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Abstract
Heavy metals (HMs) are regarded as a high priority monitoring contaminant and have been identified as a major envi-
ronmental concern. The forms of land use may have an impact on the movement and accumulation of HMs. The mobility 
and accumulation of HMs were examined in topsoils of various land use using different soil test methods. Sixty-three soil 
samples were taken from various land use including garlic, orchard, pasture, potato, vegetable, wheat, and polluted lands. 
The availability of Cd, Cu, Mn, Ni, Pb, and Zn were determined using  CaCl2, HCl,  HNO3, EDTA, and DTPA extractants. 
Amongst all extractants and land use, the mean available contents of Cd, Cu, Mn, Ni, Pb, and Zn were 0.81, 4.95, 58.60, 
2.41, 14.94, and 7.95 mg  kg−1, respectively. Among the extractants, the mean contents of all HMs in all land use decreased 
in following order:  HNO3 (34.39 mg  kg−1) > EDTA (19.41 mg  kg−1) > HCl (13.52 mg  kg−1) > DTPA (5.26 mg  kg−1) >  CaCl2 
(1.36 mg  kg−1). Generally, among the various land use, after polluted land (26.2 mg  kg−1) the orchard land (17.3 mg  kg−1) 
presented the highest contents of HMs, and the wheat (8.35 mg  kg−1) and pasture (9.94 mg  kg−1) lands presented the low-
est contents. The results from the geo-accumulation index (Igeo) and the ecological risk index (RI) showed that except for 
polluted land in other land use the HMs categorized as unpolluted (Igeo < 0) and low risk (RI ≤ 150). The results from the 
availability ratio (AR) showed that among the extractants, the mean AR calculated for all HMs and land use decreased in the 
following order:  HNO3 (28.08%) > EDTA (26.36%) > HCl (21.55%) > DTPA (7.11%) >  CaCl2 (3.19%). It also indicated that 
the vegetable land (average of all extractants) presented the highest (25.1%) of HMs extractability while the pasture land 
(average of all extractants) presented the lowest (12.7%). The hazard index (HI) showed that for all HMs in various land use 
the non-carcinogenic risk were not significant. Generally, Pb and Mn are the main contributors to the total health risks, while 
Zn and Cu were the least risks. When utilizing the EDTA extractant, Mn and Ni were combined into one cluster by using AR 
of HMs, but Cu and Pb were combined into one cluster when using the both EDTA and DTPA extractants. The noteworthy 
feature of this clustering is the use of AR of HMs rather than available ones, which considers both available and total HMs 
in soil. This study highlights the importance of extractants, land use and AR in assessing risk assessment caused by HMs, 
bioavailability of HMs and exposure health risk. Lastly, we emphasize the significance of employing AR to evaluate soil 
enrichments with HMs and suggest considering available background level of HMs rather than the total background levels 
that is currently utilized to assess soil contamination.
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Introduction

Heavy metals (HMs) such as Cd, Cu, Mn, Ni, Pb, and Zn 
have been recognized as a main environmental concern 
because of their high toxicity, persistence, and pervasive-
ness (Hu et al. 2020). With fast-growing urbanization and 
industrialization, soil contamination by anthropogenic 
activities has attracted global attention (Huang et al. 2018; 

Kazemi Moghaddam et  al. 2022; Massas et  al. 2013). 
The accumulation of HMs in soil and aquatic environ-
ment ended up in plants and finally in human bodies via 
food chains (Hooda 2010; Shao et al. 2016). Long-term 
exposure to HMs resulted in harmful effects on human 
health such as cancers, kidney disease, and liver disease 
(Hu et al. 2020; US EPA 2000). In order to investigate the 
environmental risk assessment of HMs, parameters such as 
geo-accumulation index (Igeo), ecological risk index (RI), 
and availability ratio (AR) are widely used (Jia et al. 2018; 
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Saroop and Tamchos 2021). The hazard quotient (HQ) and 
the hazard index (HI) are usually determined to assess the 
non-carcinogens risks posed by HMs (Liu et al. 2019). 
Previous studies determined the risk assessment in differ-
ent ecosystems (e.g., Ghaderpoori et al. 2020; Marufi et al. 
2022; Saleh et al. 2019; Wang et al. 2017; Liu et al. 2019).

Monitoring the environmental risk caused by HMs 
could be performed by the determination of the available 
or total content of HMs in soil. The total contents of HMs 
do not provide information about mobility, bioavailability, 
and the fate of HMs in soil (Rivera et al. 2016). Determi-
nation of the available content of HMs in soil, provided 
useful information about the mobility of HMs in relation 
to plant uptake and also their leaching to groundwater 
(Rivera et al. 2016). The accurate estimation of the HMs 
availability is a major challenge, since current methods for 
determination of HMs availability were uncertain. There-
fore, it is essential to compare the different methods. One 
of the widely used extractants for HMs availability is a 
0.01 M calcium chloride  (CaCl2) solution. Many research-
ers used this extractant for their studies (e.g., Feng et al. 
2005; Jalali and Hourseresht 2017; Kim et al. 2015; Ma 
et al. 2020; Pueyo et al. 2004; Rivera et al. 2016; Yao et al. 
2017; Zhong et al. 2020). This extractant does not change 
soil pH and reduces analytical interference due to its low 
concentration (Rivera et al. 2016). Dilute hydrochloric 
acid (HCl) and nitric acid  (HNO3) are also the other two 
common extractants for HMs (Kim et al. 2016). Studies 
such as Annibaldi et al. (2007), Barcellos et al. (2022), 
Kashem et  al. (2007), Kupka et  al. (2021), McCready 
et al. (2003), Sutherland and Tack (2008), and Yang et al. 
(2009) were used dilute HCl, and Faridullah and Sabir 
(2012), Jalali and Hurseresht (2020), Li et al. (2015), Shi 
et al. (2021), and Spijker et al. (2011) were used dilute 
 HNO3 for HMs extracting from the soil. These extract-
ants increase the extractability of most cationic HMs by 
decreasing the pH. Widely used chelating agents, such as 
ethylenediaminetetraacetic acid (EDTA) and diethylenetri-
amine pentaacetate (DTPA) extractants, with a high level 
of complexation efficiencies, for most HMs have been used 
in many studies (e.g., Baldantoni et al. 2010; Beygi and 
Jalali 2019; Guo et al. 2018; Kim et al. 2016; Lee et al. 
2009; Rivera et al. 2016).

The term “land use” refers to a location’s human activi-
ties, such as agriculture, industry, and habitation. Anthro-
pogenic activities related to land use intensively affected 
soil quality and nutrient cycling (Yu et al. 2020). One of the 
important issues related to land use is soil contamination 
by HMs (Zhao et al. 2022). The mobility and accumulation 
of HMs could be affected by land use types (Nuralykyzy 

et al. 2021). Huang et al. (2018) studied the contents of HMs 
under various land use (farm land, residential land, and for-
est land). Bai et al. (2010) sampled 148 soils under different 
land use such as greenhouse, vegetable, maize, and forest. 
They observed that accumulation of As, Cd, Cr, Cu, Ni, 
and Zn were more different under various land uses, and 
higher HMs accumulation observed in greenhouse and veg-
etable. Nuralykyzy et al. (2021) observed that the highest 
amount of HMs in different land use was in this order: facil-
ity land > farm land > grass land > orchard. Xia et al. (2011) 
studied the contents of HMs from different types of land use 
in urban soils. Zheng et al. (2016) investigated the fractiona-
tion of HMs and As under various land use. They stated that 
contents of HMs and As in forest land were significantly 
lower compared to wetland. They suggested that immense 
agricultural activities resulted in higher contents of HMs 
and As in paddy field and dryland. Arfaeinia et al. (2019) 
determined HMs content of 41 sediment samples under dif-
ferent land use (industrial, urban, agriculture, and natural 
field). They observed that HMs content in industrial and 
agricultural land use were significantly higher than urban 
and natural field.

Earlier studies on HMs availability were mainly focused 
on predicting HMs contents from physicochemical proper-
ties of soils, assessing the relationship between total contents 
of HMs with their available contents, and identifying the 
most important factors controlling HMs availability (e.g., 
Baldantoni et al. 2010; Dutta et al. 2021; Jalali and Hurs-
eresht 2020; Rivera et al. 2016; Zhong et al. 2020). Nearly 
all of the studies on HMs in various land uses previously 
mentioned were based on total content of HMs in soil. It was 
hypnotized that various land use required different manage-
ments (e.g., fertilization, pest control, tillage, and so on) 
hence the availability of HMs varies in various land use. 
The novelty of this study is that the soils were collected from 
seven various land use (garlic land, orchard land, pasture 
land, potato land, vegetable land, wheat land, and polluted 
land) and the contents of six HMs (Cd, Cu, Mn, Ni, Pb, and 
Zn) were determined not only by their total contents, but 
also by using five various available HMs extractants  (CaCl2, 
HCl,  HNO3, EDTA, and DTPA). In addition, the speciation 
of these HMs in the solution was examined, also the risk 
assessment parameters regarding these HMs in various land 
use were examined. Last but not least, in order to assess soil 
enrichments with HMs in various land uses, we used a vari-
ety of soil test methods to determine availability ratio (AR) 
and taking into account background levels of HMs rather 
than the overall background level currently used to assess 
soil contamination.



Environmental Earth Sciences (2023) 82:298 

1 3

Page 3 of 19 298

Materials and methods

Study area and soil sampling

Hamedan province (western Iran) lies in a temperate moun-
tainous region. The annual precipitation of about 317.7 mm, 
with the maximum precipitation, occurs from November to 
February. The average temperature is 11.6 ℃. Agriculture is 
one of the main economic activities in this province. In the 
province of Hamedan, there are 698,614 ha of agricultural 
land, 822,000 ha of grazing land, and 83,558 ha of orchard 
land (Ministiry of Agriculture—Jahad 2021). Moreover, 
this province has 520,053 ha of cereal land, 17,383 ha of 
leguminous land, 26,157 ha of vegetable land, and 4707 ha 
of melon land (Ministiry of Agriculture—Jahad 2021). 
The three largest crops grown in this province are wheat 
(394,217 ha), potatoes (21,217 ha), and garlic (3318 ha) 
(Ministiry of Agriculture—Jahad 2021).

A total of 63 soil samples (0–30 cm) were taken from 
various land use (Fig. 1) including garlic (n = 8), orchard 
(n = 10), pasture (n = 7), potato (n = 11), vegetable (n = 9), 
and wheat (n = 9). We also sampled from 9 polluted lands 
(surrounded by industrial and mining sites) in order to com-
pare them with other soil samples. These soils were taken 
from 65 soils previously sampled by Jalali and Moradi 
(2013).

Chemical analyses

The pH, electrical conductivity (EC), cation exchange capac-
ity (CEC), calcium carbonate equivalent (CCE), organic 
matter (OM), clay, silt, and sand contents were all previously 
measured by Jalali and Moradi (2013) according to methods 
described by Rowell (1994). The pseudo total contents of 
Cd, Cu, Mn, Ni, Pb, and Zn were also previously meas-
ured by Jalali and Moradi (2013) according to the method 
described by Sposito et al. (1982).

The available contents of Cd, Cu, Mn, Ni, Pb, and Zn were 
determined using various available HMs extractants includ-
ing  CaCl2, HCl,  HNO3, EDTA, and DTPA. The procedure for 
extracting HMs using these extractants presented in Table 1. 
The suspensions obtained from all above methods were filtered 
through Whatman no. 42 filter paper, and the concentrations 
of Cd, Cu, Mn, Ni, Pb, and Zn were determined by the atomic 
absorption spectrophotometer (Spectra AA-220 Varian).

Speciation

In order to investigate the speciation of HMs in each extractant, 
in addition to the determination of Cd, Cu, Mn, Ni, Pb, and Zn 
concentrations, calcium (Ca), magnesium (Mg), sodium (Na), 
potassium (K), chlorine (Cl), bicarbonate  (HCO3), and phos-
phorus (P) concentrations and pH value were also measured 

Fig. 1  Location of sampling sites in Hamedan province, Iran
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in each extractant. In each land use, two soil samples were 
selected for the speciation experiment. The concentrations of 
Ca, Mg, Cl, and  HCO3 were determined using titration meth-
ods. Sodium and K concentrations were determined using a 
flame photometer (Jenway- PFP 7). The P concentration was 
determined using the molybdenum blue method described by 
Murphy and Riley (1962) using a UV–visible spectrophotom-
eter (Analytik Jena- spekol 1500). The speciation was per-
formed by the PHREEQC program (Parkhurst and Appelo 
1999). The concentration of sulfate  (SO4

2−) was not measured, 
but in the PHREEQC program, based on charge balance, the 
 SO4

2− concentration was calculated.

Risk assessment

Geo‑accumulation index

The wieldy used Igeo introduced by Muller (1969) to evaluate 
the current HMs status compared to background levels. The 
Igeo calculated as follow:

where Cn represents the total measured HM content 
(mg  kg−1) in the soil, Bn represents corresponding back-
ground level (mg  kg−1) in the study area (Beygi and Jalali 
2018), and the coefficient 1.5 is used in order to control the 
fluctuations of Bn values.

Ecological risk index

The RI introduced by Hakanson (1980) to evaluate the eco-
logical risks caused by HMs. The RI calculated as follow:

where Ci
n
 represents the total measured HM content 

(mg  kg−1) in the soil, Bi
n
 represents corresponding back-

ground level (mg  kg−1), Ci
f
 represents the pollution factor for 

each HM, TRi represents the toxic response factor (the toxic 

(1)Igeo = log2

(

Cn

1.5Bn

)

(2)RI =
∑

ERi;ERi
= TRi

× Ci
f
;Ci

f
=

Ci
n

Bi
n

response factor for Cd: 30, Cu: 5, Mn: 1, Ni: 5, Pb: 5, and 
Zn: 1 (Hakanson 1980)), and ERi represents the ecological 
risk potential of each HM.

Availability ratio

The AR introduced in order to evaluate the availability of 
HMs in soils. The AR calculated as follow:

where Ca represents the measured available  (CaCl2, HCl, 
 HNO3, EDTA, or DTPA) contents of HMs in soil (mg  kg−1), 
and Cn represents the total measured HMs contents in the 
soil (mg  kg−1).

Human health risk index

Human health risk assessment introduced in order to deter-
mine the non-carcinogens risks of HMs pollutants to human 
and recommended by the US Environmental Protection 
Agency (US EPA 1989). The average daily dose (ADD) 
through the ingestion calculated as follow:

where Csoil represents the total measured HM content in 
the soil (mg  kg−1), IRsoil represents ingestion rate of soil 
(mg  day−1), EF represents exposure frequency (day  year−1), 
ED represents exposure duration (year), BW represents body 
weight (kg), AT  represents average time contact (day), and 
 106 represents the conversion factor from kg to mg.

The ADD through the inhalation calculated as follow:

where IRair represents inhalation rate of air  (m3   day−1), 
PM10 represents ambient particulate matter content in the 

(3)AR =

(

Ca

Cn

)

× 100

(4)ADDIngestion =
Csoil × IRsoil × EF × ED

BW × AT × 106

(5)ADDInhalation =
Csoil × IRair × PM10 × ET × EF × ED

BW × AT × PEF

Table 1  Extractant methods for 
determination of heavy metals

Extractants Soil-to-solution 
ratio

Equilibration 
time

References

0.01 M  CaCl2 1:10 2 h Houba et al. (2000)
0.1 M HCl 1:10 1 h Martens (1968)
0.43 M  HNO3 1:10 2 h Römkens et al. (2004)
0.05 M EDTA 1:10 1 h Quevauviller et al. (1996)
(0.005 M DTPA + 0.01 M 

 CaCl2 + 0.1 M triethanolamine) 
DTPA

1:2 2 h Lindsay and Norvell (1978)
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air (mg  m−3), ET  represents exposure time (24 h  day−1), and 
PEF represents particle emission factor  (m3  kg−1).

The ADD through the dermal calculated as follow:

where SA represents the skin surface area  (cm2), ABS repre-
sents the skin absorption factor (non-dimensional), and AF 
represents the adherence factor to skin (mg  cm2).

The HQ  represents non-carcinogenic r isk for 
an individual HM. The HQ calculated as follow 
(non-dimensional):

where RfD represents the reference dose, the maximum per-
missible dose of HM can be exposure to the human popu-
lation. There are three RfD : RfDo (mg  kg−1 per day) for 
ingestion, RfCi (mg  m−3) for inhalation, and RfDd (mg  kg−1 
per day) for dermal. The RfDo considered for Cd, Cu, Mn, 
Ni, Pb, and Zn were 0.001, 0.04, 0.024, 0.02, 0.0014, and 
0.3 mg  kg−1 per day, respectively, the RfCi considered for 
Cd, Cu, Mn, Ni, Pb, and Zn were 0.0000571, 0.04, 0.00005, 
0.0206, 0.00005, and 0.3 mg  m−3, respectively, and the RfDd 
considered for Cd, Cu, Mn, Ni, Pb, and Zn were 0.000025, 
0.012, 0.00096, 0.0054, 0.00042, and 0.06 mg  kg−1 per day, 
respectively (US EPA 1989; Gao et al. 2015; Zeng et al. 
2015; Wang et al. 2019; Adimalla 2020; Luo et al. 2021).

Finally, the HI calculated by summed the HQ calcu-
lated for each chemical as follow:

All parameters for assessing the human health risk in 
adults were presented in Table 2.

Results and discussion

Soil properties and heavy metals contents

The soil properties in various land use are presented in 
Table 3. The results indicated that the mean value of pH for 
all land use was neutral to alkaline. The mean EC for all land 
use showed low salinity, except for polluted land which was 
much higher than other land use. The highest mean CEC 
belonged to polluted land and the lowest belonged to gar-
lic land. The mean percentage of CCE for orchard, pasture, 
potato, and vegetable lands was similar, with wheat land 
having the greatest mean and garlic having the lowest mean. 
The mean OM content across all land uses was low, with 
garlic land having the greatest mean, and the most prevalent 

(6)ADDDermal =
Csoil × SA × ABS × AF × EF × ED

BW × AT × 106

(7)HQ =
ADD

RfD

(8)HI =
∑

HQi = HQIngestion + HQInhalaltion + HQDermal

soil textures in garlic land were sandy clay loam and clay. 
In orchard, pasture, potato, and vegetable lands, sandy loam 
and sandy clay loam textures were dominant. In wheat land, 
clay and clay loam textures were dominant, and in polluted 
land sandy loam and silty loam were dominant textures.

The mean available contents of HMs extracted by vari-
ous extractants and mean pseudo total content of HMs in 
various land use presented in Table 4. Among the extract-
ants, the mean available contents of all HMs decreased in 
the following order:  HNO3 > EDTA > HCl > DTPA >  CaCl2. 
In  CaCl2 extractant, the mean contents of HMs in various 
land use decreased in following order: polluted land > garlic 
land > potato land > orchard land > wheat land > vegetable 
land > pasture land. In HCl extractant, the mean contents of 
HMs in various land use decreased in following order: pol-
luted land > orchard land > garlic land > potato land > veg-
etable land > pasture land > wheat land. In  HNO3 extractant, 
the mean contents of HMs in various land use decreased 
in following order: polluted land > vegetable land > orchard 
land > potato land > garlic land > pasture land > wheat land. 
For EDTA, the following order was observed for the mean 
contents of HMs in various land use polluted land > orchard 
land > vegetable land > garlic land > potato land > pasture 
land > wheat land. For DTPA, the following order was 
observed for the mean contents of HMs in various land 
use: polluted land = orchard land > vegetable land > potato 
land > garlic land > wheat land > pasture land. The mean 
pseudo total contents of HMs had the following order in 
various land use: polluted land > wheat land > vegetable 
land > orchard land > pasture land > potato land > garlic 
land. The results indicated that generally the wheat and pas-
ture lands presented the lowest available content of HMs 
in various extractants, and polluted and orchard lands pre-
sented the highest contents of available HMs. Application 
of fertilizers to agricultural and orchard lands contributes to 

Table 2  Parameters for assessing the human health risk (USEPA 
1989)

Parameter Full name Unit Value (adults)

IRsoil Ingestion rate of soil mg  day−1 50
IRair Inhalation rate of air m3  day−1 14.5
PM10 Ambient particulate matter mg  m−3 0.075
EF Exposure frequency day  year−1 250
ED Exposure duration year 14
ET Exposure time 24 h  day−1 24
AF Adherence factor to skin mg  cm−2 0.07
AT Average time contact day 5110
BW Body weight kg 65.5
SA Skin surface area cm2 4350
PEF Particle emission factor m3  kg−1 1.36E + 9
ABS Skin absorption factor unitless 0.001
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HMs accumulation in soils (Acosta et al. 2011a). In orchard 
land, the application of Cu-based fungicides resulted in the 
accumulation of Cu in the soils (Fan et al. 2011; Viti et al. 
2008). Repeated application of lead arsenate in orchard 
land, also resulted in the accumulation of Pb and arsenic 
in soils (Li et al. 2014; Udovic and McBride 2012). Higher 
accumulation of HMs in vegetable land compared to wheat 
land could be due to the farmers applying relatively higher 
rates of chemical and organic fertilizers in vegetable produc-
tion compared to grain crops (Huang and Jin 2008). Pasture 
land is an ecological environment which is less exposed the 
human activities and results in a lower accumulation of HMs 
(Nuralykyzy et al. 2021). Li et al. (2006) reported that Cd 
content in their orchard land exceeded the Chinese National 
Environment Quality Standard for Soil. The total and DTPA 
content of Cd in their study was higher compared to this 
study. Yu et al. (2020) reported the total contents of Cd, Cu, 
Pb, and Zn were 120.4, 72.3, 2848.7, and 11,140.0 mg  kg−1, 
respectively for citrus orchards. They also reported the total 
contents of Cd, Cu, Pb, and Zn for vegetable fields were 2.0, 
26.7, 216.8, and 649.1 mg  kg−1, respectively. The values 
reported by Yu et al. (2020) for HMs in citrus orchards were 
much higher than the values reported in this study for total 
contents of HMs in orchard land (Table 2). In addition for 
vegetable fields, the reported values were also higher com-
pared to values reported in this study, with the exception of 
Cu content. Nuralykyzy et al. (2021) showed that the total 
contents of HMs decreased in the following order: facility 
land > farmland > grassland > orchards.

The available and total background levels of HMs in the 
studied area were previously calculated by Jalali et al. (2022) 
and Beygi and Jalali (2018), respectively. Jalali et al. (2022) 
calculated the available background levels based on DTPA. 
Figure 2 shows the contents of HMs in various land use 
along with the background levels for each HM based on the 
iterative 2-δ technique method (Fig. 2a) and mean + 2 stand-
ard deviation method (Fig. 2b). The DTPA background lev-
els calculated for Cd, Cu, Mn, Ni, Pb, and Zn were 0.3, 1.1, 
11.6, 0.6, 1.6, and 0.6 mg  kg−1, respectively. Considering Cd 
background level, the mean value of Cd in none of the land 
use exceeded from background level, except for polluted 

land which was nearly 3.8 times higher than the background 
level. The mean contents of Cu in garlic land, orchard land, 
pasture land, potato land, vegetable land, wheat land, and 
polluted land were 1.6, 2.2, 1.0, 1.4, 5.1, 1.1, and 2.7 times 
higher than the Cu background level, respectively. The 
mean contents of Mn in garlic land, orchard land, pasture 
land, potato land, vegetable land, wheat land, and polluted 
land were 1.8, 2.4, 1.1, 2.3, 1.9, 1.7, and 1.5 times higher 
than Mn background level, respectively. The mean contents 
of Ni in garlic land, orchard land, potato land, vegetable 
land, and wheat land were 1.2, 1.3, 1.3, 1.2, and 1.2 times 
higher than Ni background level, respectively. The pasture 
and polluted lands mean values were not higher than the 
background level of Ni. The mean contents of Pb in garlic 
land, orchard land, pasture land, vegetable land, and polluted 
land were 1.4, 2.9, 1.3, 4.3, and 7.9 times higher than the Pb 
background level, respectively. The potato and wheat lands 
mean values were not higher than the background level of 
Pb. The highest increases in HMs contents compared to its 
background level, observed in Zn. The mean contents of Zn 
in garlic land, orchard land, pasture land, potato land, veg-
etable land, wheat land, and polluted land were 6.1, 2.6, 3.0, 
4.3, 2.6, 5.6, and 5.9 times higher than the Zn background 
level, respectively. As indicated above, based on available 
contents (DTPA) of HMs in most land use the HMs con-
tents were higher than their corresponding background lev-
els. The total background levels calculated for Cd, Cu, Mn, 
Ni, Pb, and Zn were 1.32, 33.67, 407.08, 60.96, 38.46, and 
119.99 mg  kg−1, respectively (Beygi and Jalali 2018). How-
ever, based on total HMs background levels, in most land 
use and most HMs the total HMs contents were lower than 
their corresponding background levels, except for polluted 
land which for all HMs, the contents were higher than their 
corresponding background levels.

Speciation

As discussed earlier, in each land use two soil samples 
were selected for the speciation experiment. The percent-
age of important HMs species in the garlic, orchard, pas-
ture, potato, vegetable, and wheat lands (mean of these land 

Table 3  The mean soil 
properties in various land use. 
The data was taken from Jalali 
and Moradi (2013)

Land use pH EC
(dS  m−1)

CEC
(cmolc  kg−1)

CCE
(%)

OM
(%)

Clay
(%)

Silt
(%)

Sand
(%)

Garlic land (n = 8) 6.84 0.14 16.88 6.74 2.65 21.14 23.58 55.29
Orchard land (n = 10) 7.16 0.15 21.94 11.97 1.67 29.14 23.69 47.17
Pasture land (n = 7) 7.00 0.32 18.29 10.18 1.41 20.83 22.55 56.62
Potato land (n = 11) 7.33 0.21 22.95 10.34 1.18 29.16 19.49 51.35
Vegetable land (n = 9) 7.09 0.18 19.76 11.61 2.01 23.49 22.04 54.47
Wheat land (n = 9) 7.41 0.26 24.57 18.46 1.35 40.84 25.58 33.57
Polluted land (n = 9) 7.09 1.18 29.27 16.42 1.51 24.04 32.44 43.51
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use and two soils) compared to polluted land (mean of two 
soils) in various extractants were presented in Table 5. The 
results showed that except for EDTA extractant, in all other 
extractants, the percentage of free HMs species were lower 

in polluted land compared to other land use. The  Mn3+ 
was the only species in all extractants and land use. Gener-
ally, among the various extractants, the highest Cd species 
belonged to  CdCl+ for all land use. For Cu, Ni, and Zn in 

Table 4  The mean ± standard error of available and total heavy metals in various land use extracted by various extractants

Values followed by the same letter for each extractant do not differ at the level of 5% (Duncan’s test)

Garlic land
(n = 8)

Orchard land
(n = 10)

Pasture land
(n = 7)

Potato land
(n = 11)

Vegetable land
(n = 9)

Wheat land
(n = 9)

Polluted land
(n = 9)

CaCl2
 Cd 0.08 ± 0.03g 0.13 ± 0.01g 0.08 ± 0.02g 0.09 ± 0.02g 0.13 ± 0.03g 0.09 ± 0.01g 0.73 ± 0.04fg

 Cu 0.27 ± 0.09g 0.53 ± 0.05g 0.34 ± 0.09g 0.21 ± 0.07g 0.46 ± 0.10g 0.12 ± 0.03g 0.16 ± 0.03g

 Mn 0.13 ± 0.07g 0.59 ± 0.10g 0.08 ± 0.05g 0.17 ± 0.10g 0.05 ± 0.02g 0.15 ± 0.11g 3.29 ± 0.47bc

 Ni 0.63 ± 0.14g 0.35 ± 0.03g 0.31 ± 0.10g 0.49 ± 0.12g 0.32 ± 0.05g 0.55 ± 0.12g 2.32 ± 0.20cde

 Pb 3.91 ± 1.29b 1.40 ± 0.18d,e,f,g 1.36 ± 0.37d,e,f,g 2.63 ± 0.30c,d 1.29 ± 0.15e,f,g 1.95 ± 0.15def 28.86 ± 0.72a

 Zn 0.06 ± 0.01g 0.10 ± 0.03g 0.14 ± 0.04g 0.09 ± 0.02g 0.11 ± 0.03g 0.10 ± 0.03g 2.27 ± 0.03cde

HCl
 Cd 0.62 ± 0.12f 0.56 ± 0.06f 0.47 ± 0.17f 0.82 ± 0.08f 0.82 ± 0.02f 0.79 ± 0.11f 5.46 ± 0.07ef

 Cu 1.92 ± 0.79f 3.33 ± 0.49f 1.45 ± 0.58f 1.54 ± 0.28f 1.37 ± 0.17f 0.89 ± 0.23f 5.38 ± 0.41ef

 Mn 51.23 ± 21.5b 88.05 ± 10.0a 37.04 ± 6.9b,c,d,e 49.54 ± 10.3b 40.24 ± 6.7b,c,d 19.64 ± 3.8cdef 81.41 ± 10.7a

 Ni 1.98 ± 0.67f 1.99 ± 0.3f 1.55 ± 0.24f 1.41 ± 0.20f 1.44 ± 0.32f 1.76 ± 0.80f 4.65 ± 0.43f

 Pb 12.03 ± 2.38c,d,e,f 9.75 ± 1.58e,f,d 9.76 ± 3.48e,f,d 13.52 ± 1.53c,d,e,f 13.19 ± 0.49c,d,e,f 10.07 ± 0.84efd 42.40 ± 2.79bc

 Zn 4.17 ± 1.8f 8.02 ± 1.69ef 2.78 ± 0.68f 4.32 ± 1.72f 9.29 ± 5.12e,f,d 2.06 ± 1.49f 19.11 ± 3.76cdef

HNO3

 Cd 0.42 ± 0.15e 0.15 ± 0.06e 0.45 ± 0.14e 0.50 ± 0.11e 0.46 ± 0.14e 0.55 ± 0.07e 4.44 ± 0.34e

 Cu 10.10 ± 2.16e 13.73 ± 1.96e 8.63 ± 1.91e 6.89 ± 0.79e 20.86 ± 5.18e 4.15 ± 0.44e 21.77 ± 10.72e

 Mn 135.9 ± 19.8b 198.7 ± 10.2a 119.8 ± 16.3b,c 149.4 ± 12.2b 213.7 ± 7.3a 98.1 ± 9.2 cd 151.9 ± 22.9b

 Ni 6.10 ± 1.08e 5.77 ± 0.56e 5.07 ± 0.73e 5.24 ± 0.80e 6.43 ± 1.37e 6.01 ± 0.48e 7.00 ± 0.58e

 Pb 7.37 ± 1.78e 7.60 ± 2.43e 6.21 ± 2.83e 5.69 ± 0.70e 14.46 ± 1.76e 4.31 ± 1.27e 74.13 ± 5.82d

 Zn 13.49 ± 3.47e 16.57 ± 2.86e 7.91 ± 2.20e 18.26 ± 2.86e 31.13 ± 8.72e 5.62 ± 0.84e 29.37 ± 11.72e

EDTA
 Cd 0.68 ± 0.10c 0.57 ± 0.07c 0.62 ± 0.18c 0.91 ± 0.10c 0.72 ± 0.06c 0.82 ± 0.09c 3.93 ± 0.06c

 Cu 6.65 ± 1.06c 8.49 ± 1.17c 4.21 ± 0.97c 4.88 ± 0.68c 15.40 ± 3.95c 3.66 ± 0.19c 8.27 ± 2.74c

 Mn 68.75 ± 15.77b,c 95.15 ± 10.39a,b 54.68 ± 10.22b,c 50.90 ± 6.27b,c 48.17 ± 4.19b,c 46.57 ± 1.52bc 73.17 ± 7.51bc

 Ni 2.21 ± 1.00c 3.70 ± 0.41c 2.04 ± 0.67c 2.54 ± 1.43c 2.87 ± 0.73c 1.25 ± 0.45c 3.48 ± 0.73c

 Pb 12.63 ± 1.94c 10.94 ± 1.79c 8.99 ± 1.62c 9.00 ± 0.56c 16.49 ± 1.61c 9.38 ± 0.86c 151.85 ± 2.63a

 Zn 8.13 ± 1.27c 6.15 ± 1.13c 5.80 ± 1.26c 11.60 ± 1.85c 20.04 ± 7.37c 4.98 ± 0.42c 24.13 ± 4.56bc

DTPA
 Cd 0.16 ± 0.03f 0.18 ± 0.02f 0.18 ± 0.04f 0.13 ± 0.01f 0.20 ± 0.02f 0.21 ± 0.04f 1.15 ± 0.00f

 Cu 1.77 ± 0.38f 2.39 ± 0.53f 1.14 ± 0.21f 1.58 ± 0.08f 5.61 ± 1.72f 1.25 ± 0.09f 2.97 ± 1.37f

 Mn 20.90 ± 3.91b,c 28.15 ± 3.35a 12.77 ± 6.21d,e 26.58 ± 1.89a,b 22.45 ± 2.88a,b,c 20.08 ± 3.93c 16.94 ± 6.70 cd

 Ni 0.72 ± 0.05f 0.77 ± 0.03f 0.53 ± 0.04f 0.80 ± 0.06f 0.72 ± 0.06f 0.75 ± 0.04f 0.46 ± 0.12f

 Pb 2.28 ± 0.34f 4.64 ± 1.25f 2.04 ± 0.63f 1.29 ± 0.11f 6.90 ± 1.27ef 1.42 ± 0.08f 12.70 ± 1.22de

 Zn 3.68 ± 0.81f 1.58 ± 0.36f 1.81 ± 0.74f 2.55 ± 0.49f 1.53 ± 0.52f 3.35 ± 0.62f 3.54 ± 1.07f

Total
 Cd 0.93 ± 0.14c 1.13 ± 0.08c 1.02 ± 0.25c 1.23 ± 0.13c 1.15 ± 0.06c 1.28 ± 0.15c 8.57 ± 0.16c

 Cu 42.35 ± 7.17c 36.23 ± 5.04c 54.36 ± 1.42c 30.95 ± 2.91c 27.66 ± 2.38c 27.94 ± 0.58c 66.64 ± 10.27c

 Mn 381.7 ± 24.1b 403.5 ± 16.2b 372.7 ± 6.2b 395.3 ± 20.4b 404.6 ± 28.2b 530.8 ± 25.4b 930.6 ± 50.4a

 Ni 38.11 ± 2.37b 46.23 ± 1.95c 48.54 ± 2.66c 42.46 ± 6.35c 48.43 ± 3.70c 60.10 ± 8.81c 62.79 ± 5.45c

 Pb 37.01 ± 6.04c 31.05 ± 7.15c 41.31 ± 11.69c 23.15 ± 2.75c 24.42 ± 4.13c 16.59 ± 1.72c 386.50 ± 5.53b

 Zn 50.50 ± 7.06c 71.13 ± 7.76c 67.09 ± 5.86c 63.72 ± 13.32c 83.99 ± 24.44c 49.36 ± 5.09c 126.61 ± 14.10c
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most extractants the highest species belonged to  Cu2+,  Ni2+, 
and  Zn2+, respectively. Different Pb species were dominant 
in different land use and different extractant (Table 5). The 
equilibrium pH of  CaCl2, HCl,  HNO3, EDTA, and DTPA 
extractants (mean of all land use) were 6.81, 3.90, 1.30, 7.88, 
and 7.31, respectively. This resulted in a higher percentage 
of HMs complexes with  CO3 and  HCO3 species in EDTA 
and DTPA extractants, and zero percentage in HCl and 
 HNO3 extractants. Jalali and Hurseresht (2020) stated that 
at pH higher than 7, the negative charges are dominant and 
may result in reabsorption of HMs in soil, and decreases the 
availability. However, at lower pH the positive charges are 
dominant and reabsorption of HMs is not happening. The 
dissolution of soil minerals and the exchanging of HMs with 
 H+ are the main mechanisms of HMs availability in low pH.

Risk assessment

Seven classes were introduced based on the Igeo value, which 
including unpolluted (Igeo < 0), unpolluted to moderately pol-
luted (0 < Igeo ≤ 1), moderately polluted (1 < Igeo ≤ 2), mod-
erately to heavily polluted (2 < Igeo ≤ 3), heavily polluted 
(3 < Igeo ≤ 4), heavily to extremely polluted (4 < Igeo ≤ 5), 
and extremely polluted (5 < Igeo) (Muller 1969). Figure 3a 
shows the Igeo index calculated for HMs in various land 
use. Among the various land use, the Igeo calculated for Cd 
and Pb in polluted land were categorized as moderately to 
heavily polluted, and Cu and Mn were categorized as unpol-
luted to moderately polluted. The Igeo calculated for Cu in 
pasture land was categorized as unpolluted to moderately 
polluted. All other Igeo calculated for HMs in various land 
use were categorized as unpolluted. Four classes were also 
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Fig. 2  The DTPA (a) and total (b) contents of heavy metals in various land use. Dash lines represented the background values for each heavy 
metal
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introduced based on the RI value, which included low risk 
(RI ≤ 150), moderate risk (150 < RI ≤ 300), considerable risk 
(300 < RI ≤ 600), and high risk (RI > 600). As it was shown 
in Fig. 3b, only RI calculated for Cd in polluted land was cat-
egorized as moderate risk, but RI calculated for other HMs 
in various land use were categorized as low risk. According 
to Liu et al. (2019), the grasslands and forests have moderate 
levels of Cd, Cr, Cu, and Zn pollution based on Igeo index 
and a high potential for RI caused by urbanization.

The AR is HMs availability indices normalized by the 
total contents of HMs. The AR reduces the effect of a geo-
genic factor on HMs availability (Massas et al. 2013). The 
AR is an important indicator providing information about 
soil enrichment with HMs. Figure 4 shows the AR calcu-
lated for various available HMs using different extractants. 
Among the extractants, the mean AR calculated for HMs 
decreased in the following order:  HNO3 (28.08%) > EDTA 
(26.36%) > HCl (21.55%) > DTPA (7.11%) >  CaCl2 (3.19%). 
The order was the same as the mean contents of HMs dis-
cussed in “Soil properties and heavy metals contents”. In 
all extractants, vegetable land had the largest percentage of 
HMs that could be extracted, followed closely by potato, 
garlic, orchard, wheat, and polluted lands, with pasture land 
having the lowest percentage of extractability. According 
to the AR calculated using different extractants, the Cd and 
Pb generally had the highest percentage of extractability, 

while the Ni had the lowest. When  CaCl2 was used to extract 
HMs, the results of comparing the AR calculated for pol-
luted land with other land use revealed that the percentage of 
extractability in polluted land (mean of all HMs, 3.68%) was 
higher than the other land use (mean of all other land use, 
3.11%). However, in other extractants, a different result was 
observed, and the percentage of extractability in polluted 
land was lower than the other land use. It has been estab-
lished that HMs accumulation in soil was mostly caused by 
chemical and organic fertilizers and pesticides containing 
HMs (Jalali et al. 2021). Due to the excessive and inappro-
priate use of chemical fertilizer in high-intensive cropping 
patterns, the likelihood and rate of HMs accumulation in 
soils were both enhanced (Bai et al. 2010). Cadmium, Cu, 
Pb, and Zn are examples of HMs that may have accumulated 
unintentionally in the soil as a result of the usage of agro-
chemicals such as pesticides and fertilizers. Phosphorus and 
other HMs are more readily available in Iranian agricultural 
soils as a result of the heavy application of P fertilizers. 
According to Jalali and Ahmadi Mohammad Zinli (2011), 
soils under potato and vegetable farms have higher average 
Olsen-P values than pasture and wheat fields. Numerous 
studies (Bai et al. 2010; Jalali et al. 2021; McLaughlin et al. 
2021) revealed that one of the primary factors contributing 
to the accumulation of Cd in soils was the use of phosphate 
fertilizers with high Cd contents. The information given by 

Table 5  The mean percentage 
of heavy metals species in 
garlic, orchard, pasture, potato, 
vegetable, and wheat lands 
(other land use) compared 
to polluted land in various 
extractants

Species Other land use Polluted land

CaCl2 HCl HNO3 EDTA DTPA CaCl2 HCl HNO3 EDTA DTPA

Cd2+ 22.8 16.1 46.9 49.8 26.0 20.3 15.0 37.3 65.9 19.2
CdCl+ 58.3 63.3 3.1 46.2 51.5 50.3 62.9 1.0 33.0 41.6
CdCl2 11.1 18.8 0 2.8 7.6 9.4 20.0 0 0.9 6.8
CdSO4 6.1 0 36.1 0.0 6.1 14.1 0 38.8 0 17.4
Cu2+ 61.3 83.5 63.9 15.3 27.9 50.6 2.3 59.8 91.1 21.2
Cu(OH)2 23.9 16.3 0 83.9 65.3 22.2 96.9 0 7.3 63.3
CuSO4 12.7 0 36.1 0 4.5 25.2 0 40.2 0 13.4
Mn3+ 100 100 100 100 100 100 100 100 100 100
Ni2+ 73.2 87.5 63.1 92.3 34.8 58.8 85.9 55.4 97.5 26.5
NiSO4 13.9 0 36.6 0 5.8 30.0 0 44.1 0 17.9
NiCl+ 6.2 12.3 0.1 2.5 2.3 5.3 13.5 0.1 1.3 2.2
NiHCO3

+ 6.2 0 0 0 49.0 5.4 0 0 1.1 45.4
Pb2+ 18.1 33.6 35.8 32.2 0.8 14.5 27.2 27.7 68.1 0.6
PbCO3 41.8 0 0 0 79.6 38.9 0 0 10.5 74.0
PbCl+ 19.3 55.1 1.0 12.9 0.7 15.0 47.6 0.3 14.2 0.5
PbSO4 9.6 0 53.5 0 0.3 19.6 0 56.1 0 1.0
PbOH+ 1.1 4.1 0 44.7 0.1 1.0 18.2 0 2.3 0.1
Zn2+ 71.2 88.9 57.2 58.2 19.6 55.4 85.3 50.8 97.2 14.2
ZnSO4 14.9 0 33.2 0 3.5 28.3 0 34.2 0.0 9.2
ZnCl+ 5.0 9.1 0.1 1.6 1.1 3.5 9.0 0 1.4 0.8
ZnHCO3

+ 4.9 0 0 0 22.5 3.5 0 0 1.1 15.2
Zn(CO3)2

–2 0.1 0 0 0 30.4 0.1 0 0 0 39.2



 Environmental Earth Sciences (2023) 82:298

1 3

298 Page 10 of 19

Latifi and Jalali (2018) indicates that K, nitrogen, and sul-
fur fertilizers do not contain significant amounts of Cd and 
will consequently have a negligible effect on the accumula-
tion of Cd in soil. Contrarily, a significant source of Cd in 
agricultural systems comes from P fertilizer (McLaughlin 
et al. 2021). Latifi and Jalali (2018) investigated the HMs in 
several nitrogen, K, and P fertilizers that are often applied 
in Iran. They claimed that HMs were present in higher con-
tents in P fertilizers than in nitrogen and K fertilizers. They 
found that the average amount of HMs in P fertilizers for Cd, 
Cu, Mn, Ni, Pb, and Zn were 4.0, 24.4, 272, 14.3, 6.0, and 
226 mg  kg−1, respectively. Their investigation involved 41 
samples of Iranian fertilizers. The amount of P fertilizer used 
on the garlic, orchard, potato, and wheat lands in the study 
area is approximately 93, 23, 141, and 35 kg P  ha−1  year−1 
(Table 6). As shown in Table 6, the addition of P to the 
soil in the study area led to increases the content of Cd, 
Cu, Mn, Ni, and Zn in soils, which ranged from 0.09 to 
0.56, 2.3 to 9.2, 6.3 to 38.4, 0.3 to 2.0, 0.1 to 0.8, and 5.2 
to 31.9 g  ha−1  year−1, respectively. Potato and garlic lands 

received higher HMs, as indicated in Table 6. Other sources 
of HMs addition in soil include manures, biosolids, com-
posts, and other organic fertilizers (McLaughlin et al. 2021). 
As a result, it implies that extensive and frequent farming 
operations for crops like potatoes, garlic, and vegetables may 
have enriched HMs in surface soil.

The values of HQ and HI for HMs in various land use 
are presented in Table 7. The highest mean value of HQ 
(mean of all HMs and land use) was found in the following 
order: ingestion (7.27E–03) > dermal (4.25E–04) > inhala-
tion (3.82E–04). Generally, the highest HQ was observed 
in polluted land (mean of all HMs). The HMs may cause 
non-carcinogenic effects to the population if HI exceeds 1, 
otherwise, the non-carcinogenic effects of HMs to the popu-
lation are not significant. As presented in Table 7, the non-
carcinogenic risk of all calculated HMs in various land use 
were less than 1, which shows that the health risks of these 
HMs are not significant under the conditions and assump-
tions of the assessment. Generally, Pb and Mn are the main 
contributors to the total health risks, while Cu and Zn were 
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the least risks. Among different land use, the following order 
was observed for HI: polluted land > pasture land > garlic 
land > orchard land > wheat land > vegetable land > potato 
land. Liu et al. (2019) observed that the highest mean cal-
culated HQ belonged to ingestion followed by inhalation 

and dermal contact. Huang et al. (2018) studied the health 
risk assessment of HMs in various land use. They reported 
that the HI value calculated for adults was all lower than 1, 
however, this value for children in residential and farm land 
were higher than 1. Jiang et al. (2021) also noted that Cu and 

Table 6  The amount of heavy 
metals added to various land 
use due to the addition of 
phosphorus fertilizer (calculated 
based on the amount of heavy 
metals in phosphorus fertilizers)

a Samavatean et al. (2011)
b Banaeian and Zangeneh (2011)
c Hamedani et al. (2011)
d Ghasemi-Mobtaker et al. (2020)

Land use Added Phos-
phate  (P2O5)

Added P Cd Cu Mn Ni Pb Zn

kg  ha−1 mg  ha−1

Garlic land 213.2a 93 372 9151.2 25,296 1329.9 558 21,018
Orchard land 52.3b 23 92 2263.2 6256 328.9 138 5198
Potato land 322.6c 141 564 3468.6 38,352 2016.3 846 31,866
Wheat land 80.54d 35 140 3444.0 9520 500.5 210 7910

Table 7  The hazard quotient (HQ) and the hazard index (HI) for non-carcinogenic risk (adults) calculated in various land use

Garlic land
(n = 8)

Orchard land
(n = 10)

Pasture land
(n = 7)

Potato land
(n = 11)

Vegetable land
(n = 9)

Wheat land
(n = 9)

Polluted land
(n = 9)

HQIngestion

 Cd 4.88E-04 5.89E-04 5.31E-04 6.44E-04 6.03E-04 6.68E-04 4.48E-03
 Cu 5.54E-04 4.74E-04 7.11E-04 4.05E-04 3.62E-04 3.65E-04 8.71E-04
 Mn 8.32E-03 8.79E-03 8.12E-03 8.61E-03 8.82E-03 1.16E-02 2.03E-02
 Ni 9.96E-04 1.21E-03 1.27E-03 1.11E-03 1.27E-03 1.57E-03 1.64E-03
 Pb 1.38E-02 1.16E-02 1.54E-02 8.64E-03 9.12E-03 6.20E-03 1.44E-01
 Zn 8.83E-05 1.24E-04 1.17E-04 1.11E-04 1.46E-04 8.60E-05 2.21E-04

HQInhalation

 Cd 3.28E-06 3.96E-06 3.57E-06 4.33E-06 4.05E-06 4.49E-06 3.01E-05
 Cu 2.12E-07 1.82E-07 2.73E-07 1.55E-07 1.39E-07 1.40E-07 3.34E-07
 Mn 1.53E-03 1.62E-03 1.50E-03 1.59E-03 1.62E-03 2.13E-03 3.74E-03
 Ni 3.71E-07 4.50E-07 4.73E-07 4.14E-07 4.72E-07 5.85E-07 6.12E-07
 Pb 1.49E-04 1.25E-04 1.66E-04 9.29E-05 9.80E-05 6.66E-05 1.55E-03
 Zn 3.39E-08 4.76E-08 4.49E-08 4.26E-08 5.62E-08 3.30E-08 8.47E-08

HQDermal

 Cd 1.19E-04 1.44E-04 1.29E-04 1.57E-04 1.47E-04 1.63E-04 1.09E-03
 Cu 1.12E-05 9.61E-06 1.44E-05 8.21E-06 7.34E-06 7.41E-06 1.77E-05
 Mn 1.27E-03 1.34E-03 1.24E-03 1.31E-03 1.34E-03 1.76E-03 3.09E-03
 Ni 2.25E-05 2.73E-05 2.86E-05 2.50E-05 2.86E-05 3.54E-05 3.70E-05
 Pb 2.81E-04 2.35E-04 3.13E-04 1.75E-04 1.85E-04 1.26E-04 2.93E-03
 Zn 2.69E-06 3.77E-06 3.56E-06 3.38E-06 4.46E-06 2.62E-06 6.72E-06

HI
 Cd 6.10E-04 7.37E-04 6.64E-04 8.05E-04 7.54E-04 8.35E-04 5.60E-03
 Cu 5.65E-04 4.83E-04 7.25E-04 4.13E-04 3.69E-04 3.73E-04 8.89E-04
 Mn 1.11E-02 1.17E-02 1.09E-02 1.15E-02 1.18E-02 1.55E-02 2.71E-02
 Ni 1.02E-03 1.24E-03 1.30E-03 1.14E-03 1.30E-03 1.61E-03 1.68E-03
 Pb 1.42E-02 1.20E-02 1.59E-02 8.91E-03 9.40E-03 6.39E-03 1.49E-01
 Zn 9.10E-05 1.28E-04 1.21E-04 1.14E-04 1.51E-04 8.87E-05 2.27E-04
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Zn are the least significant supporters to HI, while Cd and Pb 
are the main contributors. They stated that for Pb and Zn the 
ingestion is the main channel of absorption and for Cd and 
Cu the dermal absorption is the main channel. They added 
that Cd and Pb’s higher toxicity was the reason why they had 
higher HI than Cu and Zn.

Correlation analysis

Pearson’s correlation analysis of AR of HMs with soil prop-
erties was performed for EDTA and DTPA extractants. In 
EDTA extractant, the AR of Cu and Zn showed no significant 
correlation with any soil properties, while other HMs were 
mostly correlated with EC, CCE, clay, and sand. In DTPA 
extractant, which is a common soil extractant in soil testing, 
the AR of Ni showed no significant correlation with any soil 
properties, while the AR of other HMs were mostly corre-
lated with pH, CEC, OM, silt, and sand (results not shown). 
Massas et al. (2013) observed that the DTPA extractable 
Mn and Zn were negatively correlated with pH. They also 
reported that the DTPA extractable Fe and Zn were nega-
tively correlated with clay and positively correlated with 
OM, whereas DTPA extractable Pb was also positively cor-
related with CCE. Rivera et al. (2016) observed that the Cd 
and Cu extracted by EDTA positively correlated with EC and 
Zn negatively correlated with clay. Zhong et al. (2020) stated 
that pH and EC were the most important factors affecting 
HMs availability. They observed significant negative cor-
relations for the AR of Cd, Cr, Cu, Ni, Pb, and Zn with pH, 
and significant positive correlations for the AR of Cd, Cr, Cu, 
Ni, and Zn with EC. Such results were also reported in other 
studies (e.g., Jalali et al. 2022; Zhen et al. 2019). Decreas-
ing the soil pH resulted in decreasing the negative charges 
on minerals, oxides, and organic surfaces, which resulted in 
decreasing in HM ions sorption and increasing the competi-
tion for free HM ions with other cations, therefore the avail-
ability of the HMs increased (Zhen et al. 2019; Zhong et al. 
2020). Lowering soil pH, increases competition between free 
HM ions with other cations, thereby increasing the avail-
ability of the HMs (Zhen et al. 2019; Zhong et al. 2020). 
Increasing EC increases HMs availability. Complex forma-
tion of anions with HMs and competition of cations with 
HMs derived from high ECs increases the availability of 
HM (Acosta et al. 2011b). Soil OM can significantly affect 
HMs availability. Organics matter contain many functional 
groups that can adsorb HMs through complexation reactions, 
sometimes reducing the availability of HMs and sometimes 
increasing their availability (Antoniadis et al. 2017; Zeng 
et al. 2011). Higher clay and silt contents lead to lower HMs 
availability, while higher sand contents lead to higher HMs 
availability and higher contents of minerals provided more 
sites for HMs adsorption. The presence of calcium carbonate 

decreases the HMs availability by increasing the pH and 
formation of insoluble metal carbonates (Hooda 2010).

The relationship between AR, calculated based on EDTA 
and DTPA for HMs in various land use is presented in Fig. 5. 
Cadmium, Cu, Mn, and Pb all showed a significant correla-
tion (combined of all land use), and Cu and Pb showed a 
strong relationship, indicating that these two extractants had 
similar abilities in extracting Cd, Mn, and especially Cu and 
Pb from soils (Fig. 5).

The multivariate analyses were performed for the AR of 
HMs calculated based on EDTA and DTPA for the combi-
nation of various land use and the dendrograms were pre-
sented in Fig. 6. According to the results, Mn and Ni were 
included in the same cluster when using the EDTA extract-
ant, whereas Cu and Pb were included in the same cluster 
when using both EDTA and DTPA extractants were used 
(Fig. 6). The noteworthy feature of this cluster is the use of 
AR of HMs rather than available ones, which considers both 
available and total HMs in soil.

Environmental implications

Our results show the significance of soil properties, differ-
ent land use, and extractants when assessing soil enrich-
ment with HMs. It was indicated that in DTPA extract-
ant, which is a common soil extractant and used to extract 
micro nutrients and well correlated with plant response, 
the AR of HMs were mostly correlated with some soil 
parameters. Thus, soil parameters can be used to predict 
available form of HMs. It was advised to take into account 
both the total HMs contents and their available forms in 
order to assess the status of HMs because their availability 
varies depending on the type of land use and the extract-
ant being employed. This led to the calculation of AR, 
which can describe the status of HMs more accurately 
than a single extractor. The relationships between vari-
ous soil tests found in this study can be utilized to report 
the amounts of HMs for another soil test method. Cer-
tain laboratories may use a particular soil-test method to 
assess available HMs in soil samples. Advantages of cor-
relation between different methods to extract HMs from 
soil arise from the need for cross-method interpretation. 
Traditionally, the level of total HMs in soil is compared 
to the total background level to assess soil contamination 
due to the presence of HMs in soil, but background levels 
of available HMs were used for the first time in this study. 
Based on available background of HMs (DTPA), it was 
noted that in most land uses, HMs content were higher 
than the corresponding background values. It was indi-
cated that the greatest increase in HM levels compared 
to background levels was observed with Zn and that the 
mean contents of Zn in all land use were higher than the 
Zn background level. As a result of human activities, HMs 
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can be found at levels well above background levels in a 
variety of environmental conditions (Vareda et al. 2019). 
This indicates that the greatest impact of anthropogenic 
activity has resulted in an increase in available Zn content, 
and further research should be conducted to trace sources 

of Zn contamination in these land use. Available forms of 
HMs are not only considered toxic but are mobile and can 
penetrate soil profiles and contaminate groundwater. They 
accumulate in ecosystems and are mostly toxic, so they 
can be dangerous when accumulated in living organisms 
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Fig. 5  The relationship between availability ratio, calculated based on EDTA and DTPA for Cd (a), Cu (b), Mn (c), Ni (d), Pb (e), and Zn (f). 
Dot lines represented the linear relation fitted to all land use. * and *** denote levels of significance at P < 0.05 and P < 0.001
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(Vareda et al. 2019). The highest abundance of Cd species 
belonged to  CdCl+, which with its high mobility, could 
be a risk for plant uptake and leaching from soil profile 
resulting in contamination of groundwater. Although, the 
content of Cd was not much higher than the background 
levels; however, based on risk assessment parameters, 
Cd along with Pb resented higher risk compared to other 
HMs. Regarding various land use, still, the HI was low for 
all HMs in all land use; however, other risk assessment 
parameters highlighted the risk of polluted land. Neverthe-
less, in this study, we only looked at the influence of some 
total and available HMs content on human health risk in 
a few land uses. Further research should concentrate on 

HMs availability and toxicity in various land uses from 
concurrent exposure to numerous HMs in order to have a 
comprehensive understanding of the possible risk.

Conclusions

In this study, we evaluated the speciation and risk assess-
ment of Cd, Cu, Mn, Ni, Pb, and Zn extracted with  CaCl2, 
HCl,  HNO3, EDTA, and DTPA extractants in various land 
use. Based on available contents (DTPA) of HMs in most 
land use, the HMs content were higher than their corre-
sponding background levels, while, based on total HMs 
background levels, in most land use (except polluted land 

Fig. 6  Dendrogram of heavy 
metals availability ratio calcu-
lated based on EDTA (a) and 
DTPA (b) extractants
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use) the total contents of most HMs were lower than their 
corresponding background levels. The speciation of HMs 
indicated that the highest abundance of Cd species belonged 
to  CdCl+, which with its high mobility, could be a risk for 
plant uptake and leaching from soil profile resulting in con-
tamination of groundwater. Further studies should focus 
on HMs availability and toxicity in different land uses by 
simultaneous exposure to multiple HMs to better under-
stand the potential risks of HMs. The AR parameter consid-
ering both available and total HMs content was calculated 
and provided important information about soil enrichment 
with HMs in different land use. Among the extractants, the 
mean AR calculated for HMs decreased in following order: 
 HNO3 > EDTA > HCl > DTPA >  CaCl2. In assessing anthro-
pogenic activity, it is very important to consider not only the 
total HMs content, but also the available HMs content. There 
were strong correlations between AR, calculated based on 
EDTA and DTPA for Cu and Pb in all land use, indicating 
that these two extractants had similar abilities in extracting 
Cu and Pb from soils having different Cu and Pb contents. 
In DTPA extractant, the AR of Ni showed no significant cor-
relation with any soil properties, while the AR of other HMs 
were mostly correlated with soil properties. These correla-
tions can be used to estimate the content of HMs in soils in 
various land use zones with diverse physical and chemical 
properties. Although most soils can exhibit this relationship, 
it is clear that different soils have different ARs due to the 
presence of different soil components, so further studies are 
needed to determine its exact strength. The extensive agri-
cultural activities in garlic, orchard, potato, vegetable, and 
wheat lands may result in higher contents of Cd, Cu, Mn, 
Ni, Pb, and Zn and higher potential risk to humans and the 
environment compared to pasture land. However, the heavy 
industrial and mining activities in polluted land may result 
in higher contents of HMs and potential risk compared to 
other land use. It can also conclude that for evaluating the 
anthropogenic activities not only considering the total con-
tents of HMs but also the available contents of HMs could 
be very important.
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