 <DL 0.58 91.3  0.02 
(214 m) Max. 24.3 5930 13.7  17.4 141  4.58 5920 <DL 0.63 299  1.11  

Mean 10.1 3336 7.37  6.46 69.1  1.86 3924 <DL 0.61 189  0.60  
S.D. 8.24 2211 3.48  5.29 34.7  1.41 1417 <DL 0.04 77.1  0.39 

DNP-1-09 (n = 9) II ZK4541 Min. 7.98 1510 35.5  2.62 19.9  2.52 2160 0.14 0.32 255  0.40 
(213 m) Max. 156 4650 103  20.0 94.3  12.1 10,560 0.38 0.86 559  1.41  

Mean 57.5 2719 65.4  8.65 49.3  5.10 5459 0.22 0.47 399  0.83  
S.D. 58.3 1099 24.9  5.65 26.7  3.06 2527 0.11 0.23 96.5  0.40 

DNP-1-10 (n = 8) II ZK4541 Min. 4.96 1709 0.24  0.49 9.10  0.01 1631 0.09 0.55 271  0.24 
(212 m) Max. 163 4800 81.8  16.3 134  5.61 5330 0.72 0.61 406  1.56  

Mean 35.5 3483 27.4  6.30 74.5  1.53 3747 0.41 0.58 349  0.95  
S.D. 57.0 987 28.4  5.48 39.2  1.90 1458 0.45 0.04 42.9  0.55 

DNP-2-07 (n = 5) II ZK3725 Min. 12.2 2040 0.38  1.53 87.8  0.05 2800 0.12 0.27 158  0.60 
(367 m) Max. 33.7 7360 6.22  15.0 236  0.63 5529 0.18 0.84 318  3.02  

Mean 19.4 4766 2.07  6.91 130  0.18 3790 0.15 0.54 224  1.43  
S.D. 9.23 2016 2.80  4.93 62.5  0.25 1165 0.04 0.27 74.2  0.92 

DNP-3-05 (n = 7) II ZK8529 Min. 12.5 4720 1.46  0.08 24.7  0.07 2060 <DL 0.23 343  0.41 
(294 m) Max. 36.0 8540 23.5  0.75 85.4  0.98 11,400 <DL 0.96 1050  2.17  

Mean 21.7 6249 11.7  0.44 51.4  0.34 6459 <DL 0.60 613  1.51  
S.D. 8.64 1555 7.83  0.29 20.6  0.31 3498 <DL 0.52 247  0.66 

(n = 53) II  Min. 0.39 428 0.24  0.08 9.10  0.01 1520 0.09 0.23 91.3  0.02  
Max. 183 8540 121  20.0 236  12.1 11,400 1.10 0.96 1050  3.02  
Mean 33.8 4166 29.8  5.67 69.3  2.02 4682 0.28 0.55 341  0.91  
S.D. 45.5 2064 34.0  5.13 40.0  2.24 2367 0.26 0.22 165  0.59  
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3.2. Sphalerite LA-ICPMS multi-element analysis 

The in-situ trace element analysis of sphalerite was carried out by LA- 
ICPMS at the Guangzhou Tuoyan Analytical Technology Co., Ltd., 
Guangzhou, China, using a NWR Laser ablation system (λ = 193 nm) 
coupled to an iCAP RQ ICP-MS instrument and a “wire” signal 
smoothing device. Helium was used as a carrier gas. A total of 88 spots 
and 2 elemental maps were selected on sulfide samples covering Sp-I and 
Sp-II. The analysis was run with a 30 µm spot size and 8 Hz pulse fre-
quency in this study. The following isotopes were quantified: 49Ti, 55Mn, 
57Fe, 59Co, 60Ni, 65Cu, 66Zn, 71Ga, 72Ge, 75As, 77Se, 107Ag, 111Cd, 115In, 
118Sn, 121Sb, 125Te, 204Pb, and 205Tl. Each analysis took around 50 s to 
acquire the backdrop information before acquiring the sample data for 
40 s. Trace element compositions of sphalerite were calibrated against 
multiple reference materials (i.e., NIST610, GSE-2G, and GE7) using 

stoichiometric concentrations of Zn used for sphalerite as an internal 
standard. The software IOLITE was used to conduct off-line processing of 
trace element data. 

3.3. Bulk C-O isotope analyses 

The C-O isotope analyses of the carbonate wallrocks and calcite were 
performed at State Key Laboratory of Ore Deposit Geochemistry 
(SKLODG), Institute of Geochemistry, Chinese Academy of Sciences 
(IGCAS), and measured using a Finnigan MAT-253 gas isotope ratio 
mass spectrometer. The C-O isotope compositions were assessed using 
CO2, which was produced during the reaction of Danaopo calcite with 
100% phosphoric acid for 24 h at 72℃. The analytical precision (2σ) for 
δ13C values was ± 0.2‰ and for δ18O values was ± 0.4‰. The carbon 
isotope composition was reported relative to Vienna Peedee Belemnite 

Fig. 4. Histograms showing the comparison of LA-ICPMS trace elements concentration in sphalerite between Danaopo deposit and Huayuan orefield (data of 
Huayuan sphalerite from Wei et al., 2021c). 
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(V-PDB), while the oxygen isotope was reported relative to V-PDB and 
Vienna standard mean ocean water (V-SMOW). The formula δ18OV- 

SMOW = 1.03086 × δ18OV-PDB + 30.86 was used to transform the δ18O 
values from V-PDB to V-SMOW (Friedman and O’Neil, 1977). 

3.4. Calcite LA-ICPMS REE analysis 

The calcite REE analysis was conducted by LA-ICPMS at the 
SKLODG, IGCAS, using a GeoLas Pro 193 nm ArF excimer laser coupled 
to an Agilent 7700x ICP-MS instrument with helium applied as carrier 
gas during laser ablation. Each analysis included a backdrop capture of 
30 s and a sample data acquisition of 50 s. Calcite REE compositions 
were reported relative to various reference materials (i.e., GOR128-G, 
ATHO-G, StHs8/80-G, T1-G) combined with an internal standard 
(Chen et al., 2011). The off-line processing of trace element data was 
carried out via IOLITE and ICPMSDataCal (Liu et al., 2008; Liu et al., 
2010). 

4. Results 

4.1. Trace elements in sphalerite 

The LA-ICPMS trace elements of the Danaopo sphalerite are pre-
sented in Table 1 and Fig. 4. The analysis covered 11 samples, including 
88 spots and 2 elemental maps, with 35 spots and 1 elemental map for 
early ore-stage sphalerite (Sp-I) and 53 spots and 1 elemental map for 
main ore-stage sphalerite (Sp-II). The complete datasets are listed in 
Supplemental Material 1. 

The most prevalent trace element in Danaopo sphalerite is cadmium 
(Cd), with quantities averaging 5265 ppm and ranging from 1520 to 
11570 ppm. Cd concentration in Sp-I (ranging from 3151 to 11570 ppm, 
avg. 6147 ppm) are higher than those in Sp-II (1520 to 11400 ppm, avg. 
4682 ppm). Iron (Fe) and lead (Pb) contents in sphalerite range from 227 
to 8540 ppm (avg. 2842 ppm) and 71.2 to 1050 ppm (289 ppm), 
respectively. The concentrations of Fe (227–4830 ppm, avg. 830 ppm) 
and Pb (71.2–449 ppm, avg. 210 ppm) in Sp-I are lower than those in Sp- 
II, which consist of Fe of 428 to 8540 ppm (avg. 4166 ppm) and Pb of 

Fig. 5. Boxplot showing trace element contents in sphalerite collected from different altitudes within drill ZK4541 at Danaopo.  
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91.3 to 1050 ppm (avg. 341 ppm). 
The critical metals in sphalerite include Germanium (Ge), Gallium 

(Ga), and Thallium (Tl), with concentrations ranging from 0.73 to 236 
ppm (avg. 44.91 ppm), 0.04 to 26.90 ppm (avg. 6.40 ppm), and 0.01 to 
3.62 ppm (avg. 0.66 ppm), respectively. In the Sp-II, Ge (9.1 to 236 ppm, 
avg. 69.3 ppm) and Tl (0.02 to 3.02 ppm, avg. 0.91 ppm) are higher in 
concentration than in Sp-I (Ge: 0.73–76.2 ppm, avg. 12.1 ppm; Tl: 0.01 
to 1.08 ppm, avg. 0.31 ppm), while Ga exhibits slight differences in 
concentration between Sp-I and Sp-II. 

The concentrations of Manganese (Mn), Copper (Cu), Silver (Ag) are 
from 0.12 to 201 ppm (avg. 30.10 ppm), 0.24 to 121 ppm (avg. 28.68 
ppm), and 0.01 to 12.06 ppm (avg. 1.68 ppm), respectively. No signif-
icant difference is observed for these elements between Sp-I and Sp-II. 

Besides, the Fig. 5 shows that the Cd concentration in sphalerite 
gradually decreases with increasing elevation in the ZK4541 drill hole. 
The average Cd contents in the lower orebody (~180 m with avg. Cd of 
5756 ppm) are higher than those in the upper orebody (222 m with avg. 
Cd of 4636 ppm) (Fig. 5). Conversely, Fe, Ge, Pb, and Tl concentrations 
in sphalerite increase gradually with the increase of elevation (Fig. 5). 
Sphalerite in the upper orebody has higher average contents of Fe (4741 
ppm), Ge (66.00 ppm), Pb (311 ppm), and Tl (0.79 ppm) than the lower 
orebody that consist Fe of 1111 ppm, Ge of 17.32 ppm, Pb of 252 ppm, 
and Tl of 0.23 ppm in sphalerite (Fig. 5). Furthermore, the contents of Ti, 
Co, Ni, As, Se, In, Sn, Sb, and Te in Danaopo sphalerite are mostly below 
the detection limits. 

4.2. C-O isotopes of calcite and country rocks 

The carbon and oxygen isotope compositions of the algal limestone 
and calcite are showed in Table 2 and Figs. 9–10. The Cambrian algal 
limestone (n = 9) has measured δ13CPDB and δ18OSMOW values ranging 
from − 1.88 to + 0.95‰ (avg. − 0.85‰) and + 18.76 to + 23.87‰ (avg. 
+ 21.58‰), respectively (Table 2). The δ13CPDB and δ18OSMOW values of 
ore-stage calcite (n = 19) are from − 3.93 to − 0.12‰ (avg. − 1.94‰) 
and + 14.58 to + 21.19‰ (avg. + 17.93‰), respectively, showing 

slightly different C-O isotope compositions with horizontal and vertical 
variation (Table 2, Fig. 10). It is worth noting that four post-ore calcite 
samples have lower δ13CPDB values ranging from − 8.94 to − 7.51‰ (avg. 
− 8.34‰) and heavier δ18OSMOW values ranging from + 17.37 to +
22.09‰ (mean + 20.78‰) compared to the ore-stage calcite (Table 2). 
Besides, the theoretical calculated δ13CCO2 and δ18Ofluid values of the 
ore-stage calcite range from − 4.97 to − 1.16‰ (avg. − 2.98‰) and +
2.44 to + 9.05‰ (avg. + 5.79‰), respectively (Table 2). 

4.3. Rare earth elements in calcite 

The REE compositions of hydrothermal calcite in the early (Cal-I, n 
= 9) and main (Cal-II, n = 11) ore stages at Danaopo are summarized in 
Table 3 and showed in Fig. 11. The Cal-I has lower total REE contents 
(ΣREE) of 0.18 to 2.88 ppm with an average of 1.35 ppm, compared to 
the Cal-II with ΣREE ranging from 1.12 to 51.09 ppm (avg. 10.76 ppm). 
The REE distribution patterns of all samples normalized to the chondrite 
values are characterized by LREE enrichment with LREE/HREE ratios of 
1.68–17.33 (avg. 7.64) for Cal-I and 3.78–31.29 (avg. 14.35) for Cal-II 
(Table 3; Fig. 11a, b). The δEu values of Cal-I and Cal-II range from 0.18 
to 1.17 (avg. 0.65) and 0.35–0.73 (avg. 0.56), respectively (Table 3; 
Fig. 11a, b), both showing negative Eu anomalies. Additionally, the (La/ 
Sm)N of 2.58 to 22.22 (avg. 9.25) and (Gd/Yb)N of 1.15 to 5.63 (avg. 
2.52) for Cal-I are approximately identical to the Cal-II with (La/Sm)N of 
3.29–12.61 (avg. 10.31) and (Gd/Yb)N of 1.73–5.10 (avg. 3.32), indi-
cating a similar fractionation degree of LREE and HREE for early and 
main ore stage calcite. 

5. Discussion 

5.1. Occurrence and incorporation of critical metals in sphalerite 

Trace element composition of sphalerite in the Danaopo Zn-Pb de-
posit is similar to other typical deposits in the Huayuan orefield, such as 
Limei, Bamaozhai, and Tudiping (Fig. 4;data from Wei et al., 2021c). 

Fig. 6. Representative LA-ICPMS ablation profiles of the Danaopo sphalerite from early and main ore stage.  
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The Danaopo sphalerite has the distribution of critical metals including 
Cd (avg. 5265 ppm), Ge (avg. 44.91 ppm), Ga (avg. 6.40 ppm), and Tl 
(avg. 0.66 ppm), among which Cd and Ge show economic potential. A 
general survey report suggest that the Danaopo deposit is associated 
with approximately 65,000 tons of metal Cd that can be comprehen-
sively recycled (Yu et al., 2014). This amount meets the standard of a 
large scale Cd deposit (>3000 tons). However, Ge was not extracted 
from Danaopo or any other deposit in the Huayuan orefield. Actually, Ge 
in sphalerite (avg. 82 ppm; Ye et al., 2011) from the Huize Zn-Pb de-
posit, China (with 525 tons of Ge metal; Liu et al., 2022) has been 
effectively recycled with a 79% recovery rate (Ao et al., 2021). Although 
the average Ge content in Danaopo sphalerite is not remarkable, our 
data show that Ge is mainly enriched in vein-type sphalerite (Sp-II; Fig. 3 
b, d, g-h, k-l) from the upper orebody with an elevation of over 180 m 
(avg. Ge of 69.3 ppm; Figs. 4–5; Table 1). This indicate that the Danaopo 
deposit also has the potential for comprehensive Ge utilization. 

Unraveling the occurrence mode and enrichment mechanism of 
critical metals is essential for their comprehensive utilization. LA-ICPMS 
ablation profiles, elemental maps, and inter-element correlations of the 
LA-ICPMS can provide significant evidence for the occurrence and 
incorporation of trace elements in host minerals (Cook et al., 2009; Ye 
et al., 2011; Belissont et al., 2014; Wei et al., 2019, 2021a). In this study, 
the LA-ICPMS ablation profiles of Cd, Ga, Ge, and Tl for Sp-I and Sp-II are 

smooth and flat, similar to those of Zn (Fig. 6 a-b), indicating that these 
critical metals might show up in sphalerite as solid solutions. Although 
sub-micrometer particles could not be completely ruled out, the 
elemental inter-correlations could provide additional restrictions (Li 
et al., 2020). 

Cadmium commonly enters the sphalerite lattice through directly 
substituting Zn2+ (Cook et al., 2009; Ye et al., 2016; Hu et al., 2021). In 
the Danaopo deposit, Cd and other trace elements show extremely weak 
correlations in elemental binary plots (Fig. 7a-b) and have poor covar-
iant relationships in LA-ICPMS elemental maps (Fig. 8), indicating that 
Cd is likely incorporated into the Danaopo sphalerite lattice via direct 
replacement of Zn2+ (Zn2+ ↔ Cd2+). 

The incorporation mechanism of Ge in sphalerite has always been a 
subject of debate. Previous studies have proposed various mechanisms, 
including direct replacement of Zn2+ by Ge2+ or Ge4+, such as Zn2+ ↔ 
Ge2+ (Cook et al., 2009) and 2Zn2+ ↔ Ge4+ + □(vacancy) (Cook et al., 
2015; Bonnet et al., 2016). Other studies have suggested coupled sub-
stitution of Ge2+ or Ge4+ and mono- and/or bivalent ions of (Cu or Ag)+

and Cu2+ for Zn2+, such as 3Zn2+ ↔ Ge4+ + 2(Cu, Ag)+ (Johan, 1988), 
3Zn2+ ↔ Ge4+ + 2(Cu, Ag)+ (Belissont et al., 2014, 2016; Wei et al., 
2019; Li et al., 2020; Oyebamiji et al., 2020) and (n + 1) Zn2+ ↔ Ge2+ +

(n + 1) Cu2+ (Ye et al., 2016). Additionally, coupled substitution of Ge4+

and Fe2+ for Zn2+ has been proposed, such as 4Zn2+ ↔ Ge4+ + 2Fe2+ +

Fig. 7. Correlations plots of (a) Fe vs. Cd, (b) Mn vs. Cd, (c) Cu vs. Ga, (d) Cu + Ag vs. Ge, (e) Fe vs. Ge, and (f) Ge vs. Tl in Danaopo sphalerite.  
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Fig. 8. LA-ICPMS elemental maps of the Danaopo sphalerite in early and main ore stage.  
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Table 2 
δ13C-δ18O composition of the wallrocks and calcite from the Danaopo deposit.  

Sample Location Object δ13CPDB/‰ δ13Cfluid/‰ δ18OSMOW/‰ δ18Ofluid/‰ 

DNP-1-01 ZK4541 Algal limestone  − 1.58  –  23.03  – 
DNP-1-07 ZK4541  − 0.31  –  21.24  – 
DNP-1-11 ZK4541  − 1.88  –  20.33  – 
DNP-1-14 ZK4541  − 1.29  –  20.83  – 
DNP-2-03 ZK3725  0.37  –  18.76  – 
DNP-2-06 ZK3725  − 1.66  –  21.78  – 
DNP-2-07 ZK3725  − 0.83  –  21.63  – 
DNP-3-04 ZK8529  0.95  –  23.87  – 
DNP-3-07 ZK8529  − 1.50  –  22.78  – 
DNP-1-01 ZK4541 Ore-stage calcite  − 2.14  − 3.18  20.87  8.73 
DNP-1-02 ZK4541  − 0.97  − 2.01  18.91  6.77 
DNP-1-05 ZK4541  − 2.46  − 3.50  17.54  5.40 
DNP-1-07 ZK4541  − 0.69  − 1.73  16.85  4.71 
DNP-1-08 ZK4541  − 2.23  − 3.27  18.89  6.75 
DNP-1-09 ZK4541  − 2.19  − 3.23  19.17  7.03 
DNP-1-10 ZK4541  − 1.53  − 2.57  21.19  9.05 
DNP-1-11 ZK4541  − 2.85  − 3.89  18.41  6.27 
DNP-1-12-1 ZK4541  − 1.92  − 2.96  18.70  6.56 
DNP-1-12-2 ZK4541  − 2.62  − 3.66  15.94  3.80 
DNP-1-13-1 ZK4541  − 3.27  − 4.31  16.66  4.52 
DNP-1-13-2 ZK4541  − 2.19  − 3.23  20.26  8.12 
DNP-1-14 ZK4541  − 2.48  − 3.52  15.65  3.51 
DNP-1-15 ZK4541  − 0.12  − 1.16  20.54  8.40 
DNP-2-01 ZK3725  − 1.41  − 2.45  15.16  3.02 
DNP-2-02 ZK3725  − 2.65  − 3.69  14.58  2.44 
DNP-2-07 ZK3725  − 0.50  − 1.54  17.21  5.07 
DNP-3-02 ZK8529  − 0.70  − 1.74  18.31  6.17 
DNP-3-09 ZK8529  − 3.93  − 4.97  15.78  3.64 
DNP-1-03 ZK4541 Post-ore calcite  − 8.85  –  21.82  – 
DNP-1-04 ZK4541  − 7.51  –  21.85  – 
DNP-1-10 ZK4541  − 8.07  –  17.37  – 
DNP-2-04 ZK3725  − 8.94  –  22.09  – 

Note: The δ13Cfluid and δ18Ofluid values were calculated via 1000lnα = -2.4612 + 7.663 × 103/T − 2.988 × 106/T2 (Bottinga, 1968) and 1000lnα = 2.78 × 106/T2 

− 3.39 (O’Neil et al., 1969), respectively. T = t + 273.15, t is a homogenization temperature (150℃) of fluid inclusions in sphalerite and calcite in the Huayuan orefield. 

Fig. 9. δ13CPDB-δ18OSMOW composition of the wallrocks and calcite in the Huayuan Zn-Pb orefield. Data sources: Limei (Xia and Shu, 1995; Cai et al., 2014; Zhou 
et al., 2017), Shizishan (Cai et al., 2014; Duan, et al., 2014), Yutang (Li et al., 2014), Naizibao (Yang and Lao, 2007), Tuanjie and Dashigou (Zhou et al., 2017), 
Tudiping (Zhou et al., 2017; Wei, 2017), Changdengpo and Laohuchong (Wei, 2017). 
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□ (Yuan et al., 2018; Luo et al., 2022). At Danaopo, a weak negative 
linear correlation (r = -0.16) was observed between Ge and (Cu + Ag) 
(Fig. 7d). The LA-ICPMS elemental map between Ge and Cu or Ag dis-
played a poor covariant relationship in Sp-I and Sp-II (Fig. 8), indicating 
that the substitution of Ge in Danaopo sphalerite could not occur 
through 3Zn2+ ↔ Ge4+ + 2(Cu, Ag)+ and (n + 1) Zn2+ ↔ Ge2+ + (n + 1) 
Cu2+. In contrast, good positive correlations were identified between Ge 
and Fe (r = 0.60; Fig. 7e) and Ge and Tl (r = 0.59; Fig. 7f). The covariant 
relationships among Fe, Ge and Tl were evident, especially in Ge-rich Sp- 
II (Fig. 8), which indicate that the substitution of Ge in sphalerite has a 
tight connection to Fe and Tl. Germanium is typically found as Ge4+ in 
nature (Wood and Samson, 2006; Höll et al., 2007). Previous research 
claimed that Ge and Fe were respectively present in Ge-rich sphalerite as 
Ge4+ and Fe2+ using X-ray Absorption Near Edge Structure (XANES) 
(Cook et al., 2015; Belissont et al., 2016). Thus, Ge is most likely 
incorporated into the Danaopo sphalerite lattice through 4Zn2+ ↔ Ge4+

+ 2Fe2+ + □. Besides, based on thermodynamic evidence, Tl+ was 
predominant in hydrothermal solutions (Xiong, 2007; Zhuang et al., 
2019). Minor Ge may enter the sphalerite lattice via 3Zn2+ ↔ Ge4+ +

2Tl+ in view of the clear correlation between Ge and Tl (Fig. 7f). But our 
investigation cannot exclude the substitution of 2Zn2+ ↔ Ge4+ + □. 

Gallium is generally present in the sphalerite lattice as a trivalent ion 
(Cook et al., 2009). Three substitution mechanisms between Ga3+ and 
Zn2+ reported in recent years are as follows, (1) direct substitution of 
Ga3+ for Zn2+ (3Zn2+ ↔ 2 Ga3+ + □(vacancy); Bonnet et al., 2016), (2) 
coupled substitution of Ga3+ and monovalent ions (Cu, Ag)+ for Zn2+

(2Zn2+ ↔ Ga3+ + (Cu, Ag)+; Cook et al., 2009; Bonnet et al., 2016), and 
(3) coupled substitution of Ga3+, Sn4+, and Cu+ for Zn2+ (4Zn2+ ↔ Ga3+

+ Sn4+ + Cu+ + □; Zhuang et al., 2019). At Danaopo, Ga and Cu exhibit 
a positive linear correlation (r = 0.47; Fig. 7c). However, the distribu-
tion of Ga in Sp-I and Sp-II displays zonal features that are inhomoge-
neous and clearly distinct from those of Cu (Fig. 8). Therefore, the 
coupled replacement of 4Zn2+ ↔ Ga3+ + Sn4+ + Cu+ + □ and 2Zn2+ ↔ 
Ga3+ + Cu+ could be excluded. Instead, Ga is probably dominated by the 
substitution of 3Zn2+ ↔ 2 Ga3+ + □ into the Danaopo sphalerite lattice. 

5.2. Nature of ore-forming fluid 

5.2.1. Sources of C and O 
The carbon and oxygen isotopes are a valuable tool for determining 

the origin of ore-forming fluids and providing indicators for mineral 
precipitation mechanisms and physicochemical conditions in carbonate- 
host hydrothermal Pb-Zn deposits (Zheng and Wang, 1991; Li et al., 
2015). There are three potential sources of C and O in hydrothermal 
mineralization fluids, including mantle magma (δ13CPDB = -8‰ to − 4‰, 
δ18OSMOW = +6‰ to + 10‰; Taylor et al., 1967), organic matters in 
sediments (δ13CPDB = -30‰ to − 10‰, δ18OSMOW = +24‰ to + 30‰; 
Kump and Arthur, 1999), and marine carbonate rocks (δ13CPDB = -4‰ 
to + 4‰, δ18OSMOW = +20‰ to + 30‰; Veizer and Hoefs, 1976). At 
Danaopo, the measured δ13CPDB (-3.93 to − 0.12‰; mean − 1.94‰) and 
δ18OSMOW (+14.58 to + 21.19‰; mean + 17.93‰) compositions of ore- 
stage calcite resemble those of the typical Pb-Zn deposits in Huayuan 
orefield (e.g., Limei, Shizishan, Tudiping etc.). These deposits have 
calcite δ13CPDB of − 3.46 to + 1.50‰ (mean − 0.50‰) and δ18OSMOW of 
+ 14.59 to + 23.74‰ (mean 20.16‰) (Fig. 9; Xia and Shu, 1995; Li 
et al., 2014; Cai et al., 2014; Zhou et al., 2017; Wei, 2017 and reference 
therein), indicating that each Zn-Pb deposit in Huayuan orefield could 
have identical carbon and oxygen source. 

The measured δ13CPDB values of − 3.93 to − 0.12‰ (mean − 1.94‰) 
and calculated δ13Cfluid values of − 4.97 to − 1.16‰ (mean − 2.98‰) for 
the ore-stage calcite (Table 2) overlap with those of marine carbonate 
rocks (δ13CPDB = -4‰ ~ +4‰, Veizer and Hoefs, 1976), indicating that 
the ore-host algal limestone may be the source of carbon in Danaopo 
hydrothermal calcite. Moreover, the δ13CPDB values of post-ore calcites 
(-8.94 to − 7.51‰, mean − 8.34‰) are lower than those of marine car-
bonate rocks and approximately close to organic matter (δ13CPDB = -30 
to − 10‰; Kump and Arthur, 1999). These post-ore calcites plot close to 
the sedimentary organic matter dehydroxylation (Fig. 10), indicating an 
additional δ13C-depleted contribution from organic matter to calcite 
after Zn-Pb mineralization, in agreement with the Zhugongtang deposit, 
China (Wei et al., 2021b). In the δ13CPDB vs. δ18OSMOW plot, most of the 
ore-stage calcite from typical Zn-Pb deposits, including Danaopo, Limei, 
and Shizishan in the Huayuan orefield, plot as a horizontal linear trend 
near the marine carbonate dissolution baseline (Fig. 10). This suggests 
that there was an interaction between hydrothermal fluid and wallrocks 
during the ore formation (Zheng and Hoefs, 1993). Thus, it can be 
concluded that the carbon in Danaopo ore-forming fluid was mainly 
originated the dissolution of Qingxudong Fm algal limestone of the 
lower Cambrian. 

It is commonly accepted that the oxygen isotope of the ore-forming 

Fig. 10. δ13CPDB-δ18OSMOW diagram of calcite and carbonate wallrock in the Danaopo deposit (modified after Wei, 2017).  
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Table 3 
REE composition of calcite from the Danaopo deposit (×10− 6).  

Sample Mineral La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y ΣREE LREE HREE L/H δEu 

DNP-1-03 Calcite-I  0.83  1.00  0.10  0.39  0.04 0.01  0.04 <DL  0.04 0.01  0.02 <DL 0.02 <DL  0.23  2.51  2.37  0.14  17.33  1.10 
DNP-1-03  1.03  1.15  0.10  0.36  0.05 0.01  0.04 0.01  0.05 0.01  0.05 0.01 0.02 <DL  0.40  2.88  2.70  0.19  14.47  0.52 
DNP-1-03  0.28  0.35  0.04  0.12  0.06 0.01  0.04 0.01  0.05 0.01  0.02 <DL 0.01 <DL  0.36  1.01  0.86  0.15  5.76  0.78 
DNP-1-03  0.11  0.14  0.02  0.06  0.01 <DL  0.02 <DL  0.01 <DL  0.01 <DL <DL <DL  0.09  0.40  0.35  0.06  6.32  0.18 
DNP-1-14  0.03  0.03  0.01  0.03  0.01 <DL  0.02 <DL  0.01 <DL  0.02 <DL 0.01 <DL  0.19  0.18  0.11  0.07  1.68  0.42 
DNP-1-14  0.51  0.73  0.10  0.42  0.03 0.02  0.05 0.01  0.06 0.01  0.02 <DL 0.02 <DL  0.42  2.00  1.81  0.18  9.90  1.17 
DNP-1-14  0.33  0.52  0.07  0.37  0.09 0.01  0.07 0.01  0.07 0.01  0.04 0.01 0.04 <DL  0.64  1.65  1.39  0.25  5.48  0.44 
DNP-1-14  0.15  0.20  0.03  0.19  0.05 0.01  0.04 0.01  0.03 0.01  0.03 <DL 0.02 <DL  0.27  0.79  0.64  0.15  4.39  0.58 
DNP-1-14  0.12  0.18  0.03  0.18  0.04 0.01  0.04 <DL  0.05 0.01  0.02 0.01 0.02 <DL  0.31  0.71  0.55  0.16  3.42  0.69  

DNP-1-07 Calcite-II  8.00  20.78  2.85  10.94  2.42 0.38  2.01 0.27  1.52 0.31  0.77 0.11 0.63 0.09  9.61  51.09  45.37  5.71  7.94  0.52 
DNP-1-07  0.56  0.96  0.14  0.59  0.15 0.04  0.17 0.02  0.17 0.03  0.12 0.02 0.09 0.01  1.39  3.08  2.45  0.64  3.83  0.73 
DNP-1-07  2.40  2.57  0.36  1.59  0.23 0.05  0.22 0.03  0.17 0.03  0.08 0.01 0.07 0.01  1.19  7.79  7.19  0.60  11.89  0.61 
DNP-1-07  0.22  0.32  0.05  0.22  0.07 0.01  0.06 0.01  0.07 0.02  0.05 0.01 0.02 <DL  0.45  1.12  0.89  0.23  3.78  0.60 
DNP-1-10  4.02  5.20  0.51  1.99  0.24 0.04  0.15 0.02  0.10 0.02  0.06 0.01 0.03 <DL  0.52  12.40  12.02  0.38  31.29  0.67 
DNP-1-10  2.25  2.86  0.28  1.04  0.17 0.02  0.11 0.01  0.09 0.02  0.05 0.01 0.04 <DL  0.58  6.96  6.62  0.34  19.65  0.40 
DNP-1-10  4.17  5.33  0.54  2.00  0.30 0.04  0.23 0.02  0.15 0.02  0.07 0.01 0.04 0.01  0.80  12.93  12.38  0.55  22.48  0.53 
DNP-1-10  0.72  0.97  0.12  0.39  0.06 0.01  0.05 0.01  0.05 0.01  0.04 <DL 0.02 <DL  0.44  2.46  2.27  0.19  12.02  0.60 
DNP-1-10  2.33  2.95  0.31  1.32  0.17 0.03  0.15 0.02  0.10 0.02  0.07 0.01 0.04 0.01  0.76  7.54  7.11  0.43  16.43  0.58 
DNP-1-10  2.03  2.75  0.32  1.14  0.18 0.02  0.12 0.02  0.13 0.02  0.07 0.01 0.07 0.01  1.00  6.88  6.43  0.45  14.16  0.35 
DNP-1-10  1.87  2.41  0.27  0.95  0.15 0.03  0.13 0.02  0.11 0.02  0.06 0.01 0.04 0.01  0.84  6.06  5.67  0.39  14.41  0.57  

T. W
u et al.                                                                                                                                                                                                                                      



Ore Geology Reviews 158 (2023) 105494

14

fluid (δ18Ofluid) can approximately represent that of the H2O in fluid 
inclusion (δ18OH2O) when isotope exchange reaches equilibrium (Zheng, 
1999; Zhou et al., 2018b). The experimental analysis of δ18OSMOW values 
(+14.58 to + 21.19‰, avg. + 17.93‰; Table 3; Fig. 10) of the Danaopo 
ore-stage calcites are lower than those of the ore-host carbonate rocks 
(+18.76 to + 23.87‰, avg. + 21.58‰; Table 3; Fig. 10). This implies 
that the Cambrian algal limestone was not the only oxygen source. Be-
sides, the calculated δ18Ofluid values of ore-stage calcite from Danaopo 
(+5.23 to + 9.95‰, avg. + 8.64‰; Table 2) and Huayuan orefield 
(+2.45 to + 11.60‰, avg. + 8.02‰; Li et al., 2014; Zhou et al., 2017; 
Wei, 2017 and references therein) are far lower than the oxygen isotope 
composition of marine carbonate rocks (δ18OSMOW = +20‰ ~ +30‰; 
Veizer and Hoefs, 1976), which indicate a mixing oxygen source from 
ore-host algal limestone and δ18O-depleted hydrothermal fluid 
(Ohmoto, 1986). This δ18O-depleted fluid may be categorized as basinal 
brine (δ18O = +4‰ ~ +10‰; Talor et al., 1967), given the low tem-
perature, medium–high salinity of the ore-forming fluid and tectonic 
setting of the foreland basin for the Huayuan orefield (Liu and Zheng, 
2000; Duan et al., 2014; Wei, 2017). Hence, the oxygen in the Danaopo 
hydrothermal calcite could be sourced from a binary mixing of the ore- 
host algal limestone and basinal hot brine. 

5.2.2. Source of REEs 
Rare earth elements commonly migrate as complexes in the hydro-

thermal fluid and enter Ca-rich minerals such as calcite, dolomite via the 
substitution of Ca2+ ions (Huang et al., 2010; Luo et al., 2019). This 

suggests that the REEs composition of hydrothermal calcite may reflect 
the nature of REE in the mineralization fluid (Huston et al., 1995; Souissi 
et al., 2013). At Danaopo, the REE distribution patterns of calcite in the 
early ore-stage (Cal-I; Fig. 11a) are similar to those in the main ore-stage 
(Cal-II; Fig. 11b). However, the REEs concentration of Cal-I (avg. 1.35 
ppm) is obviously lower than that of Cal-II (avg. 10.76 ppm) (Table 3), 
which possibly imply a different REE source for Cal-I and Cal-II. The 
correlation between Y and ΣREE of hydrothermal minerals can be uti-
lized to determine the origin of REEs in the ore deposit (Bau and Möller, 
1995; Cherniak et al., 2001; Schönenberger et al., 2008). Fig. 11c 
demonstrate a significant positive association (r2 = 0.90) among ore- 
stage calcites, ore-host and footwall sedimentary sequences, and base-
ment metamorphic rocks, indicating a close genetic relationship be-
tween Danaopo hydrothermal calcite and these regional sedimentary 
and basement rocks. 

The REE distribution pattern of Cal-I falls within the field of ore-host 
algal limestone and is distal to the rocks from Proterozoic Banxi Gp to 
Cambrian Niutitang Fm (Fig. 11a), indicating that the REEs in Cal-I was 
mainly sourced from the wallrocks. In contrast, the Cal-II is distributed 
between the above-mentioned potential REE source rocks (Fig. 11a), 
which is indicative of a mixed REE origin in the main ore-forming stage. 
The ore-host algal limestone with REEs of 2.39–14.30 ppm (Wei et al., 
2017) cannot provide enough REE for Cal-II with REEs of 1.12–51.09 
ppm, as confirmed by the extremely low REE content in leachate from 
carbonate rocks in fluid simulation experiments (Michard, 1989; Ohr 
et al., 1994). A REE-rich end-member could be incorporated into the Cal- 

Fig. 11. (a, b) Comparison diagram of REE compositions of calcite in early and main ore stage, ore-host and underlying strata in the Danaopo deposit; (c) Y-ΣREE 
correlation diagram of the Danaopo ore-stage calcite and potential source rocks (the REE data of the potential source rocks was sourced from Wei et al., 2017). 
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II at Danaopo, such as metamorphic basement rocks (avg. ΣREE = 169 
ppm) of the Proterozoic Banxi Gp and sedimentary sequence (ΣREE =
62.6–212 ppm) of the Ediacaran Doushantuo Fm to Cambrian Shipai Fm 
(Wei et al., 2017), as supported by their positive Y-ΣREE correlation 
(Fig. 11c). Hence, we conclude that the REE in Cal-I was mainly derived 
from the ore-host Cambrian algal limestone, while the REE in Cal-II was 
sourced from the ore-bearing carbonate sequence with a significant 
contribution from the underlying sedimentary and Proterozoic meta-
morphic basement rocks. 

5.2.3. Physical-chemical conditions (Eh and T) 
The Eu anomaly (δEu) of REEs is an useful indicator of the redox 

conditions during mineral precipitation, as it is sensitive to the tem-
perature (T) and oxygen fugacity (fO2) of the ore-forming fluid (Sver-
jensky, 1984; Bau, 1991). Eu predominantly migrates with the 
hydrothermal fluid as Eu3+ in a low-T (<100 ℃) and high fO2 envi-
ronment, resulting in a positive Eu anomaly (δEu > 1). In contrast, the 
ore-forming fluid mostly carries Eu2+ in a medium-T (100 ℃ < T < 200 
℃) and reductive environment, which results in a negative Eu anomaly 
(δEu < 1) (Sverjensky, 1984). At Danaopo, both Cal-I and Cal-II exhibit 
negative Eu anomalies (Fig. 11a, b), with average δEu values of 0.65 and 
0.56, respectively (Table 3). This suggests that the mineralization fluid 
was reductive during both the early and main ore stages. Furthermore, 
there is a decreasing trend in δEu from Cal-I to Cal-II, indicating that the 
ore-forming fluid was more reducible during the main ore stage, which 
was more conducive to the precipitation of ore metals. This observation 

explains the different sphalerite texture between early (low-grade 
piebald sphalerite; Fig. 3a, c) and main (high-grade veined sphalerite; 
Fig. 3b, d) ore stage. 

The temperature of the ore-forming fluid has a significant impact on 
the composition of trace elements in sphalerite (Möller, 1987; Cook 
et al., 2009; Zou et al., 2012; Frenzel et al., 2016). According to Möller 
(1987), the lg(Ga/Ge) value of sphalerite is an effective indicator for the 
temperature of metal-bearing initial fluids. In recent years, the miner-
alization temperature of the Zn-Pb deposit has frequently been con-
strained using the sphalerite Ga-Ge thermometer (Hu et al., 2014; Wei 
et al., 2021c). In the Danaopo deposit, the calculated lg(Ga/Ge) of Sp-I 
and Sp-II are plotted in the crystallization temperature field of 
140–220℃ (Fig. 12a) and 105–180℃ (Fig. 12b), respectively. This in-
dicates a low-temperature mineralization environment during sphalerite 
precipitation, as supported by the homogenization temperature of 
100–200℃ in sphalerite fluid inclusions in the Huayuan orefield (Liu 
and Zheng, 2000; Cai et al., 2014; Zhou et al., 2014). 

5.3. Ore genesis 

The trace element endowments in sphalerite are considered a reli-
able fingerprint for classifying various genetic kinds of Zn-Pb deposits 
(Cook et al., 2009; Ye et al., 2011; Belissont et al., 2014; Hu et al., 2021; 
Wei et al., 2021a). The LA-ICPMS trace elements composition in 
sphalerite from MVT, VMS, and skarn-type Zn-Pb deposits in China were 
summarized: MVT deposits are relatively enriched in Cd, Ga, Ge, and 
insignificant in Fe, Mn, In, Sn; VMS deposits are characterized by 
enrichment of Fe, Mn, In, and deficiency of Cd, Ga, Ge; Skarn-type de-
posits are generally rich in Mn, Co, and poor in Fe, In, Sn (Ye et al., 
2011). Hence, some binary plots of sphalerite trace elements can 
differentiate Zn-Pb deposits of different genetic types (Ye et al., 2011, 
2016; Li et al., 2020; Hu et al., 2021). At Danaopo, most sphalerite 
samples fall into the field of the MVT deposit but are distal to the VMS 
and skarn-type deposit (Fig. 13a-f), indicating that the Danaopo could 
belong to MVT Zn-Pb deposit, which is also supported by the Danaopo 
pyrite trace elements evidence (Wu et al., 2020). 

Radiogenic isotope geochronological evidence suggests that Zn-Pb 
mineralization in the Huayuan orefield occurred between the Middle 
Ordovician and Early Devonian periods (ca. 490–410 Ma; Duan et al., 
2014; Tan et al., 2018; Zhou et al., 2021). This mineralization event was 
contemporaneous with the hydrothermal ore-forming event induced by 
the Caledonian collision orogeny (Yao and Li, 2016; Hu et al., 2022). 
The Danaopo deposit, irrelevant with regional magmatism, is a typical 
carbonate hosted epigenetic Zn-Pb deposit in the WHEGMB (Mao, 2016; 
Wu et al., 2021). The geology-geochemistry features of the Danaopo 
deposit are summarized as follows: (i) tectonic background (carbonate 
platform margin slope facies; Yang and Lao, 2007); (ii) ore-host rocks 
(Lower Cambrian Qingxudong Fm algal limestone; Fig. 2); (iii) ore- 
controlling structure (F1-group generated by Huayuan-Zhangjiajie 
fault movement; Fig. 2); (iv) orebody occurrences (stratoid and lentic-
ular; Figs. 2–3); (v) mineral compositions (sphalerite, pyrite, galena, 
calcite, and barite; Fig. 3a-l); (vi) ore textures (open-space filling and 
hydrothermal metasomatism, i.e., sphalerite occurred as veined or 
disseminated infill in algal limestone and calcite present in nodular and 
zebra (stripes) textures; Fig. 3a-d); (vii) ore-forming fluid (low-temper-
ature and low fO2 reductive basinal brine as supported by sphalerite Ga- 
Ge thermometer and calcite C-O isotopes and REE features; Figs. 10–12); 
(viii) precipitation mechanism (mixing of local reduced sulfur and multi- 
source ore metals; Wu et al., 2021). These features are similar to those of 
representative Zn-Pb deposits in the WHEGMB (e.g., Niujiaotang, Limei, 
Shizishan, and Yutang; Cai et al., 2014; Zhou et al., 2017; Wei et al., 
2021c; Hu et al., 2022; Zhou et al., 2022), as well as typical MVT Zn-Pb 
deposits worldwide (Bradley and Leach, 2003; Leach et al., 2010). 
Overall, the Danaopo deposit is best categorized as an MVT Zn-Pb 
deposit. 

Fig. 12. Lg (Ga/Ge) - T diagram of Danaopo sphalerite from early and main ore 
stage (modified after Wei et al., 2021c). 
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6. Conclusions 

(i) In-situ trace elements of sphalerite suggest that the resource en-
dowments of critical metals in sphalerite are characterized by 
enrichment of Cd and Ge. Ge is mainly enriched in veined 
sphalerite (Sp-II) from the upper orebody with an elevation of >
180 m. The major critical metals incorporated into sphalerite are 
possibly controlled by the following substitutions: Zn2+ ↔ Cd2+, 
3Zn2+ ↔ 2 Ga3+ + □, and 4Zn2+ ↔ Ge4+ + 2Fe2+ + □.  

(ii) Calcite C-O isotopes indicates that the carbon originated from the 
dissolution of algal limestone in the Lower Cambrian Qingxudong 
Fm, whilst oxygen was likely derived from a binary mixing of 
wallrocks and basinal brine.  

(iii) Calcite REE compositions indicate that REEs in the main ore-stage 
calcite were primarily sourced from the ore-host strata with 
additional contributions from the footwall sedimentary sequence 
and basal metamorphic rocks.  

(iv) The deposit geology, calcite geochemistry, and trace element 
evidence in sphalerite suggest that the Danaopo was formed 
under a low-temperature and low fO2 reductive condition and is 
suitably classified as a Mississippi Valley-type deposit. 
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