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Abstract
Carlin-type gold deposits are among the most important gold-bearing hydrothermal ore systems and are mainly located 
in Nevada, USA, and southwestern China. However, the source and evolution of the ore-forming fluids for these deposits 
remain controversial, especially those found within China. In this study, lithium and oxygen isotopic analyses of quartz-
hosted fluid inclusions are used to elucidate the source and evolution of the giant Shuiyindong Carlin-type gold deposit. 
Fluid inclusions trapped in quartz of three distinct genetic stages have low salinity (0.8–6.3wt% NaCl equiv.) and moderate 
temperature (154–343 °C), but display variable Li and O isotope signatures. The Li and O isotopes of stage I fluids (δ7Li 
values from + 5.1 to + 9.1‰; δ18O values from + 6.3 to + 10.0‰) indicate predominantly a magmatic source for the initial 
ore-forming fluids. The large variations of Li and O isotopes of stage II fluids (δ7Li values from + 9.3 to + 16.0‰; δ18O values 
from + 0.1 to + 7.7‰) suggest that the fluids are controlled by mixing of magmatic fluids and meteoric water, which in turn 
triggered the precipitation of gold-bearing sulfides. The isotopic compositions of stage III fluids (δ7Li values from + 15.5 
to + 22.8‰; δ18O values from − 5.4 to − 2.8‰) confirm that the final fluids are dominated by meteoric water. Furthermore, 
this work demonstrates that the combined Li–O isotopic analysis of fluid inclusions is a powerful tracer to decode the source 
and evolution of ore-forming fluids in hydrothermal mineralizing systems.
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lntroduction

Carlin-type gold deposits are among the most important 
gold resources and are mainly located in Nevada, USA, and 
southwestern China (Silliton and Bonham 1990; Hofstra 

et al. 1991; Hu et al. 2002, 2017). Carlin-type gold deposits 
are commonly hosted by sedimentary rocks with proximal 
and rare magmatic rocks. This spatial and temporal rela-
tionship between mineralization and magmatism is com-
monly used to imply a genetic link between the mineralizing 
fluids and felsic magmatism (Hedenquist and Lowenstern 
1994). However, the source and detailed fluid evolution of 
ore-forming fluids for the Carlin-type gold deposits remain 
controversial (Emsbo et al. 2003; Cline et al. 2005; Muntean 
et al. 2011; Hu et al. 2002, 2017; Large et al. 2016; Su et al. 
2018; Xie et al. 2018; Jin et al. 2020). The debate is compli-
cated by studies that show overprinting of primary source 
compositions by late-stage water–rock interaction (Su et al. 
2009b; Jin et al. 2020). Several sources were proposed for 
the Carlin-type gold deposits in SW China, such as pre-
sumed magmatic fluids exsolved from concealed magmas 
(Hou et al. 2016; Xie et al. 2018), basinal brines (Peng et al. 
2014), metamorphic fluids (Su et al. 2018), and meteoric 
waters which interacted with sedimentary rocks (Hu et al. 
2002).
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The Shuiyindong deposit is the largest gold deposit in SW 
China with over 263 tonnes Au (total proven reserves for SW 
China: 1000 tonnes Au), and this deposit shows geological 
characteristics similar to Carlin-type gold deposit (Hu et al. 
2017; Li et al. 2020; Gao et al. 2022). Additionally, this 
deposit contains abundant hydrothermal quartz, which hosts 
abundant primary fluid inclusions (FIs) that are easily dis-
tinguishable from the transparent matrix. The FIs in quartz 
can record ore-related information including trace elements 
concentrations, isotope ratios (e.g., Li and O), and pres-
sure, temperature, and salinity that can be used to decode 
the source and evolution of ore-forming fluids (Fusswinkel 
et al. 2013; Large et al. 2016; Rusk et al. 2008; Pettke et al. 
2010; Richard et al. 2016).

Lithium (Li) is a lithophile element, behaving moderately 
incompatible in many magmatic systems, and it is highly 
mobile during hydrothermal processes and fluid-rock inter-
action (Halama et al. 2009; Tang et al. 2014). Lithium iso-
tope fractionation has been used to investigate water–rock 
interaction (Chan et al. 2002; James et al. 2003; Brant et al. 
2012). The large mass difference (~ 17%) between 6 and 7Li 
and the large scale of fractionation observed in the upper 
crust (> 80‰ for δ7Li; Tomascak et al. 2016) also make 
Li isotope compositions sensitive to fluid sources within 
the crust (e.g., Chan et al. 1994, 2002; Krienitz et al. 2012; 
Yang et al. 2015; Richard et al. 2018). It was previously 
reported that different geochemical reservoirs often contain 
remarkably distinctive Li isotopic compositions. For exam-
ple, isotopically heavy Li is typically sourced from sea-
water (e.g., δ7Li =  + 31‰ in modern sea water) or brines 
(James and Palmer 2000; Bottomley et al. 2003; Millot et al. 
2007), whereas light Li (δ7Li <  + 5‰) can be derived from 
magma-related sources (Nishio et al. 2004; Ryan and Kyle 
2004; Tomascak et al. 2008; Pogge von Strandmann et al. 
2011). Therefore, Li isotopes have recently been employed 
to decipher the source and evolution of ore-forming fluids, 
such as in pegmatite deposits, tungsten deposits, and Pb–Zn 
deposits (Teng et al. 2006a; Masukawa et al. 2013; Deveaud 
et al. 2015; Yang et al. 2015; Xu et al. 2018, 2021). The 
oxygen isotopic system is a traditional but powerful tool for 
understanding the processes involved in ore formation. It 
can provide critical information about the physico-chemical 
conditions of the ore-formation processes (Zheng 1993) and 
the origin of the fluids (Hou et al. 2001; Li et al. 2022). 
Unfortunately, it is sometimes hard to distinguish whether 
the isotopic variations result from water–rock interaction 
or mixing of different sources if only one isotope system 
is studied. Different reservoirs on Earth generally show 
unique Li and O isotopic compositions; therefore, isotopic 
exchange between fluids and rocks (minerals) as well as mix-
ing between the reservoirs likely results in clear Li and O 
isotope covariations (Harlaux et al. 2021). Therefore, the 
combination of Li and O stable isotopes can be a novel 

indicator for tracing the source and evolution of ore-forming 
fluids in hydrothermal deposits.

In this study, we identify different stages of ore-related 
hydrothermal quartz in the Shuiyindong deposit to constrain 
the source and evolution of ore-forming fluids by Li–O isotopes 
of quartz-hosted FIs. This work demonstrates that combined 
Li–O isotopes are a powerful tracer of the source and evolu-
tion of ore-forming fluids in Carlin-type gold deposits and also 
could be employed to other hydrothermal mineralizing systems.

Regional geology

The South China Block, situated between the North China 
Craton and the Indochina Block, was generated by the amal-
gamation between the Yangtze Block and Cathaysia Block 
at about 830 Ma (Zhao et al. 2011). It is connected with the 
North China Craton to the north by a Triassic collision zone 
(Qinling–Dabie orogenic belt) and the Indochina Block to 
the south by the Triassic Song Ma Suture (Li and Li 2007; 
Cai and Zhang 2009).

The Youjiang basin is on the southwestern margin of the 
South China Block (Fig. 1) and experienced multiple tectonic 
events (Du et al. 2009; Wang and Groves 2018). The pro-
totype of the Youjiang basin was formed by largely rifting 
and passive continental margin sedimentation that resulted 
from the opening of the Paleo-Tethys in the Devonian to Early 
Permian (Du et al. 2009). Subsequently, this basin developed 
gradually as a back-arc basin when the Paleo-Tethys oceanic 
crust subducted beneath the South China Block during Late 
Permian, and finally evolved into a foreland basin due to the 
closure of the Paleo-Tethys Ocean with collision between the 
Indochina and South China Blocks in the Triassic (Yang et al. 
2012; Qiu et al. 2016). The Youjiang basin is bounded by sev-
eral NW- and NE-trending crustal-scale faults with the Shu-
icheng-Ziyun fault to the northeast, the Mile-Shizong fault to 
the northwest, and the Red River fault to the southwest (Wang 
and Groves 2018). The basin is filled with marine sedimentary 
successions of Cambrian to Middle Triassic ages (Su et al. 
2009a; Hu et al. 2017). The Cambrian and Ordovician strata 
are locally exposed in some anticline cores. Geographically, a 
sequence of shallow-water carbonate platforms was deposited 
in the northwestern part of the basin during the Devonian to 
Triassic, whereas a sequence of deep-water slope/basin cal-
careous sandstone, siltstone, and shale was deposited in the 
southeastern part of the basin (Fig. 1; Du et al. 2013). Igne-
ous rocks exposed in the Youjiang basin dominantly include 
mafic and felsic dikes with ages of less than 100 Ma (Fig. 1; 
Liu et al. 2010; Chen et al. 2012; Pi et al. 2017; Zhu et al. 
2017). Granites (with emplacement ages of between ~ 100 and 
80 Ma) and some granite-related W-Sn polymetallic deposits 
are mainly exposed in the west, east, and southeastern parts of 
the basin (Cheng et al. 2009, 2010; Feng et al. 2010).
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There are many low-temperature hydrothermal deposits 
(e.g., Au, Sb, Hg) in the Youjiang basin, especially more 
than 200 Carlin-type gold deposits and occurrences with a 
total proven reserve of ~ 1000 tonnes Au, such as the Shui-
yindong, Zimudang, Lannigou, and Getang gold deposits 
(Hu et al. 2017; Su et al. 2018). Most of the Carlin-type gold 
deposits are hosted in Permian and Triassic sedimentary 
rocks, and the ore bodies can be classified into two types: 
strata-bound and fault-bound. The fault-bound ore bodies are 
always hosted in calcareous siltstones and silty mudstones, 
occurring along high-angle reverse faults, such as the Lan-
nigou, Yata, and Jinya gold deposits. The strata-bound type 
is mainly hosted in limestone or with mineralization along 
unconformities, controlled by anticlines or domes, such as 
in Shuiyindong, Taipingdong, and Getang (Fig. 1). The Car-
lin-type gold deposits in the Youjiang basin likely formed 
during two metallogenic episodes at ~ 210 Ma and ~ 140 Ma 
associated with the late Triassic Indochina orogeny and early 
Cretaceous subduction of the paleo-Pacific plate, respec-
tively (Gao et al. 2021; Jin et al. 2021).

Deposit geology

The Shuiyindong gold deposit, located at latitude 25°32′ 
N and longitude 105°31′ E, is one of the best-documented 
Carlin-type Au deposits in southwestern Guizhou, SW 
China. The Shuiyindong deposit has proven gold reserves 
of 263 tonnes with an average gold grade of 5 g/t that 
makes it the largest deposit in the region (Su et al. 2008, 
2009a, b). It was discovered in the 1980s by the No. 105 
Geological Team of the Guizhou Bureau of Geology and 
Mineral Resources, but mining did not begin until 2003. 
The sedimentary rocks in the Shuiyindong gold deposit 
consist of the middle Permian Maokou Formation (P2m), 
upper Permian Longtan Formation (P3l), Changxing For-
mation (P3c), and Dalong Formation (P3d) and lower Tri-
assic Yelang Formation (T1y) and Yongningzhen Forma-
tions (T1yn) (Fig. 2a). The marine sedimentary sequences 
are dominated by limestones, siltstone, and argillite. The 
ores are mainly hosted in the Upper Permian Longtan For-
mation which mainly consists of bioclastic limestone and 

Fig. 1   Regional geological map of the Youjiang Basin in South China showing the location of the Shuiyindong gold deposit (modified after Hu 
et al. 2017; Gao et al. 2021)
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calcareous siltstone (Su et al. 2008). Major structures in the 
Shuiyindong district include the EW-trending Huijiabao 
anticline and a series of EW-striking faults (e.g., F101 and 
F105). The F101 fault dips 50 to 55°N and extends for more 
than 5.4 km, and the F105 dips 45 to 55°S, both of which cut 
the limbs of the Huijiabao anticline. Additionally, there are 
NE-trending and NS-trending faults within the anticline. 
Gold mineralization at the Shuiyindong deposit is strictly 
confined to the Huijiabao anticline, and the mineraliza-
tion extends up to 300 m from the axis of the anticline. 
The fault zones are associated with Au mineralization, and 
EW-trending major faults may have acted as the structural 
channels for hydrothermal fluids (Tan et al. 2015b). No sur-
face expression of intrusive rocks has been identified in the 
deposit, and the nearest igneous rocks (Baiceng alkaline 
ultramafic dikes) are about 20 km away from this deposit. 
However, gravity and magnetic data indicate the presence 
of concealed intrusions underneath the Shuiyindong gold 
deposit (Liu et al. 2010; Xie et al. 2018).

The gold ore bodies are mainly hosted in the Longtan For-
mation and generally extend for 100 to 400 m in length and 
50 to 350 m in width (Fig. 2b). Stratiform and stratiform-like 

ore bodies (IIIa, IIIb, IIIc, and IIc) are commonly distributed 
within the Huijiubao anticline axis. The Ia ore body is hosted 
in silicified brecciated limestone-argillite between the top of 
the Maokou Formation and the base of the Longtan Forma-
tion. Gold mineralization is closely correlated with hydro-
thermal alteration, involving decarbonation, sulfidation, 
silicification, and argillization alteration assemblages. The 
dominant ore minerals at Shuiyindong are pyrite, arsenopy-
rite, stibnite, orpiment (As2S3), and realgar (As4S4). Gangue 
minerals mainly include quartz, dolomite, calcite, and clay 
minerals. Most of the gold occurs in arsenic-bearing pyrite 
(As contents range from 3.37 to 13.32 wt%) as sub-micron 
particles or lattice gold, while some native gold is also present 
as grains ranging from 0.1 to 6 μm in size (Su et al. 2008).

The hydrothermal evolution of the Shuiyindong gold 
deposit can be divided into three stages based on microscopic 
textural observations, crosscutting relationships, and mineral 
assemblages (Su et al. 2009b). Stage I is characterized by 
quartz veins, ranging from 0.5 to 10 cm wide (Fig. 3a–c) that 
are crosscut by stage II pyrite veins (Fig. 4a–c). Stage II min-
erals are widespread and economically important and include 
abundant euhedral arsenic-bearing pyrite, arsenopyrite, 

Fig. 2   a Structural map of the 
study area showing the major 
structural faults and the location 
of the Shuiyindong gold deposit 
(modified after Li et al. 2020). 
b Cross section of the Shuiyin-
dong gold deposit (modified 
after Peng et al. 2014)
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quartz, and dolomite. Coarse-grained euhedral pyrite usually 
infills cavities developed in decarbonatized limestones with 
grain size from 20 to 200 μm, while fine-grained euhedral 
pyrite is commonly intergrown with quartz grains. Stage 
II quartz veins typically occur in moderately silicified bio-
clastic limestone, ranging from 0.5 to 20 cm wide (typically 
0.5–4 cm) (Fig. 3d–f). Stage III is characterized by an assem-
blage of pyrite, stibnite, orpiment, realgar, quartz, and calcite. 
Pyrite in this stage is generally deformed, and quartz veins of 
this stage crosscut the veins that were deposited in the previ-
ous stage (Fig. 3g–i) and stage III quartz veins crosscut the 
stage II pyrite assemblage (Fig. 4g–i).

Recently, Jin et al. (2021) obtained three U–Pb ages from 
calcite (204.3 ± 2.0 to 202.6 ± 2.5 Ma, 191.9 ± 2.2 Ma, and 
139.3 ± 5.7 to 137.1 ± 9.7 Ma) associated with Au mineralization 
from the Shuiyindong deposit, and these results indicate that the 
Shuiyindong deposit formed in the late Triassic and records addi-
tional hydrothermal events during the Jurassic and Cretaceous.

Sampling and analytical methods

Sampling strategy and SEM‑CL

Samples were mainly collected from underground tunnels or 
drill hole (Fig. 2). More detailed information about sample 
locations and lithologies is listed in ESM2 Table S1. Thin 
sections of each sample are used to examine the paragenetic 
relations and textural features of the target minerals under 
the optical microscope. The quartz grains from different 
stages were handpicked under a binocular microscope after 
crushing to 20–40 mesh, ultrasonically cleaned in distilled 
water and dried at room temperature. Quartz was imaged 
using a JEOL JSM-7800F field emission SEM at the Institute 
of Geochemistry, Chinese Academy of Sciences (IGCAS) in 
Guiyang, China. Cathodoluminescence (CL) imaging was 
performed using an accelerating voltage of 10 kV and a pri-
mary beam current of 10 nA.

Fig. 3   Photographs of quartz-bearing hand specimens from the Shui-
yindong gold deposit. a–c Quartz vein overprinting pyrite dissemina-
tions in silicified bioclastic limestone of stage I. d Quartz intergrown 
with pyrite of stage II. e–f Quartz intergrown with pyrite of stage 
II and cut by calcite vein of stage III. g Quartz vein associated with 

realgar of stage III. h Stage III quartz vein cutting mineralized silici-
fied limestone breccia. i Quartz associated with stibnite of stage III. 
Abbreviations: Py = pyrite, Qz = quartz, Rlg = realgar, Stb = stibnite, 
Cal = calcite
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Microthermometry

Doubly-polished sections, approximately 200 μm thick, were 
prepared for this study. Microthermometry of FIs was measured 
on a Linkam THMS600 heating-freezing stage with tempera-
ture range of − 196 to 600 °C mounted on a Leica microscope, 
at the IGCAS. The precision of the homogenization tempera-
ture (Th) measurements is about ± 2 °C for temperatures above 
100 °C. The FIs are analyzed by freezing down to – 120 °C 
and heating at a rate of 0.5 °C/min. The heating rate is reduced 
to 0.1 °C/min when near the melting temperature of solid CO2 
(TmCO2), ice melting temperatures (Tmice), CO2 clathrate melt-
ing temperatures (Tmclath), and homogenization temperature of 
the CO2 (ThCO2). The salinities of aqueous FIs are determined 
using the equations of Bodnar (1993) for NaCl–H2O inclusions 
and Steele-Maclnnis (2018) for CO2-bearing inclusions.

Li and Cl concentrations

Approximately 5 g of quartz was cleaned in HNO3 to remove 
impurities (e.g., calcite) and heated to 150 °C for 2 h to remove 
the secondary inclusions (based on traditional analysis of primary 

fluid inclusion that homogenization temperatures are greater than 
150 °C; Peng et al. 2014). The powdered samples (50 mg) were 
dissolved by HF + HNO3 mixture for 48 h at 190 °C in a high-
pressure Teflon bomb, and then, samples were added to 2 mL 
of 2.0% (v/v) HNO3 solution for analysis of Li concentrations 
in quartz. The cleaned quartz grains are grinded with 18.2 MΩ 
Milli-Q ultrapure water to fine powders (> 200 mesh) using a 
clean planetary ball mill equipped with agate grinding balls, and 
then leached (using nylon filters with 0.22-μm pores to remove 
the quartz powder which is dried for O isotope analysis), and 
repeatedly washed by Milli-Q ultrapure water to collect the fluid 
inclusions liberated during grinding. This washing was repeated 
until the electrical conductivity of the leachates was the same as 
the Milli-Q ultrapure water. The blank extraction has minor Li 
content with an average blank (n = 5) of 0.074 ng/g determined 
on a NexION 300X ICP-MS (ICP-MS).

Lithium concentrations were measured by ICP-MS at 
the IGCAS. The detection limits and uncertainties are 0.1 
ppt and 10%, respectively. The Cl concentrations of the 
FIs leachates are measured by Dionex ICS-90 ion chroma-
tography (IC) at the IGCAS and with detection limits of 
approximately 0.05 ppm.

Fig. 4   Photomicrographs showing the mineralogy and textures of 
quartz from the Shuiyindong gold deposit. a–c Pyrite infill along 
quartz fissure of stage I stage. d–f Quartz vein and quartz intergrown 

with idiomorphic pyrite of stage II. g–i Stage III quartz vein cutting 
stage II pyrite. Abbreviations: Py = pyrite, Qz = quartz
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Lithium isotopes

The leachates of FIs are dried and redissolved in 0.5 M HCl 
before chromatographic separation. The chemical separation 
uses a two-step liquid chromatography procedure in a super 
clean lab at IGCAS following the procedure described by 
Xu et al. (2020). The quartz columns are filled with Dowex 
50WX8 resin (200–400 mesh). In the first step, 0.5 M HCl is 
used as eluent to separate Li from most elements of the sam-
ple. In the second step, 0.3 M HCl is used as eluent to purify 
Li from sodium, resulting in low Na/Li ratio (Na/Li < 0.5). 
The separation procedure ensured that the Li recovery of all 
samples was greater than 99% and the column blank less than 
0.005% of total Li loaded onto the column was considered 
negligible. All collections are dried at 120 °C and then redis-
solved in 2 vol. % HNO3.

The Li isotopic ratios of samples are determined by a 
double focusing multi-collector ICP–MS (MC–ICP–MS) 
at the IGCAS. The sample Li concentrations are meas-
ured by comparing signal intensities of sample solution 
with a 50 ppb IRMM-016 standard solution and adjusting 
sample concentration by using 2% vol. HNO3 to obtain 
50 ppb Li solutions. High-sensitive (X) cones are used to 
obtain about 1.2 V/50 ppb signals, and three blocks of 20 
cycles are set up for each measurement. The δ7Li value of 
each sample is effectively corrected by the standard sam-
ple (IRMM-016) bracketing method (SSB). The data are 
reported in standard δ-notation in per mil (‰) relative to 
IRMM-016 Li standard:

The long-term reproducibility for δ7Li ratio measure-
ment is ± 0.5‰ (2SD) (Xu et al. 2020). Two δ7Li values 
of + 30.7 ± 0.2‰ (2SD) and + 30.8 ± 0.2‰ (2SD) are obtained 
for the seawater standard CASS-5 in this study (ESM2 
Table S3), identical with the published δ7Li values from + 30.4 
to + 30.9‰ (Xu et al. 2020; Kil 2010).

Oxygen isotopes

The oxygen isotopes were measured by using a stable isotope 
ratio mass spectrometer (Thermo MAT-253) at the IGCAS. 
Quartz is ground to 200 mesh and analyzed using the BrF5 
method (Clayton and Mayeda 1963; Hou et al. 2015). The 
quartz reacted with BrF5 to produce O2, and then, O2 reacted 
with kryptol converted into CO2, which is collected in a 
sample tube. The O isotope compositions are reported in 
the δ-notation as the per mil (‰) deviation relative to the 
Vienna Standard Mean Ocean Water (V-SMOW), and the 
measurement precisions are ± 0.2‰.

(1)
�
7Li =

[

(

7Li∕6Li
)

sample
∕
(

7Li∕6Li
)

Irmm−016
− 1

]

× 1000(‰)

Results

Vein type and quartz type classification

The quartz veins are classified into three types in terms of 
the ore-forming stages, including (i) the early quartz veins 
(QI) that are crosscut by stage II pyrite veins (Fig. 4a–c) 
where the quartz consists of an irregular CL-bright homoge-
neous quartz (QI1; Fig. 5a) that is crosscut by thin vein-lets 
of a CL-dark homogeneous quartz (QI2); (ii) the stage II 
quartz veins (QII) intergrown with arsenic-bearing pyrite 
and arsenopyrite (Fig. 4d–f) where the quartz consists of 
irregular CL-bright homogeneous cores (QII1; Fig. 5f) over-
grown by CL-dark irregular zoned rims (QII2); and (iii) the 
stage III quartz veins (QIII) crosscutting the stage II pyrite 
assemblage (Fig. 4g–i) which also have a CL-bright zoned 
euhedral quartz (QIII1) and dull-CL homogeneous quartz 
(QIII2; Fig. 5m).

Fluid inclusion petrography and microthermometry

Fluid inclusions in different stages of quartz veins in the 
Shuiyindong gold deposit are dominantly by two-phase 
liquid-rich FIs with relatively small vapor bubbles (10–40 
vol.% vapor) and vapor-rich FIs with a vapor volume of 
55–99 vol.% (V-type; Fig. 5c, d). The two-phase liquid-
rich FIs include the aqueous FIs (L-type) and aqueous-
carbonic FIs (C-type). In addition, three-phase CO2-rich 
FIs are scarce (C-type; Fig. 5k). Fluid inclusions trapped 
in quartz generally range from 10 to 30 μm in size, with 
only small amounts exceeding 30 μm, which always have 
negative crystal shape or rounded shape. The FIs presented 
in individual quartz grains but displayed in internal trails 
and three-dimensional groups are interpreted as pseudosec-
ondary FIs (Fig. 5i), and the trails in crosscutting quartz 
grain boundaries are similarly interpreted as secondary FIs 
(Fig. 5n; Sterner and Bodnar 1984; Wilkinson 2001). Dur-
ing microthermometric measurements focused on primary 
and pseudosecondary FIs, only the L-type and C-type FIs 
were measured. We chose the samples with little secondary 
FIs, enriched in liquid-rich FIs and homogeneous popula-
tions of FIs for isotopic analysis. The eutectic temperatures 
of aqueous inclusions are difficult to observe, and only a 
few FIs show initial melting at about − 22 °C, implying pre-
dominance of NaCl in the FIs (Williams-Jones and Palmer 
2002). The CO2 melting temperatures in aqueous-carbonic 
inclusions range between − 59.8 and − 56.6 °C, mostly close 
to the Q3 point in the aqueous-carbonic system, suggesting 
predominance of CO2 in volatiles (Wilkinson 2001). The 
thermometric results of all FIs in the Shuiyindong deposit 
are presented in ESM2 Table S2.
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In stage I quartz (QI1 and QI2), primary L-type FIs have 
homogenization temperatures (Th) of 235 to 343 °C (LV → L; 
Fig. 6), ice melting temperatures from − 3.8 to − 1.3 °C, and 
salinities ranging from 4.5 to 6.2 wt% NaCl equiv (ESM1 
Fig. S1). C-type FIs homogenize to liquid phase at tempera-
tures of 251 to 325 °C (Fig. 5e). The melting of CO2 clathrate 
(Tmclath) occurred between 6.7 and 7.9 °C, with the calculated 
salinities of the aqueous phase ranging from 4.1 to 6.3 wt% 

NaCl equiv. The carbonic phases in C-type FIs homogenize 
into liquid phase at 19.7 to 26.7 °C.

In stage II quartz (QII1 and QII2), L-type FIs (Fig. 5h) have 
homogenization temperatures of 188 to 250 °C (LV → L), ice 
melting temperatures from − 3.1 to − 1.6 °C, and salinities 
ranging from 2.7 to 4.8 wt% NaCl equiv. C-type FIs (Fig. 5j–i) 
have Tmclath from 7.6 to 8.8 °C, and the carbonic phases 
homogenize into liquid between 24.0 to 29.8 °C, salinities 

Fig. 5   a Irregular CL-bright quartz QI1 crosscut by thin vein-lets of 
CL-dark QI2 in stage I quartz veins. b–e QI veins with small-sized, 
two-phase aqueous-carbonic FIs. d Irregular CL-bright homogene-
ous cores (QII1) overgrown by CL-dark irregular zoned rims (QII2). 
g–h QII veins with small-sized, two-phase aqueous and aqueous-car-
bonic FIs. i QII veins with primary and pseudosecondary trail FIs. j 

Two-phase aqueous-carbonic FIs in the QII veins. k Three-phase car-
bonic FIs in the QII veins. l Two-phase aqueous FIs in the QII veins. 
m SEM-CL image of euhedral quartz in the QIII vein. n Secondary 
FIs in QIII vein. o-q Two-phase aqueous-carbonic FIs in QIII vein. r 
Two-phase aqueous-carbonic FIs in QIII vein
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ranging from 2.4 to 4.7 wt% NaCl equiv. They homogenized 
to liquid at temperatures of 189 to 250 °C.

In stage III quartz (QIII1 and QIII2), L-type FIs 
(Fig. 5o–p) homogenized to the liquid phase at tempera-
tures of 154 to 204 °C. The ice melting temperatures range 
from − 2.0 to − 0.6 °C, with salinities values of 1.1 to 3.4 
wt% NaCl equiv. C-type FIs (Fig. 5r) have homogenization 
temperature values of 162 to 211 °C (LV → L), Tmclath from 
8.7 to 9.6 °C, with salinities ranging from 0.8 to 2.6 wt% 
NaCl equiv. The carbonic phases homogenize between 27.2 
and 31.2 °C, with homogenization into the liquid.

Lithium concentrations and isotopic compositions

Lithium concentrations of quartz from the Shuiyindong 
deposit range from 1.53 to 7.95 ppm and Li concentrations 
of quartz-hosted fluid inclusion leachates range from 12.3 
to 66.8 ppb (ESM2 Table S3). The Li concentrations in FIs 
are calculated based on Cl and Li concentrations in lea-
chates and salinity of each sample which derive from this 
fluid inclusion microthermometry study, using the estimated 
equation as follows (Teng et al. 2006b):

The Cl concentrations in leachates were measured 
through ion chromatography. The stage I FIs have rela-
tively high Li concentrations of 505 to 2733 ppm with an 
average of 1426 ppm. The stage II FIs vary from 136 to 
854 ppm, with an average of 332 ppm. The calculated Li 
concentrations of stage III FIs are 63 to 144 ppm, with an 
average of 95 ppm.

Li isotopes of the different stages of quartz-hosted 
fluid inclusion are summarized in ESM2 Table S3. The 
measured δ7Li values of the three stages vary broadly 
from + 5.1 to + 22.8‰ (n = 37) and show systematic 
variations with different stages. The stage I FIs have 
δ7Li values ranging from + 5.1 to + 9.0‰, with an aver-
age of + 7.3 ± 0.4‰ (n = 11). The stage II FIs have δ7Li 
values ranging from + 9.3 to + 16.1‰, with an average 
of + 13.0 ± 0.4‰ (n = 17). The stage III δ7Li values of FIs 
are prominently heavier with δ7Li of + 15.5 to + 22.8‰, 
averaging + 17.8 ± 0.7‰ (n = 9).

O isotope compositions

The δ18O values of quartz vary from + 8.0 to + 18.0‰ (ESM2 
Table S3). The δ18Oquartz values of stage I range from + 14.0 
to + 17.4‰ (n = 5). The δ18Oquartz values of stage II range 
from + 11.4 to + 18.0‰ (n = 5). The stage III δ18Oquartz range 
from + 8.1 to + 11.1‰ (n = 4). The calculated δ18O values of 
the ore-forming fluids use the equilibrium fractionation equa-
tion of quartz–water as follows (Zheng 1993):

The δ18Ofluid values are calculated with the average 
temperature obtained by microthermometric studies of 
each sample. The δ18Ofluid values of stage I are from + 6.3 
to + 10.0‰ (average of + 8.6‰; n = 5). The δ18Ofluid val-
ues of stage II range from + 0.1 to + 7.7‰ with an aver-
age of + 3.8‰ (n = 5). The stage III δ18Ofluid values range 
from − 5.4 to − 2.8‰ (average of − 3.9‰; n = 4).

(2)CLi(FIs) = CLi(Leachates) ×
(

CCl(salinity)∕CCl(Leachates)

)

(3)
�
18Ofluid = �

18Oquartz − (4.48 × 10
6∕T2 − 4.77 × 10

3∕T + 1.71)

Fig. 6   Histograms of homogenization temperatures of fluid inclusions 
from different stages in the Shuiyindong gold deposit
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Discussion

Characteristics and nature of ore‑forming fluids

The quartz-hosted FIs analyzed in this study are character-
ized by relatively low salinity and temperature (salinities of 
0.8 to 6.3 wt% NaCl equiv and Th values of 154 to 343 °C, 
Fig. 6; ESM1 Fig. S1). The early fluids at the Shuiyindong 
are recorded by the stage I FIs which have Th values of 
235 to 343 °C, salinity values ~ 5 wt% NaCl equiv, and 
are CO2-rich. Stage II FIs have salinities of ~ 4 wt% NaCl 
equiv, whereas Th decreased to 210 ~ 230 °C. The stage 
III fluids have Th values of ~ 170 °C, with low salinities 
of ~ 2.5 wt% NaCl equiv. As outlined above, the Th and 
salinities of fluid inclusions generally decrease from early 
to late stages. Notably, the stage II fluids show an obvi-
ous positive correlation between salinity and Th (Fig. 7). 
Mixing between two fluids is suggested by the correla-
tion between homogenization temperatures and salinity of 
aqueous and aqueous-carbonic inclusions (Ruggieri et al. 
1999; Wilkinson 2001), where the change of salinities is 
likely attributed to the aqueous fluids tending to decrease 
as fluid mixing proceeded. This interpretation is supported 
by noble gas date (He–Ne-Ar) that revealed mixed signa-
tures of initial magmatic fluids and external fluids (Jin et al. 
2020). Collectively, the mixing processes may provide the 
crucial conditions for effective precipitation of gold and 
other sulfides during mineralization at the Shuiyindong 
gold deposit.

Li–O isotopic constraints on fluid mixing

The ore-forming fluids of the Shuiyindong deposit have 
considerably variable δ7Li and δ18O values (δ7Li values 
from + 5.1 to + 22.8‰; δ18O values from − 5.4 to + 10.0‰, 
ESM2 Table S3). A gradual enrichment of heavy Li iso-
topes and light O isotopes is observed from the stage I to 
stage III. For example, the stage II fluids are characterized 
by heavier Li (+ 9.3 to + 16.1‰, with an average of + 13‰; 
Fig. 8a), but lighter O isotopic compositions relative to the 
stage I (+ 0.1 to + 7.7‰, with an average of + 3.8‰). The 
microthermometric studies of stage II show mixed signa-
tures of different end-members. Furthermore, Fig. 9a shows 
Li/Cl ratios that are negatively correlated with the δ7Li 
values, and the negative correlation could be best explained 
by fluid mixing that involves a low δ7Li value fluid and 
a higher δ7Li value fluid with low Li/Cl ratio. Thus, the 
positive shift of Li isotopes can be ascribed to mixing of 
external heavier isotope reservoirs. A similar case was 
observed in the Carlin gold deposits in the Jerritt Canyon 
district, Nevada, where gold deposition was a consequence 

of fluid mixing (Hofstra et al. 1991). The calculated δ18O 
values of fluids in equilibrium with quartz from stage II 
have a slightly heavier δ18O signature with a maximum 
at + 7.7‰, and the minimum δ18Ofluid of + 0.1‰ for the 
fluids may represent fluid mixing between 18O-enriched 
source and 18O-depleted reservoir. The mixed fluids will 
inherit the characteristics of heavy oxygen isotopes when 
18O-enriched fluids account for a large fraction of fluid 
mixing, such as a value of 7.7‰ is coherent with the oxy-
gen isotope composition of the magmatic fluid. Thus, the 
stage II fluids likely resulted from the mixing of two fluids.

Constraints on fluid sources and evolution by Li–O 
isotopes

The stage I f luids have higher δ7Li values (+ 5.1 
to + 9.1‰) compared to granitic melts (− 5 to + 5‰) con-
strained by previous studies (Pogge von Strandmann et al. 
2011; Masukawa et al. 2013; Richard et al. 2018; Xu et al. 
2018, 2021). Masukawa et al. (2013) studied a magmatic-
hydrothermal W-Sn deposit and observed light Li iso-
topic compositions (− 1.4 to + 10.1‰) of FIs trapped in 
quartz. Yang et al. (2015) found similar isotopic fraction-
ation between FIs (+ 4.5‰) and andesite (+ 1 to + 2‰) 
related to mineralization, supporting a magmatic origin 
for a VMS Pb–Zn deposit. The preferential partitioning 

Fig. 7   Homogenization temperatures versus salinities of fluid inclu-
sions from different stages in the Shuiyindong gold deposit. The red 
box represents L-type fluid inclusions of stage I, and red triangle 
represents C-type fluid inclusions of stage I. The green box repre-
sents L-type fluid inclusions of stage II, and green triangle represents 
C-type fluid inclusions of stage II. The blue box represents L-type 
fluid inclusions of stage III, and blue triangle represents C-type fluid 
inclusions of stage III
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of Li into aqueous fluids over granitic melts at the con-
dition of equilibrium is accompanied with small Li iso-
tope fractionation (< 4‰) (Webster et al. 1989). Teng 
et al. (2006b) conducted research on the S-type Harney 
Peak granite and associated Tin Mountain pegmatite and 
proposed that the δ7Li values of magmatic fluids were 
approximately 4‰ higher than in the parental magma. 
The above observations may indicate that the δ7Li values 
of stage I fluids are in accordance with the Li-isotopic 
range of magmatic fluids (about − 1 to + 9‰). Addition-
ally, the calculated δ18O values of fluids in stage I (+ 6.3 
to + 10.0‰, with an average of + 8.6‰) are in accord-
ance with the reported magmatic O-isotopic range (+ 5.3 
to + 10.0‰) and indicate a dominantly magmatic fluid 

source. This interpretation is also supported by previous 
H–O and S isotope data which record the footprint of 
magmatic fluids at the Shuiyindong gold deposit (Tan 
et al. 2015a; Xie et al. 2018). Combined with previous 
stable isotopic evidence, the Li–O isotopic signatures of 
stage I ore-forming fluids reflect a magmatic-hydrother-
mal source.

The stage III f luids have δ7Li and δ18O values 
from + 15.5 to + 22.8‰ (avg. + 18.0‰) and − 5.4 
to − 2.8‰ (avg. − 3.9‰; Fig. 8a), respectively. Moreo-
ver, the Li concentrations of stage III f luids (63 to 
144 ppm) are significantly lower than stage I and stage 
II fluids (136 to 2733 ppm), and this discrepancy sug-
gests that the stage III fluids are unlikely of the same 

Fig. 8   a Ranges of Li isotope 
compositions of fluid inclusions 
from different stage in the Shui-
yindong gold deposit. The lower 
boxes show δ7Li date from other 
deposits and the δ7Li ranges of 
natural Li reservoirs (Teng et al. 
2004, 2006a, b; Sauzeat et al. 
2015 and references therein). b 
Diagram showing mixing model 
of Li–O isotopic compositions 
of stage II fluids. The δ7Li and 
δ18O values of the magmatic-
hydrothermal fluids (MH) and 
the exchanged meteoric water 
(EMW) are averages of stage I 
and stage III fluids, respectively 
(see text for details). Brown 
lines represent different ratios of 
Li concentrations in magmatic-
hydrothermal fluids (Limh) 
and exchanged meteoric water 
(Lie). Percentage represents 
mole fractions of magmatic-
hydrothermal fluids in the fluid 
system. Gray arrow shows trend 
of temperatures
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origin as the stage I and stage II fluids. The δ18O sig-
natures indicate 18O-depleted basinal brines or meteoric 
water (Taylor 1974; Schwinn et al. 2006). Bottomley et al. 
(1999) reported that the Canadian Shield brines reach 
total salinities of more than 10 wt% NaCl equiv, which 
have Li isotope compositions of + 14.8 to + 44.8‰. How-
ever, in our study, microthermometric dates show that the 
ore-forming fluids have extremely low salinities (0.8–3.4 
wt% NaCl equiv.) far below the basinal brine salinity, so 
it is very unlikely that the stage III fluids relate to basi-
nal brines. Millot et al. (2010a) and Pogge von Strand-
mann et al. (2010) found that the Li isotopic composi-
tion of meteoric water from France and Sao Miguel is 
distinctively heavy (> + 21.9‰) with extremely low Li 

concentrations (< 10 ppb). The Li concentrations of stage 
III fluids are significantly higher than in meteoric water 
and may be attributed to water–rock interaction that can 
cause distinctively heavy Li isotopic composition and loss 
of Li from the sedimentary rocks into the fluids (Chan 
et al. 1994; Meredith et al. 2013; Millot et al. 2010b; 
Pogge von Strandmann et al. 2014). Assuming a water/
rock ratio of 0.5 and average rock density of 2600 kg/
m3, the Li concentration of exchanged fluids calculated 
by the exchange model between the sediments and mete-
oric water (Li = 0.01 ppm) is 80, 160, and 240 ppm, cor-
responding the initial Li concentration of sedimentary 
rocks in Shuiyindong deposit of 50, 100, and 150 ppm Li 
(Tan et al. 2015b). The model suggests that the exchange 
processes will add Li from the host rocks to the fluids 
(ESM1 Fig. S2; ESM2 Table S4). Therefore, fluids of 
meteoric origin, which are exchanged with sedimentary 
rocks (exchanged meteoric water), can exhibit increasing 
Li concentration compared to the initial meteoric water. 
Collectively, the combination of higher Li and lower O 
isotopic signatures of stage III fluids thus can be coher-
ently explained by meteoric water that has interacted with 
sedimentary rocks.

Modeling of the Li and O isotope composition 
of mixed fluids

Based on the above discussion, a fluid mixing model is 
presented to elucidate the ore-forming process. Fluid mix-
ing can cause significant changes in physico-chemical 
properties such as temperature and Li–O isotopic com-
position. In this study, the abrupt drop in temperature 
(from 343 to 154 °C), combined with the increasing δ7Li 
values (from + 5.1 to + 22.8‰) and decreasing δ18O val-
ues (from + 10 to − 5.4‰), indicates that the magmatic 
fluid source is waning over time and more meteoric water 
is entering the system. In particular, the drastic changes 
in stage II fluids may have resulted from fluid mixing 
between magmatic fluids and meteoric water. Similar 
processes have been well documented in porphyry and 
skarn systems (Cook et al. 2011; Shu et al. 2020). To 
provide quantitively constraints on this mixing process, 
we assume that the stage I fluids are representative of the 
end-member of magmatic fluids with the δ7Li of + 7.3‰ 
and δ18O values of + 8.6‰ (calculated by average δ7Li 
and δ18O values of all samples in stage I) and the stage III 
fluids are representative of the end-member of exchanged 
meteoric water with δ7Li of + 18‰ and δ18O values 
of − 4‰ (average δ7Li and δ18O values of all samples 
in stage III). Modeling of the mixing process between 
meteoric water and magmatic fluids is complicated due 
to the uncertainties of Li concentrations in end-members 

Fig. 9   a Correlation between δ7Li values and Li/Cl ratios. b Com-
bined Li–O isotopic variations of fluids in different stages from 
Shuiyindong. Data for Li isotopes of the reservoirs are the same as 
those in Fig. 8a, while oxygen isotope ranges of these reservoirs are 
from Taylor (1974). Oxygen isotope range of a tungsten deposit and 
a VMS Pb–Zn deposit are from Shibue et al. (2005) and Yang et al. 
(2015), respectively
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and the inevitable Li uptake within quartz. The different 
ratios of Li contents of meteoric water (Lie) and mag-
matic-hydrothermal fluids (Limh) are adopted for charac-
terizing the binary mixing processes (ESM1 and ESM2 
Table S5). The mixing equations for lithium and oxygen 
isotopes based on isotopic mass balance can be expressed 
as (Schwinn et al. 2006):

The δ7Limh, δ7Lie, and δ7LiM values represent the Li 
isotope compositions for the magmatic-hydrothermal flu-
ids, the meteoric water, and the mixture, respectively. The 
δ18Omh, δ18Oe, and δ18OM values represent the O isotope 
composition for the magmatic-hydrothermal fluids, the 
meteoric water, and the mixture, respectively. fmh denotes 
the mole fractions of magmatic-hydrothermal fluids in the 
mixture; mmh(Li) and me(Li) are the molarities of Li in the 
magmatic-hydrothermal fluids and meteoric water, respec-
tively. As shown in Fig. 8b, the stage II fluids with low 
Limh/Lie ratios from 1 to 0.3 may be attributed to exchanged 
meteoric water. The gradually decreasing contribution of 
the magmatic component suggests that the ore-forming flu-
ids evolve from magmatic fluids to meteoric waters over 
time. This model indicates that both the magmatic fluids 
and exchanged meteoric waters in stage II fluids are favora-
ble for ore mineralization.

In summary, the observation of the systematic Li–O iso-
topic changes of the ore-forming fluids can be attributed 
to mixing between magmatic fluids and meteoric water 
(Fig. 9b). The fluid mixing process modified the physi-
cal and chemical conditions of the ore-forming fluids and 
caused the Li–O isotopic variations observed in fluids inclu-
sion trapped in quartz of different stages at the Shuiyindong 
gold deposit (Fig. 10).

Conclusions

Geochemical signatures of three stages of FIs hosted in 
quartz provide new insights into the source and evolution 
of ore-forming fluids in the giant Shuiyindong Carlin-type 
gold deposit in SW China. The FIs microthermometry data 
suggest that the ore-forming fluids are characterized by low 

(4)

δ7LiM=
mmh(Li)fmh

mmh(Li)fmh + me(Li)(1 − fmh)
× δ7Limh

+
me(Li)(1 − fmh)

mmh(Li)fmh + me(Li)(1 − fmh)
× δ7Lie

(5)

δ18OM=
mmh(O)fmh

mmh(O)fmh + me(O)(1 − fmh)
× δ18Omh

+
me(O)(1 − fmh)

mmh(O)fmh + me(O)(1 − fmh)
× δ18Oe

salinity (0.8–6.3 wt% NaCl equiv.) and moderate tempera-
ture (154–343 °C). Combined Li–O isotope compositions of 
fluid inclusions are suggestive of two end-member mixing of 
magmatic and meteoric components. This mixing is consid-
ered as an important process to trigger gold mineralization. 

Fig. 10   Diagram showing the hydrothermal evolution of the Shui-
yindong deposit. a Model for mixing between magmatic fluid and 
exchanged meteoric water. b–d Paragenetic relationships of quartz 
and pyrite, entrapment of fluid inclusions, fluid evolution through 
time, and Li–O isotopic compositions of the fluids
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Our study highlights that the combined use of Li and O iso-
topes is a powerful tool to constrain the source and evolution 
of complex hydrothermal mineralizing systems.
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