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ARTICLE INFO ABSTRACT

Keywords: The expansion of algal bloom in surface waters is a global problem in the freshwater ecosystem. Differential
g)lrganic phosphorus reactivity of organic phosphorus (P,) compounds from organic debris, suspended particulate matter (SPM), and
P NMR

sediment towards hydrolysis can dictate the extent of supply often limited inorganic P (P;) for algal growth,
thereby controlling the extent of bloom. Here, we combined solution P-31 nuclear magnetic resonance (3'P
NMR), sequential extraction, enzymatic hydrolysis, and 16S rRNA measurements to characterize speciation and
biogeochemical cycling of P in Lake Erhai, China. Lower ratios of diester-P/monoester-P in SPM in January
(mean 0.09) and July (0.14) than that in April (0.29) reflected the higher degree of diester-P remineralization in
cold and warm months. Both H,0-P; and P, were significantly higher in SPM (mean 1580 mg -kg ! and 1618 mg
-kg™!) than those in sediment (mean 8 mg -kg~! and 387 mg -kg™1). In addition, results from enzymatic hy-
drolysis experiments demonstrated that 61% P, in SPM and 58% in sediment in the HyO, NaHCO3, and NaOH
extracts could be hydrolyzed. These results suggested that H,O-P; and P, from SPM were the primarily
bioavailable P sources for algae. Changes of P; contents (particularly H,O-P;) in algae and alkaline phosphatase
activity (APA) during the observation periods were likely to be controlled by the strategies of P uptake and
utilization of algae. P remobilization/remineralization from SPM likely resulted from algae and bacteria (e.g.,
Pseudomonas). Collectively, these results provide important insights that SPM P could sustain the algal blooms
even if the dissolved P was depleted in the water column.

Sequential extraction
Enzymatic hydrolysis
16S rRNA

1. Introduction particulate matter (SPM) in the water column provide a significant

feedback loop to replenish P for algal blooms (Shinohara et al., 2012; Li

Algal blooms triggered by nutrient loading have been one of the
lingering issues in the recovery of freshwater ecosystem health on the
Earth (Li et al., 2015). Reduction of external nutrient loading is the most
common remedial measure to mitigate algal blooms. However, the
duration, frequency, and magnitude of algal blooms appear to be
elevated in many freshwater lakes, such as Lake Erhai in China, Lake
Kasumigaura in Japan, and Lake Erie in North America (Shinohara et al.,
2012; Huang et al., 2020; Wang et al., 2021b; Hou et al., 2022; Ji et al.,
2022). One of the potential reasons for these results is attributed to the
internal loading of phosphorus (P) (Joshi et al., 2015; Li et al., 2017a, b).

Similar to sediment, P released from dead algae and suspended

et al., 2017a, b; Feng et al., 2018). Despite their importance, currently
little is known regarding the P speciation of algae, SPM, and sediment.
Existing knowledge on inorganic P (P;) pools of SPM depends heavily on
sequential extraction (Tang et al., 2018; Zhang et al., 2021). Sequential
extraction method developed by Hedley et al. (1982) is the most
commonly used for P; pools in sediment (Zhu et al., 2013; Wang et al.,
2021b). In reality, particulate organic P (POP) in the water column
accounted for 47~87% of their corresponding total P (TP) (Yang et al.,
2021a). In addition, P; released from POP remineralization in the water
column under enzymes can provide P source for algae (Giles et al., 2015;
Li et al.,, 2017b). Nevertheless, POP in the water column is often

* Corresponding authors at: State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR

China.

E-mail addresses: wangjingfu@vip.skleg.cn (J. Wang), chenjingan@vip.skleg.cn (J. Chen).

https://doi.org/10.1016/j.watres.2023.120134

Received 9 April 2023; Received in revised form 25 May 2023; Accepted 26 May 2023

Available online 27 May 2023
0043-1354/© 2023 Elsevier Ltd. All rights reserved.


mailto:wangjingfu@vip.skleg.cn
mailto:chenjingan@vip.skleg.cn
www.sciencedirect.com/science/journal/00431354
https://www.elsevier.com/locate/watres
https://doi.org/10.1016/j.watres.2023.120134
https://doi.org/10.1016/j.watres.2023.120134
https://doi.org/10.1016/j.watres.2023.120134
http://crossmark.crossref.org/dialog/?doi=10.1016/j.watres.2023.120134&domain=pdf

Z. Jin et al.

classified as refractory species (Pan et al., 2013; Pu et al., 2021). Taken
above-mentioned into consideration, P speciation and their reminerali-
zation (e.g., Li et al. 2015, Feng et al. 2018, Pan et al. 2020, Ni et al.
2022) and bio-availability of algae, SPM, and sediment is turnover need
more attention because those of characteristics determine the mecha-
nisms of P regeneration (Zhu et al., 2013; Li et al., 2015, 2017b).

Identifying the sources and cycling of dissolved P in the water col-
umn is complex due to (i) a low concentration of dissolved P in the water
column compared to SPM and sediment P; (ii) active and variable
transformations of P; and P,; (iii) co-occurring biotic and abiotic re-
actions of P; and (iv) variable strategies by (micro)organisms for P up-
take and utilization as a function of the concentrations and compositions
of P, and P; (Jaisi and Blake, 2014). Such characteristics not only hinder
the identification of sources and cycling of P, but also hamper the
formulation of effective nutrient management measurements in aquatic
ecosystem. Therefore, complementary methods are required to identify
the composition and bio-availability of P compounds and P pools of
algae, SPM, and sediment for a better understanding of the biogeo-
chemical and dynamic cycling of P.

Solution !P nuclear magnetic resonance spectroscopy (C'PNMR) is a
state-of-the-art, nondestructive technique for identifying P compounds
in environmental samples (Tate and Newman, 1982; Cade-Menun and
Preston, 1996; Shinohara et al., 2012; Read et al., 2014). In addition,
enzymatic hydrolysis provides a better method for accessing bioavail-
able P, due to its similar reactions associated with P, remineralization in
lake ecosystem (Quiquampoix and Mousain, 2005; Monbet et al., 2007;
Zhu et al., 2013; Ni et al., 2022). Major groups of compounds discrim-
inated by NMR are orthophosphate monoesters (monoester-P), ortho-
phosphate  diesters (diester-P), pyrophosphate (pyro-P), and
orthophosphate (ortho-P). Bioavailable P, pools in the HyO, NaHCO3,
and NaOH extracts identified by enzymatic hydrolysis include
monoester-P, diester-P, and phytate-like P. These compounds can orig-
inate from algae, SPM, and sediment but their relative concentration
vary, thus may provide useful information for probing into P trans-
formation and recycling.

Lake Erhai, the second largest freshwater lake on Yunnan-Guizhou
plateau, is one of the most concerned lakes in China and an important
drinking water source for Dali city, Yunnan province. In recent years,
external P inputs have been effectively controlled, whereas large-scale
algal blooms still occur annually (Ji et al., 2017; Chen et al., 2021).
Concentrations of TP (~ 0.05 mg~L’1) in the water column are often five
times greater than those of soluble reactive P (SRP, < 0.01 mg-L’l) and
dissolved P, (DOP, < 0.01 mg~L_1) (Ji et al., 2017; Yang et al., 2021b).
Under this condition, we hypothesize that P released from SPM is a
critical P source for algae. To test this hypothesis, we carried out a set of
systematic research in P speciation in algae, SPM, and sediment. The
objectives of our research were to: (1) characterize the P speciation of
algae, SPM, and sediment; (2) compare the differences of bioavailable P,
among them; (3) explore the potential mechanisms of P released from
SPM. Solution 3'P NMR, sequential extraction, enzymatic hydrolysis,
and 16S rRNA were collectively employed to achieve the objectives and
test the hypothesis. Results obtained from this study contributed to a
better understanding of the reasoning behind the repeated algal blooms
in dissolved P-depleted lakes.

2. Materials and methods

2.1. Sample collection and preparation and analysis of physicochemical
properties of water

Water, algae, and sediment were collected at the same sites (Fig. S1)
in January, April, and July in 2021. The detailed description of study
sites is available in Supplementary Materials. 60 L lake water from
surface water (below 0.5 m surface water) and bottom water (above 0.5
m sediment) was collected at each site using a Niskin sampler, respec-
tively. SPM were collected for analyzing P speciation filtered by 60 L
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lake water with precombusted (450 °C, 4 h) and preweighted GF/F
glass-fiber filters (GF/F, 0.7 pm Whatman, UK). Additional samples of
lake water (5 L) were collected at the same sites. 1.5 L was used for algal
abundance analysis with the addition of 3-5 mL of formaldehyde, and
another 0.5 L was used for physicochemical properties analysis, and the
remainder of 3 L was filtered through 0.22 pm filters for 16S rRNA
analysis. Algae (below 0.5 m surface water) was collected using a
phytoplankton collector (200 mesh, diameter 0.064 mm) and stored in a
clean polyethylene bottle. Samples of sediment were collected by using a
gravity core sampler from all sites. All samples were stored at 4 °C and
immediately transported to the laboratory for analysis. Each sediment
core was sliced from the top of the core to obtain 0-2 cm section and was
stored in two clean centrifuge tubes. Algae mass was carefully and
repeatedly washed by using ultrapure water to remove associate con-
tents except algae (Feng et al., 2016a, 2018). After preprocessing, algae,
SPM, and sediment were frozen at -80 °C first before freeze drying.
Subsequently, algae and sediment were ground and sieved through a
200 mesh. The lyophilized SPM and sieved samples were stored at -20 °C
until analysis.

Dissolved oxygen (DO), temperature (T), and pH of water column
were measured by a multi-parameter water quality monitor (YSI,
6600V2, Co, USA). Concentrations of TP of water samples were quan-
tified by using a molybdenum blue method after digesting in potassium
persulfate (note: the concentrations of SRP in water samples filtered by
GF/F glass-fiber filters during observation periods were lower than 10
pg-L’l) (Murphy and Riley, 1962). Alkaline phosphatase activity (APA)
and algal abundance from water samples were measured by p-nitro-
phenyl phosphate colorimetric method and optical microscopy count-
ing, respectively (Gage and Gorham., 1985; Boon., 1989).
Concentrations of SPM in water samples were calculated by gravimetric
method.

To further assess the hydrolyzability of P, in different P pools of
algae, SPM, and sediment, additional samples (including algae, SPM,
and sediment) were collected in November in 2022. The methods of
samples collection were same to above-mentioned.

2.2. Sample preparation and *'P NMR analysis

Solution >'P NMR was employed to analyze the composition of P
compounds. A sufficient amount sample [algae (0.2 g), SPM (40 L lake
water collected on four glass-fiber filters), and sediment (2 g)] was
extracted using 40 mL of 0.25 M NaOH and 0.05 M EDTA solution for 16
h (Cade-Menun and Preston, 1996). These samples were centrifuged (14,
000 rpm) at 4 °C for 15 min after extraction. The supernatant was
filtered through a filter (GF/F). Triplicate samples (approximately 2 mL
each) were collected for the measurement of TP and P; concentrations.
The method for analyzing TP concentrations with NaOH-EDTA extracts
was the same as that of water samples. P; concentrations extracted by
NaOH-EDTA were measured by a molybdenum-blue method (Murphy
and Riley, 1962). Subsequently, the filtrate was freeze-dried (-80 °C) for
several days and then the lyophilized samples were stored at —20 °C
until 3'P NMR analysis (see details in Supplementary Materials).

2.3. Analysis of P pools and bioavailable P,

Sequential extraction proposed by Hedley et al. (1982) has been
gradually applied to analyze the sediment P pools (Zhu et al., 2013;
Wang et al., 2021b; Pu et al., 2023), although the method was originally
used to characterize soil P pools. Here, sequential extraction was
employed to analyze P pools of algae, SPM, and sediment (solid:sol-
ution=1:60, Hedley et al., 1982). Briefly, a sufficient amount of sample
(algae (0.2 g), SPM (10 L lake water collected on a glass-fiber filter), and
sediment (0.2 g)) was sequentially extracted by using ultrapure water,
0.5 M NaHCOs (pH=8.50), 0.1 M NaOH, and 1 M HCI for 16 h. The
samples were centrifuged at 4390 g for 15 min after extraction. The
supernatant was filtered by using filters (GF/F). The filtrate was
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collected for analyzing P; contents (Murphy and Riley, 1962). Contents
of TP in algae (0.2 g), SPM (10 L lake water collected on a glass-fiber
filter), and sediment (0.2 g) were measured by using the combustion
method (Aspila et al., 1976). P, of algae, SPM, and sediment was
calculated by the difference between TP and P; (Tang et al., 2018; Yang
et al., 2021a).

To further access the contents of bioavailable P, in the different P
pools of algae, SPM, and sediment extracted by sequential extraction,
enzymatic hydrolysis experiments were performed following Zhu et al.
(2013) report using three main enzymes (Table S1): alkaline phospha-
tase (APase), phosphodiesterase (PDEase), and phytase. Choice of these
enzymes were intended to characterize bioavailable P, pools,
monoester-P, diester-P, and phytate-like P, respectively (see details in
Supplementary Materials).

2.4. Illumina MiSeq sequencing of 16S rRNA genes

The microbial community in the water column and sediment were
investigated from phylum to genus level. All samples were performed by
high-throughput sequencing analysis at Sangon Botech Co., Ltd
(Shanghai, China) that referred to a previous study (Yang et al., 2021c).
Briefly, total genomic DNA was extracted from 0.5 g sediment and SPM
filtered by filters (see Section 2.1) using the E.Z.N.A™ Mag-Bind Soil
DNA Kit (M5635-02, OMEGA). 16S rRNA genes were amplified using
primers 341F (CCTACGGGNGGCWGCAG) and the reverse primers 805R
(GACTACHVGGGTATCTAATCC), targeting the V3-V4 variable regions.
16S rRNA gene amplicon sequencing was performed on the Illumina
MiSeq platform (Illumina, Inc., San Diego, CA, USA) at Sangon Biotech
Co., Ltd. The sequences (97% similarity) were clustered into the same
operational taxonomic units. Classification information of species from
phylum to genus level was assigned according to the ribosomal database
project classifier.

3. Results and discussion
3.1. Composition difference of P compounds in different substances

Contents of NaOH-EDTA TP, TP and extraction efficiency (calculated
as (NaOH-EDTA TP) / TP) of algae, SPM, and sediment were shown in
Fig. S2. In descending order of contents of NaOH-EDTA TP and TP, the
average P contents of three substances were SPM > algae > sediment
(Fig. S2). The extraction efficiency of these substances ranged from 26%
to 114% (Fig. S2). Such dramatic changes of the extraction efficiency
likely resulted from the substantial differences of these substances.
Moreover, similar ranges of the extraction efficiency have been re-
ported, for example, 20% to 102% in other freshwater ecosystems
(Shinohara et al., 2012; Feng et al., 2016b; Xie et al., 2019; Yang et al.,
2020).

Composition of P compounds in algae, SPM, and sediment identified
by applying solution 31p NMR, included ortho-P, monoester-P, diester-P,
and pyro-P (Figs. 1 and S3, 4). Multiple peaks of monoester-P and
diester-P were observed in all samples (Fig. 1), which was similar to
previous findings from other freshwater ecosystems, suggesting that
multiple peaks of monoester-P and diester-P from algae, SPM, and
sediment were also observed (Shinohara et al., 2012; Li et al., 2017b;
Fengetal., 2020; Yang et al., 2020). Monoester-P in all samples included
a-glycerophosphate, f-glycerophosphate, and unknow monoester-P
(Figs. 1 and S3). DNA, RNA, and phospholipids were dominant
diester-P compounds in whole samples (Figs. 1 and S3). However, pol-
yphosphate (poly-P) was not observed in overall samples (not shown).
Similar results for poly-P peaks from algae, SPM, and sediment were not
observed by solution 3'P NMR in other freshwater ecosystems (Li et al.,
2015; Feng et al., 2020; Yang et al., 2020), likely due to the low con-
centrations/contents of poly-P in all samples and the presence of
degradation of poly-P during the alkaline extraction, lyophilization
procedure, and 31p NMR analysis (Cade-Menun et al., 2006; Wang et al.,
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Fig. 1. 2'P NMR spectra of algae, suspended particulate matter (SPM), and
sediment in January, April, and July at all sample sites extracted by NaOH-
EDTA solution. Note: panels a, b, ¢, and d represent the spectra of algae, SPM
in surface water, SPM in bottom water, and sediment, respectively, panels a-1,
b-1, c-1, and d-1 represent the percentage of their corresponding P compounds
to NaOH-EDTA TP. Ortho-P, orthophosphate; Pyro-P, pyrophosphate;
Monoester-P, orthophosphate monoesters; Diester-P, orthophosphate diesters.
Ortho-P (5.5~7.0 ppm), Pyro-P (—3.3~-5.0 ppm), Monoester-P (3.0~5.5
ppm), and Diester-P (—1.5~2.5 ppm) (see Supplementary Materials).

2021a). Moreover, contents of P compounds and their corresponding
percentages were further analysis. Results showed that contents and
percentages of biogenic P of algae (average 937 mg-kg ™+ and 64%) and
SPM (average 1351 mgkg™! and 50%) were significantly higher than
those of sediment (average 138 mgkg™! and 35%) (Figs. 1, S4, and
Table S2). These results suggest that biogenic P of algae and SPM could
be released during or after sedimentation.

Relative remineralization efficiency for diester-P and monoester-P
can be expressed by diester-P/monoester-P ratios. A lower diester-P/
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monoester-P ratio reflects the higher degree of diester-P remineraliza-
tion, because monoester-P is more chemically stable than diester-P
(Paytan et al., 2003; Ahlgren et al., 2006) and diester-P degradation
generates monoester-P. Accordingly, lower ratios of
diester-P/monoester-P from SPM in January (mean 0.09) and July
(0.14) than those in April (0.29) were observed, showing the higher
degree of diester-P remineralization during these periods. Moreover, the
diester-P/monoester-P ratios in algae (mean 0.15) and SPM (mean 0.17)
were markedly lower than those of sediment (mean 0.55) (Table S2),
which might reflect the substantial degradation and/or reproduction
during or after sedimentation. The possible explanation for the low
diester-P/monoester-P ratios in algae and SPM is that the presence of
a-glycerophosphate and p-glycerophosphate likely resulted from
degradation of phospholipids due to alkaline extraction and relative
long 3'P NMR analysis time (generally > 10 h) (Turner et al., 2003;
Doolette et al., 2009). Alternatively, phospholipids could also be natu-
rally hydrolyzed as a-glycerophosphate and p-glycerophosphate
induced by sunlight and/or phosphodiesterase (Turner et al., 2003; Li
et al., 2019; Guo et al., 2020). Further work is urgently needed to
differentiate natural degradation from artificial hydrolysis in future. The
reasonable interpretation for the higher diester-P/monoester-P ratios in
sediment is primarily attributed to increased DNA of sediment (Fig. 1).
The presence of DNA in SPM and sediment might be the result of sedi-
mentation because DNA is relatively recalcitrant to hydrolyze relative to
other P, molecules (e.g., RNA) (Westmeimer, 1987). Alternatively, DNA
can be constantly produced in sediments (Li et al., 2015). Similar results
have been reported in other lakes for sediment DNA reproduction
(Shinohara et al., 2012; Jin et al., 2022).
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3.2. Variation of P pools and bio-availability of P, pools

3.2.1. Variation of P pools in algae, suspended particulate matter, and
sediment

Contents of P pools and their corresponding percentages to TP in all
samples were shown in Figs. 2 and S5. Contents of P; pools (especially
H,0-P;) in algae were gradually decreased from January to July, which
might be attributed to P uptake and utilization strategies of algae (see
3.3). However, compared with the variation of contents of P pools in
algae during the observation periods, the contents of P pools in SPM
were irregular but relatively higher (beside sites A and C in January)
(Fig. 2a, b, and c). Here, it is worth considering that the SPM P contents
are dominantly controlled by two linked but not overlapping variables:
SRP concentration and the adsorption capacity of SPM (River and
Richardson, 2018; Ji et al., 2022; Walch et al., 2022). Variable SPM P
contents reflected their complex processes and/or mechanisms of these
two factors during the observation periods. Thus, more direct evidences
for the characterizing P adsorption mechanisms on SPM and its
composition are warranted. Sediment might be the result of SPM sedi-
mentation, thus, P, remineralization and P; remobilization from SPM
could have occurred during or after sedimentation. The collective con-
tents and percentages of HyO-P;, NaHCOs3-P;, NaOH-P;, and P, in algae
(mean 1870 rng-kg’1 and 98%) and SPM (mean 4038 mg-kg’l and 86%)
were significantly higher than those of sediment (mean 696 mg-kg ' and
65%) (Figs. 2 and S5).

H0-P; and P, from algae and SPM were the mainly bioavailable P
sources for algal blooms. P; extracted by H,O is loosely adsorbed to SPM
or sediment particles, which represents immediately available P. Con-
tents of P; in algae, SPM, and sediment extracted by H,O ranged from 38
to 1231 mgkg™! (average 610 mg-kg™!), from 397 to 3312 mgkg!
(average 1580 mg-kg 1), and from 1 to 16 mg-kg ™! (average 8 mg-kg™1),
accounting for 3%-52% (average 29%), 25%-46% (average 35%), and
0%-2% (average 1%), respectively (Figs. 2 and S5). Similar results also
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Fig. 2. Contents of P pools from algae, SPM, and sediment. Error bars represent the standard deviations of triplicate measurements.
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demonstrated that contents of immediately available P (average 633
mg-kg ™1, 19% of the TP) of SPM extracted by NH4Cl were fundamentally
higher than those of sediment (average < 10 mg-kg !, <1% of the TP) in
Lake Chaohu, China (Yang et al., 2020, 2022). These results suggested
that immediately available P of SPM was a dominant P source for algal
blooms. Contents of P, in algae (468-1241 mg-kg™ !, average 767
mg-kg™! and 44% of TP) and SPM (472-2879 mg-kg !, average 1618
mg-kg~! and 37% of TP) were markedly higher than those of sediment
(231-534 mg-kg~!, average 387 mg-kg! and 40% of TP). These ob-
servations demonstrated that the most of P, from algae and SPM could
be released during or after sedimentation and thus provided primarily
bioavailable P, for algae.

Results from >'P NMR and sequential extraction provided relative
comparison. Differences between *!P NMR and sequential extraction
were often described in lake sediments by previous studies (Dong et al.,
2012; Yuan et al., 2017; Ni et al., 2019; Campos et al., 2022). The range
of P,/TP percentages from algae, SPM, and sediment measured by 3!P
NMR ranged from 32% to 80% (mean 58%), from 20% to 50% (mean
36%), and from 26% to 42% (mean 33%), respectively (Fig. 1). In
contrast, the range of P,/TP percentages from algae, SPM, and sediment
extracted by sequential extraction varied from 24% to 74% (mean 44%),
from 25% to 49% (mean 37%), and from 33% to 47% (mean 40%),
respectively (Fig. S5). Understanding the differences of P, over-
estimation or underestimation is not straightforward, particularly
because of (i) fundamental difference of extracts in the two methods; (ii)
presence degradation of poly-P and diester-P during the pretreatment of
sample and 3lp NMR analysis (Cade-Menun et al., 2006; Wang et al.,
2021a); (iii) re-adsorption of extracted P onto colloidal particles and/or
CaCO3 of the residue (Wang et al., 2013); (iv) the occurrence of
molybdate reaction between molybdate and ortho-P only rather than
other P; forms (e.g., pyro-P and poly-P) and thus underestimating the P;
concentrations of the extracts (Murphy and Riley, 1962; Cade-Menun
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methods are not accurately quantified bioavailable P,. Therefore,
enzymatic hydrolysis was employed to further character the composi-
tions and contents of bioavailable P, in different P pools of algae, SPM,
and sediment.

3.2.2. Bio-availability of P, pools

Before performed by enzymatic hydrolysis, we analyzed the contents
(e.g., P; and P, see Supplementary Materials) of different P pools from
algae, SPM, and sediment extracted by H,O, NaHCOs3, NaOH, and HCI,
which was shown in Figs. S6 and S7. After enzymatic hydrolysis, results
demonstrated that monoester-P and diester-P were the main P, species
in different P, pools of algae, SPM, and sediment (Fig. 3), which was
consistent with the distribution of monoester-P and diester-P in these
substances measured by solution 3'P NMR (Fig. 1).

Monoester-P and diester-P from algae and SPM were important P,
sources for algal blooms. Enzymatically hydrolyzable contents of
monoester-P, diester-P, and phytate-like P from algae (average 695
mgkg™!) and SPM (average 824 mg-kg™!) were substantially higher
than those of sediment (average 56 mg-kg_l) in the Hy0, NaHCO3, and
NaOH extracts, accounting for 126%, 61%, and 58% of their corre-
spondingly total P, of these extracts, respectively (Figs. 3 and S8).
Similar results for contents of enzymatically hydrolyzable monoester-P
and diester-P from sediment were observed in the same research area,
which ranged from 20 to 58 mg-kg ! (Pu et al., 2023). No hydrolysable
P, in the HCI extract of algae, SPM, and sediment was observed during
the enzymatic hydrolysis experiment (not shown), which is similar to a
previous report showing no hydrolysable P, in the same P pool of
sediment (Zhu et al., 2013). Furthermore, based on the enzymatic hy-
drolysis, P; released from SPM P, remineralization in the lake could be
reached to 7.2 t, which can increase the concentrations of SRP by 3
ng-L7L. Altogether, the above results indicated that the majority of P,
from algae and SPM could be hydrolysable during or after sedimenta-

et al.,, 2006). In addition, it is important to highlight that these two tion, causing P released from algae and SPM to water column and further
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providing P source for algae.

3.3. Shift in strategies for P uptake by algae

Previous studies have demonstrated that dissolved P; and P, could be
rapidly accumulated in algae and slowly utilized during the subsequent
growth and reproduction (Jauzein et al., 2010; Laws et al., 2011; Ren
et al., 2017). Furthermore, APA was regulated by P; stress (Ren et al.,
2017). However, these results were obtained in simulated system that
performed in the laboratory. Our results from field investigations not
only identify previous lab findings, but also gain some new insights. As
was shown that (i) the higher degree of SPM diester-P remineralization
in January and July than those in April was observed (see 3.1); (ii) APA
in water column in January and July was approximately 16 and 45 times
than those in April, respectively, which reflected the higher degree of
monoester-P remineralization in January and July than those in April
(Fig. S9); (iii) contents of HyO-P; and pyro-P of algae in January were
~22 times greater than that of algae in April and July (Figs. 1 and 2 and
Fig. S4), in addition, algal abundance were gradually increased during
the observation periods (Fig. S10), these results reflected the shift stra-
tegies for P uptake and utilization by algae in different P quota of algal
cell. Taken together, dissolved P; from P, remineralization in the water
column could be directly stored in algae in the form of ortho-P and
pyro-P in January; algae heavily depended on its stored P; for growth
and reproduction in April; P supply for algal blooms in July can be
heavily dependent on SPM P, remineralization. However, these samples
were collected at long time intervals, as a result, which might be lost
some important information associated with the strategies of P uptake
and utilization of algae. Therefore, increasing sample times are required
to further clarify the strategies for P uptake and utilization by algae
during the its growth and reproduction in ongoing work.

The hydrodynamics-driven changes in SPM mineralogy led to
increasing P sorption, as was shown by the higher contents of P;
(particularly HoO-P;) in SPM than those in algae, especially in July
(Fig. 2a, b). The underlying reason for the higher P contents of SPM is
that SRP can bind preferentially with particulate surface beside bio-
logical uptake and assimilation (Yang et al., 2021a). Therefore,
increasing the competition between algae and sorption sites of inorganic
SPM for dissolved P; in the water column during the algal blooms (e.g.,
July) might also lead algae to increasingly depend on POP
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remineralization to meet its P needs (Olander and Vitousek, 2005;
Helfenstein et al., 2018). This was also expressed by the enhancing APA
in the water column with the increasing algal abundance (Figs. S9 and
$10). To further reveal the P uptake and utilization strategies of algae,
future work is required to quantify the adsorption of dissolved P; on SPM
in the water column and its effect on algal growth and reproduction.

3.4. Microbially driven P release from suspended particulate matter

Bacteria also play an essential role in P release except for algae.
Strong correlations among P pools and P compounds from SPM to
sediment and different bacterial communities at genus level in their
corresponding mediums were observed, suggesting that SPM and sedi-
ment might enrich some specific taxa (Fig. 4a, b). We selected 10 genera
in the water column and 10 genera in sediment as “core” genera due to
their high relative abundances and significant positive or negative cor-
relations with their corresponding P pools and P compounds (Fig. 5a, b).
Fortunately, those of the selected core genera have members with re-
ported capabilities in P solubilization/mineralization (e.g., Pseudomonas
in the water column, Thiobacillus in sediment), which can transform P,
or insoluble P; into dissolved P; (Menkina, 1950; Paul and Sundara Rao,
1971; Illmer and Schhinner, 1992; Jorquera et al., 2008). In order to
provide more information for P cycling, we further analyzed the relative
abundance of phosphorus solubilization/mineralization bacteria
(including inorganic phosphorus-solubilization bacteria, IPB; organic
phosphorus mineralization bacteria, OPB) at genus level in the water
column and sediment. These results indicate that relative abundance of
both IPB (mean 16.60%) and OPB (mean 27.85%) in the water column
were greater than those of in sediment (mean 0.84% for IPB and 2.29%
for OPB) (Fig. S11), which highlighted that these key bacteria genera
were responsible for P released from SPM during the sedimentation.

Moreover, iron cycling driven by redox transformations or micro-
organisms can also influence P release from P associated with iron
(hydr)oxides (Fig. S12). Increasing studies have shown that the
competition between some bacteria (e.g., Fe (III)-reducing bacteria,
FeRB; Fe (II)-oxidizing bacteria, FeOB) and redox transformations for Fe
(II) oxidation or Fe (III) reduction may increase (Crowe et al., 2007;
Melton et al., 2014; Upreti et al., 2019; Fan et al., 2021; Chen et al.,
2022). In addition, latest studies demonstrated that some bacteria (e.g.,
sulfate-reducing bacteria, SRB; sulfide-oxidizing bacteria, SOB) with the
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Fig. 5. Heatmap of Spearman’s rank correla-
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capability of sulfate reduction or sulfide oxidization could affect the Fe
speciation by mediating the S speciation (Baldwin et al., 2000; Arning
et al., 2009; Yu et al., 2015; Chen et al., 2016; Fan et al., 2018; Berg
et al., 2019; Li et al., 2022). Therefore, the relative abundance of FeRB,
FeOB, SRB, and SOB was further analysis. Results demonstrated that the
relative abundance of FeRB (mean 16.27%) and SRB (mean 5.88%) in
the water column and FeRB (mean 2.04%) and SRB (1.59%) in sediment
were obviously higher than their corresponding relative abundance of
FeOB (mean 1.1%) and SOB (mean 0.4%) in the water column and FeOB
(0.8%) and SOB (0.9%) in sediment (Fig. S13), respectively, suggesting
that FeRB and SRB contributed greatly to P remobilization from SPM
during sedimentation. Alternatively, the pathway of P released from
SPM driven by abiotic reaction (such as T, pH, DO; Fig. S14) might be
nonnegligible (Pan et al., 2013). Further work is required to quantify the
relative contribution of above-listed factors for P release from SPM.

4. Conclusions

The integrated information from complementary technologies
enabled us to summarize that P released from SPM during or after
sedimentation provided a major P source for algal blooms under dis-
solved P-depleted water column. P compounds from algae, SPM, and
sediment were identified, including ortho-P, monoester-P, diester-P, and
pyro-P. Relative lower diester-P/monoester-P ratios of SPM in surface
water in January and July than those of in April reflected the higher
degree of diester-P remineralization in the water column during these
periods. The Hy0-P; and P, (monoester-P and diester-P) from SPM were
the primarily bioavailable P pools for algae. The strategies of P uptake
and utilization of algae were further identified in the field investigation.
Dissolved P; in the water column could be stored in algae in the form of
ortho-P and pyro-P in January. Algae heavily relied on its stored P; for
growth and reproduction in April. SPM P, remineralization provided the
primary P source for algal blooms in July. Algae and bacteria (e.g.,
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Pseudomonas) were responsible for SPM P remineralization and/or
remobilization. Overall, our findings provide new insights into the un-
derstanding of algal blooms with dissolved P-depleted water bodies,
which are valuable for understanding P cycling processes and formu-
lating effective nutrient management guidelines.
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