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Abstract: The Lower Yangtze River Belt (LYRB) is a well-known and important base area with regard
to Cu polymetallic resources in China. Large Cu polymetallic deposits in the LYRB are strongly
associated with Cretaceous adakitic rocks. However, the petrogenesis of the Early Cretaceous adakites
and the temporal–genetic relationship with mineralization are still disputable. The Dongguashan
(DGS) Cu polymetallic deposit in the Tongling ore cluster is one of the largest Cu deposits in the
LYRB. The DGS intrusion mainly comprises quartz monzodiorite, with SiO2 contents varying from
63.7 to 67.9 wt%. Zircons from the quartz monzonite yield a SIMS U-Pb age of 138.9 ± 1.8 Ma,
which indicates that the Cretaceous magmatism is coeval with mineralization. The studied rocks
show typical geochemical signatures of adakites, characterized by high Al2O3 (14.9–16.2 wt%) and Sr
(800–910 ppm) and low Y (15.2–17.5 ppm) and Yb (1.37–1.52 ppm) contents, with consequently high
Sr/Y (46–61) and (La/Yb)N (14.8–18.5) ratios. The zircon δ18O values of the DGS adakites range from
5.7‰ to 7.3‰, indicating a heterogeneous source. Whole-rock Sr-Nd isotopic compositions show an
enriched character, with ISr ratios from 0.70783 to 0.70794 and εNd(t) values around −11.0, which
fall intermediately in the area of MORB (mid-ocean ridge basalt), marine sediment, and the ancient
lower crust. Comprehensively, whole-rock geochemical compositions and isotopic values suggest
that the adakites are generated from the partial melting of the subducted oceanic crust and possibly
with the involvement of sedimentary materials derived from the slab or continental crust. Moreover,
the bulk-rock high-Cu composition, and the physical–chemical conditions (high oxygen fugacity and
high volatile contents) revealed by apatites, plays critical roles in the formation of Cu mineralization
in the DGS Tongling ore cluster, LYRB.

Keywords: adakite; Cretaceous; Cu mineralization; Dongguashan; Tongling ore cluster; LYRB

1. Introduction

The LYRB is one of the most important Late Mesozoic magmatic belts and metallo-
genic provinces in Eastern China [1–3]. Over 200 Mesozoic magmatic polymetallic (Cu,
Fe, Au, Mo, Zn, Pb, and Ag) ore deposits have been discovered along the LYRB. From
west to east, these polymetallic deposits can be divided into seven ore clusters: Edong,
Jiurui, Anqing-Guichi, Luzong, Tongling, Ningwu, and Ningzhen, respectively [2,4,5].
These polymetallic ore deposits are not only temporally associated with but also geneti-
cally related to adakitic rocks in this region [1,4–8]. Many studies on preliminary geology
and geochemistry have been well-conducted and established the relationships between
polymetallic mineralization, magmatism, stratigraphy, and tectonics [2,9–11]. Mainly three
stages of magmatism and mineralization in the LYMB can be classified based on the field
investigation along with collected geochronological data: (1) the first stage (148–135 Ma),
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intermediate-acid intrusions linked to Cu-Au-Mo polymetallic mineralization; (2) the sec-
ond stage (133–127 Ma), mafic-intermediate volcanic and subvolcanic rocks associated
with magnetite–apatite deposits; and (3) the third stage (129–120 Ma), A-type granites
and alkaline rocks with U-Au mineralization [5,7,12–18]. Previous studies suggest that
the first episode of high-K calc-alkaline intermediate-acid intrusions is congruously rec-
ognized to have adakitic-like features [7,8,17,19]. However, the origins of the ore-bearing
adakites in the ore clusters are still debated and can be summarized as follows: (1) partial
melting of the subducted oceanic slab of the Paleo-Pacific plate or metasomatized mantle
wedge [6–8,17,20,21]; (2) partial melting of the thickened or delaminated lower continen-
tal crust [22–25]; (3) generated from mantle-derived magma following assimilation and
fractional crystallization [1,26–29]; and (4) mixing of the mantle-derived and crust-derived
magmas [11,30–34].

Accessory minerals in magmatic rocks provide a window into the petrogenesis and
ore-forming mechanism for preserving a wealth of information on source components,
magmatic evolution, and related mineralization. Both zircon and apatite are robust, long-
lasting, and ubiquitous minerals in magmatic rocks. Zircon can preserve the magmatic O
isotopic compositions, which is a useful proxy for the primary oxygen isotopic composition
in magmas [35]. The mantle is a remarkably homogeneous oxygen isotope reservoir, and
igneous oxygen isotopes of zircons in equilibrium with pristine mantle-derived melts have
a well-constrained and narrow range of δ18O values (5.3 ± 0.3‰, 1SD) [36,37]. Moreover,
zircon oxygen isotopic values (δ18OZrc) are insusceptible to fractional crystallization due
to fractionation ∆18O (WR-Zrc) increasing at nearly the same rate as δ18O (WR) in the more
evolved and silicic magmas. Apatite is also an important accessory mineral, which is the
main host of the volatiles and has great importance in metallogenic studies, especially with
regard to the magmatic processes and physio-chemical conditions [16,38–44].

The DGS deposit, discovered in 1974, is a representative Cu(-Au) ore deposit (0.94 Mt
at 1.01% Cu and 22 t at 0.24 g/t Au) in the Tongling ore cluster [11]. The Mesozoic
intermediate-acidic magmatic rocks widely developed in DGS are tightly associated with
Cu polymetallic mineralization [11,45–47]. Knowledge about the petrology and genesis of
the Cretaceous intermediate-acidic intrusions is important for revealing the petrogenesis
and metallogenesis of the DGS deposit. Therefore, it is of great significance for under-
standing the petrological nature of the DGS quartz monzodiorite, which provides better
constraints on the deposit genesis. This paper focuses on zircon U-Pb dating, O isotopic
composition, and bulk rock elemental and Sr-Nd isotopic data of the DGS adakites, which
are employed to provide insights into the petrogenesis and metallogenic mechanisms of
the ore-bearing intrusion of the DGS deposit, the Tongling ore cluster, in the LYRB.

2. Geological Background

The LYRB is located along the northern margin of the Yangtze Craton and south of the
Qinling–Dabie orogenic belt (Figure 1a). The ‘V-shaped’ metallogenic belt is bounded by the
northwestern trending Xiangfan–Guangji and Tan–Lu faults and the southeastern trending
Chongyang–Changzhou fault (Figure 1b; [4,48]). Extensive Late Mesozoic magmatism
and large-scale mineralization occurred in the belt (Figure 1b,c; [2,4]). The Tongling ore
cluster located in the central part of the LYRB, is one of the seven major mining regions
in the metallogenic belt (Figure 1b). A total of 45 deposits and 76 plutons have been
discovered within the district [2]. It comprises three major tectono-stratigraphic units:
(1) an Archean to Late Proterozoic metamorphic basement, consisting of a Late Archean
to Early Proterozoic metamorphic core complex and a thick flysch sequence intercalated
with submarine volcanic rocks and intruded by Late Proterozoic granitioids; (2) a Paleozoic
to Early Mesozoic marine sedimentary layer, including Carboniferous carbonate rocks,
Permian black shale and limestone, and Triassic argillaceous rocks and carbonate rocks,
except for the Middle–Late Devonian Cambrian to Early Triassic marine sediment coverage,
including shale, siltstone, and limestone; and (3) Early Mesozoic to Late Mesozoic (Middle
Triassic to Cretaceous) volcanic sequences and thick terrestrial sediments are widely covered
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above those marine deposits, comprising Jurassic and Cretaceous extensive volcanic and
intrusive rocks [1,2]. These widespread plutons are developed along the EW-trending
Tongling–Nanling fault and intrude Silurian–Triassic sedimentary host rocks. The shape
of the Late Mesozoic magmatic rocks is constrained by a series of NE-trending faults and
folds. Numerous polymetallic Cu–Au deposits are products of those intermediate–felsic
magmatic and relevant hydrothermal activities (Figure 1b) [49]. Ore-bearing intrusions
include the DGS, Tongguanshan, Fenghuangshan, Xinqiao, and Shizishan, which mainly
consist of intermediate-felsic magmatic rocks, including pyroxene monzodiorite, quartz
monzodiorite, and granodiorite [15,50].
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Figure 1. (a) Sketch map with the location of the LYRB; (b) Simplified geological map of intrusive
and volcanic rocks and ore clusters in the LYRB (modified after Zhou et al. [48]; Mao et al. [4]);
(c) Geological map of Tongling ore cluster, Anhui province (modified after Chang et al. [1]). TLF:
Tancheng–Lujiang fault; XGF: Xiangfan–Guangji fault; HPF: Huanglishu–Poliangting fault; CHF:
Chuhe fault; CCF: Chongyang–Changzhou fault; JNF: Jiangnan fault.

DGS is one of the economically most important polymetallic Cu-Au deposits in the
Shizishan ore field, the Tongling ore cluster (Figure 1c) [1], and is located at the intersec-
tion of the NE-trending Qingshan anticline and the E-trending Tongling–Shatanjiao fold
belt [51]. The sedimentary rocks exposed in the area are recognized to be Middle–Upper
Silurian to Lower Triassic, with the exception of Lower to Middle Devonian rocks. Major
structures consist of the NE-trending Qingshan anticline and the E-trending Datuanshan–
Baoerling fault and control the emplacement of regional plutons and orebodies [51]. Quartz
monzodiorite, closely related to Cu-Au mineralization [32], is intruded into Silurian to
Triassic sedimentary strata [9]. Twelve fresh samples were collected from the drilling core
(Figure S1). The samples were mainly quartz monzodiorite, which was light gray in color
and medium- to coarse-grained in texture and had a massive structure. They consisted
of plagioclase (45–60 vol%), potassium feldspar (10–20 vol%), quartz (5–15 vol%), and
small amounts of biotite (Figure 2). Accessory minerals included zircon, apatite, titanite,
and magnetite.
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3. Analytical Methods
3.1. In Situ SIMS Zircon U–Pb and Oxygen Isotope Analysis

Zircon grains were separated and mounted in epoxy resin disc with standards Plešovice,
Penglai, and Qinghu and then polished to expose the crystals. The U–Pb isotope composi-
tions of zircon grains from sample (DGS46) were determined using a Cameca IMS-1280 HR
(high-resolution) at the Guangzhou Institute of Geochemistry, Chinese Academy of Sciences
(GIGCAS), Guangzhou, China. The operating conditions include ~8 nA primary O2– beam
focused to a beam size of 20 × 30 µm at a mass resolving power of ~5400. U–Pb ratios
were calibrated against the Plešovice standard (206Pb/238U = 0.05369; age = 337.1 Ma; [52]),
and absolute abundances were determined relative to the M257 standard (U = 840 ppm;
Th/U = 0.27; [53]). Zricon standard Qinghu was analyzed together with the zircons in this
study. The analytical procedures and data-processing procedures were similar to those
described by Li et al. [54]. An average present-day crustal composition [55] was used.
The concordia plot was processed using Isoplot/Ex v.3.70 [56]. In situ zircon U–Pb dating
results are listed in Supplementary Table S1. The analysis shows that 206Pb/204Pb values
are generally high, implying insignificant common Pb contents.

Zircon oxygen isotopes (18O and 16O) were determined using a Cameca IMS-1280
HR ion microprobe at the GIGCAS. The sample mount was reground and polished. A
focused beam of Cs+ ions was accelerated at 10 kV potential with an intensity of ~2nA.
The applied beam diameter was ~20 µm. The oxygen isotopes were measured in multi-
collection mode using two off-axis Faraday cups, and nuclear magnetic resonance (NMR)
was used to stabilize the magnetic field. Detailed analytical procedures were described
by Tang et al. [57]. Each analysis comprised 20 cycles, with an internal precision of better
than 0.2‰ (1σ). Measured 18O and 16O were normalized to the Vienna Standard Mean
Ocean Water composition (VSMOW; 18O/16O = 0.0020052) and reported in standard per
mil notation. The instrumental mass fraction factor (IMF) was corrected using the zircon
standard Penglai with δ18OVSMOW = 5.3‰ [58]. In situ oxygen isotopic results are presented
in Supplementary Table S2.
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3.2. Whole-Rock Major and Trace Elements and Sr–Nd Isotopes

Rock samples were crushed to smaller than 200 mesh (<0.75 µm in diameter). The
powder samples were dried at 105 ◦C for 4 h and treated to produce fused glass discs
that were analyzed using an X-ray fluorescence spectrometer at ALS Laboratory Group,
Analytical Chemistry and Testing Services, Guangzhou, China. The analytical uncertainties
for major element concentrations were less than 5%. Whole-rock trace element analyses
were conducted using an Agilent 7700e inductively coupled plasma–mass spectrometer
(ICP–MS) at Wuhan SampleSolution Analytical Technology, Wuhan, China. The sample
digestion procedure and the analytical precision and accuracy during ICP–MS analyses
were identical to those of Liu et al. [59]. The instrumental signal drift was monitored using
an internal standard Rh solution. The AGV-2, BHVO-2, BCR-2, and RGM-2 standards were
used for instrument calibration and quality control. For most trace and rare earth elements,
the precision was estimated to be better than 2%–5% RSD (relative standard deviation).
The data are given in Supplementary Table S3.

Strontium and Nd isotopic compositions of the powdered samples were determined
using a Micromass Isoprobe multi-collector ICP–MS instrument (MC–ICP–MS) at the State
Key Laboratory of Isotope Geochemistry, GIGCAS. The powder samples were dissolved
in HF + HNO3 acid in Teflon containers. Strontium and rare earth elements (REE) were
separated in cation columns, Nd fractions were further separated using HDEHP-coated
Kef columns. Analytical procedures were similar to those described by Li et al. [60]. The
MC–ICP–MS was operated in static mode. The measured 87Sr/86Sr of the NBS SRM
987 standard and the measured 143Nd/144Nd of the Shin Etsu JNdi-1 standard yielded
the values of 0.710242 ± 10 (2σ, n = 9) and 0.512115 ± 10 (2σ, n = 8), respectively, which
were identical within the error of the recommended values of 87Sr/86Sr = 0.71025 and
143Nd/144Nd = 0.512115 [61]. To correct for mass fractionation during analysis, measured
Sr and Nd isotope ratios were normalized to a composition of 86Sr/88Sr = 0.1194 and
146Nd/144Nd = 0.7219. Isotopic compositions and calculated initial 87Sr/86Sr (ISr) and εNd
(t) values are shown in Supplementary Table S3.

3.3. Apatite Major Elements Analysis

Apatite grains from the sample (DGS46) were separated and selectively mounted in
epoxy resin and then polished to expose crystal mid-sections for observation and analysis.
Photomicrographs and cathodoluminescence (CL) images were obtained to characterize
the internal structures of apatite grains. Major element analyses were conducted using
wavelength-dispersive spectrometers on a JEOL JXA-8230 electron microprobe at the
Testing Center of the Shandong office of the China Metallurgical Geology Bureau, Jinan,
China. The operating conditions include an accelerating voltage of 15 kV, a beam current
of 10 nA, and a defocused beam 10 µm in diameter. Norbergite standard was used for F,
Ba5(PO4)3Cl for Cl, and apatite for Ca and P contents. In order to avoid volatile loss, count
times analyzed for F and Cl were 10 s and was 20 s for other elements. Fluorine and Cl
were analyzed using the Kα line on an LDE1 and PET crystal, respectively. The analytical
precision was estimated to be better than 1% for most of the major elements and was ~5%
for F and Cl contents. The major element contents of apatite are listed in Supplementary
Table S4.

4. Results
4.1. Zircon U-Pb Age and O Isotopic Compositions

Zircon grains from quartz monzodiorite (DGS46) are transparent and colorless. Most
crystals are euhedral to subhedral in morphology. The selected grains have lengths up to
100–300 µm, with length-to-width ratios between 2:1 and 3:1. They are all characterized by
euhedral concentric zoning in CL images, indicating their magmatic origin. A total of 16
U-Th-Pb measurements on 16 zircons yielded moderate concentrations of Th (70–536 ppm)
and U (98–695 ppm), with variable Th/U ratios ranging from 0.34 to 1.02. Only one
inherited zircon crystal showed an age of 829 Ma. The other 15 points define a concordia
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age of 138.9 ± 1.8 Ma (n = 15, MSWD = 0.77) (Figure 3), which is considered to be the best
estimate of the crystallization age of the DGS intrusion.
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Figure 3. SIMS zircon U-Pb Concordia diagram for the DGS quartz monzodiorite. The inset shows
representative CL image of the investigated zircon grain, with locations of ion microprobe analysis
spots (yellow circle represents the spot of O isotope, and red oval represents U–Pb dating analyses).

Oxygen isotope analyses on the dated zircon grains from sample DGS46 yielded a
relatively wide range of δ18O values (5.7‰ to 7.3‰), with one xenocrystic zircon crystal
showing a δ18O value of 5.6‰. Taking into account the SiO2 contents of the host rock and
using the equation δ18OWR ≈ δ18OZir + 0.0612 (wt% SiO2) −2.5 [35], the corresponding
δ18O values for the quartz monzodiorite were calculated at 7.3‰–8.8‰.

4.2. Whole-Rock Major and Trace Elements and Sr-Nd Isotope

The quartz monzodiorites contain 63.2–67.9 wt% SiO2, 14.9–16.2 wt% Al2O3, and
5.86–8.02 wt% total alkalies contents, with Na2O/K2O ratios from 1.48 to 1.71 (Figure 4).
These samples fall into the metaluminous field in the A/CNK-A/NK diagram (Figure 4).
In the K2O vs. SiO2 diagram, the samples are mainly plotted in the high-K calc-alkaline
series and exhibit a strong positive correlation between K2O and SiO2 (Figure 5e). Sig-
nificantly negative correlations exist between the SiO2 content and TiO2, MgO, CaO, and
P2O5 content.
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The chondrite-normalized REE patterns of the quartz monzodiorite (Figure 6a) are
characterized by moderate to high LREE enrichment relative to HREE [(La/Yb)N ratios > 14.6]
and pronounced negative Eu anomalies (Eu/Eu* = 0.30−0.34). The primitive mantle-
normalized trace element patterns are shown in Figure 6b. The quartz monzodiorites are
characterized by high Ba (588–1040 ppm), Sr (800–991 ppm), and LREE contents, as well as
low Rb (44.3–111 ppm) and HREE contents. The quartz monzodiorite shows enrichment in
LILE (Rb and Pb) and depletion in HFSE. The concentrations of HFSE are relatively low,
with Zr ranging from 146 to 173 ppm, Nb from 12.3 to 14.3 ppm, Ta from 0.79 to 0.96 ppm,
and Y from 15.2 to 17.5 ppm. These geochemical characterizations imply that the formation
of the DGS quartz monzodiorite is related to the subduction scenario [64,65].
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as clean, homogeneous, and transparent under plane-polarized light. The CL images ex-
hibit concentric and oscillatory zoning. All those features are interpreted to be due to the 
magmatic origin [72]. Euhedral–subhedral apatite grains with no inclusions were se-
lected for analysis. The analyzed apatite grains have CaO content from 54.0 to 55.1 wt% 
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Figure 6. Chondrite-normalized REE (a) and primitive mantle-normalized trace elements (b) distri-
bution patterns of DGS quartz monzodiorite. Chondrite and primitive mantle-normalized data taken
from Sun and McDonough [66].

Two DGS samples (DGS46 and DGS53) were measured for Sr–Nd isotopic composi-
tions. Both Sr and Nd isotopic compositions vary narrowly within a small range (Figure 7).
The measured 87Sr/86Sr ratios vary between 0.70855 and 0.70856, corresponding to the
initial 87Sr/86Sr ratio (ISr) between 0.70783 and 0.70794. 147Sm/144Nd vary in a small range
(0.0864–0.0995), with 143Nd/144Nd ratios and εNd(t) values of 0.51198–0.51199 and −11.0
to −11.1, respectively.
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Figure 7. Whole-rock Sr-Nd isotopic compositions of DGS intrusive rocks. The fields of PM (primitive
mantle) and MORB are according to Hofmann [67]; the field of GLOSS (global subducting sediment)
is based on Plank and Langmuir [68]; the fields of Sr-Nd isotopic compositions for the LYRB Cre-
taceous mafic rocks, NE Yangtze Block and the Archean Kongling Group metamorphic basement
and the Dabie Orogen low-Mg adakitic rocks are after compilation of Liu et al. [13], Li et al. [54],
Chen et al. [69], Yan et al. [70] and Ames et al. [71]. Literature data are from Li et al. [54]. Abbrevia-
tions in the diagram: EM = Enriched Mantle, EMI = Enriched Mantle I, EMII = Enriched Mantle II,
STLF = South Tan-Lu fault.
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4.3. Apatite Geochemistry

Most apatite grains from DGS46 quartz monzodiorite are subhedral and euhedral,
~100–300 µm in length with length, with width ratios of 1:1 to 3:1. They are characterized
as clean, homogeneous, and transparent under plane-polarized light. The CL images
exhibit concentric and oscillatory zoning. All those features are interpreted to be due to the
magmatic origin [72]. Euhedral–subhedral apatite grains with no inclusions were selected
for analysis. The analyzed apatite grains have CaO content from 54.0 to 55.1 wt% and P2O5
in a range of 41.6 to 43.1 wt%. Apatite grains have Na2O content below 0.06 wt% and SO3
content ranging from 0.08 to 0.28 wt%. The relatively positive correlation between Na2O
and SO3 (Figure 8a) reveals that they were incorporated in apatite at the same time via a
coupled substitution mechanism (e.g., SO4

2− + Na+ = PO4
3− + Ca2+; [73]). They yielded

higher F (1.88–3.16 wt%) compared to Cl (0.06–0.16 wt%) contents (Figure 8b). Assuming
that the halogen site is fully occupied by XF-ap + XCl-ap + XOH-ap = 1 (X = mole fractions
modal of F, Cl, and OH), the OH content in apatite is calculated via stoichiometry based on
eight anions [74]. The calculated OH contents range from 0.09 to 0.45 apfu (Figure 8c).
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Using the method of Piccoli and Candela [74], the estimated apatite saturation tem-
perature (956 ◦C; Supplementary Table S4) was attained based on the whole-rock data.
Such a high temperature suggests that apatite in the DGS quartz monzodiorite is an early
crystallized mineral phase [75]. Moreover, the analyzed apatites are generally ~100–300 µm
in length, much larger than the euhedral and fine-grained ones (25 µm) crystallizing from
the intercumulus melt but cannot record bulk magma information [76,77]. Considering
the apatite morphology and contact relationship, we concluded that apatite grains in the
quartz monzodiorite are in the early crystallizing phase and can be used to evaluate the
physicochemical conditions of the parental magma.

5. Discussion
5.1. Petrogenesis of the DGS Quartz Monzodiorite

Adakitic rocks have attracted extensive attention worldwide, as they are not only
record magmatic processes and mantle–crustal interaction but are also associated with ma-
jor Cu deposits. The term ‘adakite’ was initially considered to be partial-melting products
of subducted hot, young oceanic crust metamorphosed in the garnet amphibolite or eclogite
facies [78]. Adakites are intermediate to felsic igneous rocks characterized by SiO2 contents
(≥56 wt%), high Al2O3 contents (≥15 wt%), Sr concentrations (mostly ≥ 400 ppm), and
Sr/Y (≥20) ratios but low Y and Yb concentrations (generally ≤18 ppm and ≤1.9 ppm,
respectively) and a lack of Eu anomalies [78,79]. The DGS quartz monzodiorites have high
SiO2 and Al2O3 contents varying from 63.2 to 67.9 wt% and 14.9 to 16.2 wt%, respectively.
They have high Sr (800–991 ppm), low Y (15.2–17.5 ppm) and Yb (1.37–1.52 ppm) concen-
trations, and resultant high Sr/Y (46–61) and (La/Yb)N (14.8–18.5) ratios, which are all
typical geochemical features of adakites [78]. In the discrimination diagrams (Figure 9),
most of the samples fall in or on the boundary of the adakite field.



Minerals 2023, 13, 953 10 of 20

Due to the importance of understanding the genesis of adakitic rocks, their origin is still
hotly debated. In addition to slab melting, an increasing number of studies have proposed
alternative processes that could form adakitic magmas in different tectonic backgrounds,
not only island arc settings but also intraplate environments [78–84]. The mechanisms that
generate adakitic rocks could be summarized as partial melting of thickened or delaminated
mafic rocks in the lower continental crust [85–88], garnet or amphibole fractionation under
different pressures [89–91], and partial melting of the upper mantle metasomatized by
slab-derived melt [92,93]. The sources and genesis of the ore-bearing adakitic rocks in the
Tongling ore cluster are still controversial. Previous studies proposed several processes
that could generate these adakites, such as partial melting of the subducted Paleo-Pacific
oceanic crust or mantle wedge metasomatized by the Paleo-Pacific plate [6–8,13,17,20,21],
partial melting of delaminated or thickened lower continental crust [22–25], or mixing of
mantle-derived and evolved felsic crust-derived magmas [11,30–34].
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Figure 9. Discrimination diagrams for DGS adakitic rocks. Sr/Y versus Y (a) and (La/Yb)N versus
YbN (b) after Drummond and Defant [78]. A two-stage modeled Rayleigh fractionation from a
calc-alkaline andesite melt modeled after Li et al. [94]. Dark-blue line represents the first-stage
magmatic fractionation (from andesite to dacite); dark-green line indicates the second-stage magmatic
fractionation (from dacite to rhyolite). FC = fractional crystallization, AFC = assimilation and
fractional crystallization. Literature data are from Wang et al. [11] and Wang et al. [63].

Adakitic rocks generated from partial melting of the continental or oceanic crust may
be distinguished by some geochemical features. Based on these features, the DGS adakitic
rocks could not be products of continental crust melting. First, the melts with garnet as
the residual mineral in the source area will have high ratios of Yb/Lu (8–10) and a steep
HREE distribution pattern [95]. The DGS adakitic rocks have relatively low Yb/Lu ratios
(6.0–7.2) and flat HREE distribution patterns, which do not agree with this model. Second,
experimental petrology studies suggest that the magma originated from partial melting
of the basaltic lower crust and is usually enriched in Na2O (>4.3 wt%) [85,96]. However,
the Na2O content of DGS adakitic rocks (3.6 to 4.2 wt%) is lower and inconsistent with
the model of delaminated or thickened lower continental crust. Moreover, the diagram
of Sr/Y versus (La/Yb)N can also provide information for distinguishing between partial
melting from the subducted oceanic slab and lower continental crust [13,20,87]. Under
such conditions, in the amphibole- or garnet-bearing and plagioclase-free residues, both Y
and Yb are compatible, whereas Sr and La are incompatible. A positive correlation exists
between the (La/Yb)N and Sr/Y ratios in the adakites, which are products of the partial
melting of thickened lower continental crust with an eclogite or garnet amphibolite residue.
In modern subduction zones, adakites produced by the melting of oceanic crust might
have variably high Sr/Y but considerably lower (La/Yb)N ratios compared to those of
the lower continental crust [13,97–99]. The DGS adakitic rocks have high and variable
Sr/Y ratios but considerably lower (La/Yb)N ratios than those derived from the lower
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continental crust, and all plot in the field of partial melting of subducting oceanic crust
(Figure 9). Therefore, the mechanism of partial melting of the lower continental crust could
not explain the genesis of DGS adakitic rocks.

Moreover, fractional crystallization plays an important role in the varied geochemical
compositions of the DGS adakitic rocks. The negative correlations observed between P2O5,
TiO2, Y, and SiO2 (Figure 5) imply that the separation of accessory minerals buffering P
and Ti leads to decreased REE and Y contents during magmatic evolution. Considering the
strong depletion of Nb (Figure 6) and the varied and overall subchondritic Nb/Ta ratios
(13.5–16.2), Nb-Ta fractionation might have happened under the geothermal gradient in
the incipient stage of subduction [100–103].

Only a few studies have reported the zircon δ18O values of adakitic rocks in the LYRB.
Most zircon δ18O values vary between 6.5‰ and 8.0‰, corresponding to 8.0‰–9.5‰ for
δ18O values of the ore-bearing magmas (Figure 10). In this study, the zircon δ18O values of
the DGS adakitic rocks were first analyzed and reported as 5.7‰ to 7.3‰, corresponding
to 7.3‰ to 8.8‰ for the magma. Considering that only one xenocrystic zircon is found
among the dated zircons, contamination of the crustal materials during ascent might be
very limited. Therefore, the oxygen isotope is a good indicator of the primitive nature of
magmatic sources. The calculated magmatic δ18O values (7.3‰–8.8‰) are higher than
melts from hydrothermally altered gabbros from the oceanic crust interior (δ18O = ca.
2‰–5‰) but lower than those from partial melting of sediments and/or basaltic rocks
in the upper part of the oceanic crust (δ18O = 9‰–20‰) [104]. In addition to the high
and variable oxygen isotopic compositions, the DGS adakitic rocks display rather high
initial ISr (0.70783 to 0.70794) and enriched εNd(t) (−11) values. The Sr-Nd isotopic data for
the adakitic rocks in DGS lie in the area among MORB, marine sediment, and the ancient
lower crust (Figure 7). All these isotopic features indicate the progressive addition of
ancient crustal materials in the magma source. These materials could be the subducted
sediments involved in the magma source during slab melting or continental crust materials
incorporated through magma mixing or crustal contamination. Therefore, the integrated
higher δ18O and ISr values and lower εNd (t) values of the DGS adakitic rocks can be
attributed to the mantle source involved in a fraction of sedimentary melts, whereas the
crustal contamination had little role, if any, in their genesis.
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5.2. Temporal Relationship between the Adakitic Rocks and Cu polymetallic Mineralization in the
DGS Deposit

Given the Late Mesozoic magmatic activities in the LYRB, adakitic rocks developed at ca.
150–130 Ma have been tightly associated with intense Cu-Au-Mo-Fe mineralization [7,13,15,17].
Previous geochronological studies on the DGS deposit mainly focused on the mineraliza-
tion ages, including the mineralized quartz veins Rb-Sr age (~136 Ma; [105]), molybdenite
Re-Os age (~139 Ma; [106]), garnet U-Pb ages (from ~135 to 136 Ma; [107]), and titan-
ite U-Pb ages (from ~139 to 137 Ma; [108]). There are also some crystallization ages of
the ore-related pluton, with zircon U-Pb dating results varying between ~135 Ma and
~140 Ma [11,29,45,108,109].

In this study, our new zircon U-Pb dating result is 138.8 ± 1.8 Ma for magmatic
zircons from the DGS quartz monzodiorite, which directly constrained the timing of ore-
related adakitic rocks and agreed well with previously published ages for the DGS deposit.
Therefore, DGS Cu mineralization is temporally related to the adakitic rocks at ~140 Ma
–135 Ma from the period of intense Cu-Au-Mo-Fe mineralization in the LYRB.

5.3. Metallogenic Implications for the Cretaceous Adakites in the LYRB

The adakites produced via partial melting of the subducted oceanic slab have a genetic
association with Cu mineralization worldwide. The high initial Cu contents of the magmas
generated from the oceanic crust are an important parameter that makes the slab melt the
best candidate for Cu mineralization [13,21,82,83,98]. The Cu concentration of MORB is
~100 ppm, which is much higher than that of the primitive mantle and the continental
crust [99]. The spider diagram of bulk continental crust-normalized transitional elements
(Figure 11) shows strong fractionation of DGS adakitic rocks compared to the continental
crust, with pronounced positive Cu anomalies and strong depletion of mantle compatible
elements (Sc, Cr, and Ni). Moreover, the contents of ore-forming element Cu in the DGS
samples reach up to 227 ppm, with an average of 166 ppm, significantly higher than Cu
in the bulk continental crust (27 ppm; [99]). The relative enrichment in Cu in the quartz
monzodiorite indicates the potential to provide ore-forming materials and the genetic
relationship of Cu mineralization with adakites in the DGS deposit.
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The association between Cu deposits and adakitic intrusions in subduction zones
suggests that magma oxygen fugacity controls the partitioning and transport of Cu in
magmas before mineralization [81,110–113]. Copper is a highly chalcophile element and
is enriched in sulfides. The oxygen fugacity controls the sulfur species, and the stability
of sulfides controls the Cu partitioning in magmas. During partial melting, high oxygen
fugacity is favorable for the liberation of Cu when sulfur is extracted as sulfate and during
the enrichment in Cu in the melt during differentiation before partitioning into an exsolved
fluids phase [110,114–116].

As apatite is an early-stage crystallization product, it can provide records of the
oxidation states of the host magma [75–77,117]. The Mn concentration of apatite is used to
determine the redox conditions of granitic magmas due to the increasing concentration with
decreasing magma oxygen fugacity (f O2) (e.g., [73,118–120]). Accordingly, Miles et al. [119]
proposed that the Mn concentration can be used to calculate oxygen fugacity and is shown
to vary linearly and negatively with logf O2, which can be illustrated by the equation
logf O2 = –0.0022 (± 0.0003) Mn (ppm) − 9.75 (± 0.46). Apatite grains in this study have
MnO contents of 0.03–0.12 wt.%, which yield logf O2 values from −9.8 to −11.8. Besides,
the valence state of sulfur in apatite is controlled by oxygen fugacity [121,122]. Based on
the equilibration experiment, a recent study proposed the following equation to estimate
oxygen fugacity: ∆FMQ = 0.423 (±0.034) − 0.2 (±0.026) × ln[(0.964 (± 0.001) − 0.086
(±0.033))/(S6+/ΣSmeasured − 0.086 (±0.033)) − 1] [121]. Sulfur in apatite is assumed to
exist only as S2+ and S6+, and the S6+/ΣS ratio was estimated according to Wang et al. [75]
(S6+ content in apatite was obtained by EPMA apatite S content with the subtraction of
36.88 ppm). According to the equation [121], the regional magmatic oxygen fugacities are
calculated to be ∆FMQ + 0.89 to ∆FMQ + 1.28 (Supplementary Table S4), representing
the lower bound. The oxygen fugacities estimated by Mn (log f O2 from −9.8 to −11.8)
and S (∆FMQ + 0.89 to ∆FMQ + 1.28) contents of the apatites indicate that the DGS Cu
ore-bearing adakitic magmas are generated in an oxidized environment.

Volatiles play an important role in magmatic evolution and metal enrichment and
mineralization [123,124]. Apatite is the main accessory mineral for buffering volatiles (F, Cl,
and OH) in magmatic rocks [125,126]. Boyce and Hervig [127] found that variations in F and
OH contents in apatite are in line with F and H2O change in the coexisting melt inclusion.
The OH concentration of apatite can reflect the abundance of H2O in the melt where
the apatite crystallized [128–130]. The relatively high OH content contained by apatite
grains from the DGS quartz monzodiorite (Figure 8) might indicate high water content
of the parental magma. Fluorine and Cl are important for mineralization due to their
great significance in depolymerizing the melt structure and facilitating hydrothermal metal
transport and enrichment during degassing and exsolution of the fluid phase [38,131,132].
As Cu is more sensitive to Cl than F and the increase in Cl content will markedly increase
the solubility of Cu, Cl-rich fluids are essential for the transportation and deposition
of Cu [133–135]. The studied apatite grains have high F (1.88–3.35 wt%) and low Cl
(0.06–0.16 wt%) contents (Figure 8), with lower Cl/F ratios (0.01 to 0.06). The mantle usually
has low Cl contents (<0.1 wt%) and is not significantly influenced by Cl recycling [136].
Magmas are derived from anatexis of the continental crust, which have low Cl/F ratio [124].
Apatite crystallized from the supracrustal material also has low Cl content [137]. The
Cl content and Cl/F ratio of apatite grains preclude the generation from mantle-derived
magma or supracrustal components. However, Cl is highly incompatible and preferentially
enters the liquid phase in the stage of slab dehydration [138]. Comparing our results
with apatite from Late Mesozoic granodiorite and polymetallic mineralization in southern
Anhui Province, which are identified as fluorapatite with high F (2.69–4.13 wt%) and low
Cl contents (mainly < 0.2 wt%) [17,124], slab-derived components with high Cl/F ratios
might be incorporated into the formation of adakitic rocks in the DGS deposit.

To summarize, the high Cu content, high oxygen fugacity and volatile-rich adakitic
magmas benefit the extraction and transportation of Cu, which finally formed the DGS
Cu polymetallic deposits [13,17,81,111,112]. Based on the analysis of previous studies,
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we suggest that the diagenesis of Cretaceous adakitic rocks and mineralization of the
DGS deposit are the same as other large-scale Cu polymetallic deposits in the LYRB. The
hydrous and oxidized subducted altered oceanic crust is potentially favorable for Cu–Au
mineralization [17].

6. Conclusions

Based on zircon in situ U–Pb geochronology and O isotope, as well as bulk rock
major and trace element and Sr–Nd isotopic compositions of the DGS adakitic rocks
associated with the Cu polymetallic deposit in the Tongling ore cluster, LYRB, the following
conclusions are drawn:

(1) The DGS intrusion mainly consists of quartz monzodiorite. The whole-rock composi-
tions show geochemical features of adakite, characterized by high Sr and low Y and
Yb concentrations and, consequently, high Sr/Y and (La/Yb)N ratios. According to the
comprehensive geochemical data, the adakites are most probably produced by the par-
tial melting of a subducted altered oceanic crust and possibly incorporated sediments.

(2) Highly precise and accurate SIMS in situ zircon U–Pb age suggests that the adakites
crystallized at 138.9 ± 1.8 Ma, which is coeval with the Cu mineralization in the DGS
deposit, Tongling ore cluster, and implies a close temporal relationship between the
adakites and Cu polymetallic mineralization in the LYRB.

(3) The high Cu content, high oxygen fugacity, and volatile contents of the DGS adakite
imply an oxidized and volatile enriched environment, which is conducive to the
formation of large-scale Cu polymetallic mineralization.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/min13070953/s1, Figure S1: Photographs of DGS adakitic rocks
from drill holes in the DGS deposit; Table S1: SIMS U-Pb zircon age data of adakitic rocks in the DGS
deposit; Table S2: In situ zircon oxygen isotopic compositions of adakitic rocks in the DGS deposit;
Table S3: Whole-rock major and trace element data and Sr-Nd isotopic compositions of adakitic
rocks in the DGS deposit; Table S4: Major element compositions of apatite from the adakite in the
DGS deposit.
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