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A B S T R A C T   

In the context of global warming, the advancement of spring phenology in northern and temperate regions due to 
increased temperatures has been widely reported. Early and delayed start of the photosynthetic period (SOP) 
directly affects the vegetation net primary productivity (NPP). However, the interrelationship between climate 
change, the SOP, and the NPP is unclear. In this paper, we use the dynamics of decadal daily solar-induced 
chlorophyll fluorescence data to calculate the response of Chinese vegetation photosynthetic phenology to 
climate change and its impact on the NPP over the last 20 years. The results found that over the last 20 years, the 
average SOP in China was on the 123rd day of the year, and the SOP has advanced at an average rate of 4.3 d (10 
a)− 1, with a faster trend of SOP advancement in highland and high-altitude areas. 64% of SOP in China is 
controlled by temperature; 36% of the SOP in China is controlled by precipitation, and the relative importance of 
temperature and precipitation was reversed as the precipitation gradient decreased, with SOP dominated by 
temperature when pre-season precipitation ≧300 mm, and SOP dominated by precipitation when pre-season 
precipitation ≦300 mm. Finally, we find that climate change indirectly increases vegetation NPP by 
advancing SOP. Our study emphasizes the importance of precipitation on phenology. It provides a scientific basis 
for understanding and predicting the response of spring photosynthetic phenology to climate change and the 
contribution of spring phenology to carbon estimation in terrestrial ecosystems.   

1. Introduction 

Plant phenology, the cyclical growth and development of vegetation 
in the natural environment, is considered to be one of the most sensitive 
indicators of climate change, and changes in phenology have a strong 
impact on the carbon cycle, water cycle and energy exchange in 
terrestrial ecosystems and the feedback to the climate (Piao et al., 2007; 
Shen, 2022; Wang, 2022a). Significant increases in vegetation primary 
productivity due to earlier spring photosynthesis as a result of climate 
change have been widely reported (Keeling et al., 1996; Piao et al., 
2019), especially in China (Yao et al., 2018). Therefore it is crucial to 
quantify the contribution of climate change to the onset of 

photosynthetic phenology and its impact on net primary productivity. 
Previous studies on the response of phenology to climate change 

have utilized many methods, such as traditional ground-based obser-
vations (Aono and Kazui, 2008), which can accurately record changes in 
phenological events in specific locations and species. Operational ex-
periments are also very useful methods, and two broad climate warming 
experiments, passive and active warming, have been used in pheno-
logical studies (Aronson and McNulty, 2009). Both methods suggest that 
warming causes an earlier spring phenology. In addition, phenological 
modeling is a common way to understand phenological responses to 
climate change (Hunter and Lechowicz, 1992). In recent years, pheno-
logical responses to climate based on remote sensing observations have 
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been used as the most common means (Liu et al., 2016; Piao et al., 
2017b; Smith et al., 2018; Tan et al., 2023; Zeng et al., 2020b), 
compared with other methods, its application greatly improves the 
observation range and accuracy of the phenology. Previous studies on 
large-scale spring phenology have focused on temperate and boreal re-
gions (Parmesan, 2007; Ren et al., 2022; Ren and Peichl, 2021), 
particularly by examining changes in vegetation indices related to 
greenness in time series, such as the leaf area index (LAI), normalized 
difference vegetation index (NDVI), and enhanced vegetation index 
(EVI), etc. (Paulina et al., 2017; Piao et al., 2006; Wang, 2014a). This is 
because in boreal and temperate deciduous species and grassland, the 
seasonal dynamics of leaf greening and yellowing are apparent, so their 
return and yellowing periods are easily detected (Fu, 2022a; Piao, 2019; 
Zeng et al., 2020a). 

Previous studies on boreal and temperate forests and grassland have 
generally concluded that climate warming has advanced the spring 
phenology of vegetation (Gill et al., 2015; Ma et al., 2022a; Piao et al., 
2006; Ren et al., 2022; Steltzer and Post, 2009; Zhang et al., 2013). 
Other studies have shown that in addition to climate warming the winter 
temperature (Murray et al., 1989; Wang et al., 2015), average 
pre-season temperature (Piao et al., 2006), daily maximum and mini-
mum temperatures (Shen et al., 2018), diurnal temperature difference 
(Shen et al., 2018), accumulated precipitation (Ren et al., 2022; Shen 
et al., 2011a), photoperiod (Richardson et al., 2013) snow melt (Chen 
et al., 2015) and other factors are also key factors affecting the 
phenology of northern and temperate forests and grasslands. Recent 
studies have shown that the sensitivity of the SOP to temperature has 
gradually decreased (Wang et al., 2014b), and precipitation plays an 
increasingly significant role in the initial stage of photosynthesis (Ma 
et al., 2023; Shen et al., 2015b). For example, Li et al.(2021b) found that 
the importance of the SOP precipitation in subtropical forests in China 
increases with decreasing latitude. Li et al. (2023a) found that insuffi-
cient precipitation will limit the response of the SOP to warming, and 
precipitation determines the light-heat use efficiency of vegetation to a 
certain extent, thus affecting the spring phenology. However, most 
previous studies have been based on the assumption that temperature 
plays a dominant role (Chen et al., 2018; Dai et al., 2021; Piao et al., 
2017b) and have ignored the effect of precipitation on the SOP. Under 
the background of future warming and drying of the conditions climate, 
it is necessary to study the key drivers of the SOP under different pre-
cipitation gradients. 

In addition, it has been suggested that the early spring phenology of 
vegetation is one of the main factors in the increase in carbon uptake 
(Gu et al., 2022; Hu et al., 2010). Each day in advance of the SOP leads to 
an increase of 45 kg of net carbon uptake per hectare of forest (Keenan 
et al., 2014). Others believe that the advance of the spring phenology 
will increase evapotranspiration and consume available soil water, 
resulting in summer drought, but they negated the positive role of spring 
phenology in carbon absorption (Buermann et al., 2013; Lian et al., 
2020). Therefore, these complex coupling effects therefore make the 
role of the SOP in terrestrial ecosystem productivity unclear, and 
exploring the climate-SOP-NPP relationship is critical to improving our 
understanding of the global water and carbon cycles under global 
climate change conditions. 

Previous studies have calculated the SOP by detecting changes in the 
vegetation greenness (Paulina et al., 2017), and canopy greenness sat-
ellite products have been widely used as indicators of vegetation 
photosynthesis and productivity(Forkel et al., 2016). However, recent 
studies have shown that the greenness is decoupled from the produc-
tivity in dry years and in drought-prone areas (Hu et al., 2022), that is, 
greenness of vegetation does not coincide with its photosynthesis. In 
addition, the dynamics of the greenness are not obvious in evergreen 
vegetation areas, where the physiological phenology (i.e., 
photosynthesis-based phenology) undergoes seasonal changes while the 
upper canopy (i.e., leaf greenness) remains stable (Li et al., 2021a), 
making it difficult to detect the phenology using the commonly used 

vegetation indices of greenness (Schwartz, 2003). Therefore, it is inap-
propriate to use canopy greenness satellite products to calculate the 
nationwide SOP. Recent satellite inversion-based solar-induced chloro-
phyll fluorescence (SIF) offers a new approach to SOP calculations (Li 
et al., 2018a; Piao et al., 2019). The SIF is the re-emission of a small 
fraction of the absorbed radiation, and in general, 1% of the solar energy 
captured by plants is re-emitted by chlorophyll as fluorescence with two 
peaks in the red (around 690 nm) and near-infrared (around 740 nm) 
bands that can be detected from space by current high spectral resolu-
tion sensors (Zhang et al., 2014a). SIF is directly related to photosyn-
thesis through a complex energy dissipation mechanism, can be used as 
a proxy for photosynthesis (Chen et al., 2021), and is less affected by 
cloud, snow, and ice cover (Gentine and Alemohammad, 2018). Thus, 
satellite-based SIF observations provide an alternative physiologically 
based view of the contribution of vegetation function to the structural 
and greenness information provided by traditional reflectance indices, 
and can be used as an alternative toll for data estimation of vegetation 
photosynthetic phenology tool (Jeong et al., 2017; Joiner et al., 2014), 
that is more directly related to the carbon cycle and the effects of climate 
change (Chen et al., 2022b). 

In this study, we investigated the temporal changes in the onset of 
photosynthesis in China over the last 20 years based on the spatially 
contiguous solar-induced fluorescence (CSIF) dataset from the global 
orbiting carbon observatory (OCO-2), and we studied the relationship 
between the SOP and climate and its contribution to productivity in 
China using partial correlation analysis and structural equation 
modeling.. The aims of this study were (1) to assess the magnitude, 
spatial patterns and dynamic trends of annual SOP changes in China 
over 20 years; (2) to illustrate the response of the SOP to climate change 
in China; and (3) to reveal the impact of SOP on productivity. We used 
the SIF data to calculate an SOP based on vegetation physiological dy-
namics rather than the traditional greenness-based phenology, which is 
directly related to photosynthesis. We studied the main driving factors of 
SOP under different precipitation gradients, which has important 
reference significance for predicting the response of the SOP to climate 
under the background of future warming and drying of climate condi-
tions. Finally, we studied the climate-SOP-NPP interaction across the 
country. The results of this study are of great significance for under-
standing and predicting the response of the initial photosynthetic 
phenology period to climate change and its impact on the productivity of 
terrestrial ecosystems in the future and provide a scientific basis for the 
estimation of the carbon sink in terrestrial ecosystems. Furthermore, we 
hypothesize that (1) Climate change drives earlier trends in SOP (2) 
Climate change has a direct effect on SOP and then an indirect effect on 
NPP through SOP. 

2. Dadaset and methods 

2.1. Study area 

The study focuses only on mainland China, a vast country that spans 
tropical, subtropical, warm and temperate regions from south to north; 
From east to west, it includes humid, semi-humid, semi-arid, arid and 
ultra-arid, We have divided the study into four main regions (As shown 
in Fig. 1): (1)Northern Region (NR), The average annual temperature 
ranges from − 4 ◦C to 14 ◦C, and the total annual precipitation ranges 
from 200 mm to 1000 mm in Northwest China (Yang et al., 2017). (2) 
The Northwest Region (NWR), the average annual temperature ranges 
from 0 ◦C to 8 ◦C, and the average annual precipitation is less than 600 
mm (Yang et al., 2017). (3) The Qinghai-Tibet Plateau Region (QTR) is 
known as the third pole of the world and has an average altitude of 
nearly 4000 m. The average annual temperature ranges from − 5 ◦C to 
12 ◦C and the precipitation ranges from 800 mm to 200 mm (Shen et al., 
2011b). (4) Southern Region (SR), the average annual temperature is 
14 ◦Cto 22 ◦C, and the total annual precipitation is 1000mm-2000 mm 
(Wang et al., 2015b). The temperature gradient in China is larger from 
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south to north, and the precipitation gradient from south to north is 
larger. Therefore, China is ideal for examining the response of 
phenology to climate change at a regional level (Li and Zha, 2019). 

2.2. Datasets 

2.2.1. daylight-induced chlorophyll fluorescence 
As a proxy for photosynthesis, we used daylight-induced chlorophyll 

fluorescence (SIF) data to calculate the SOP. Existing SIF data have short 
time span and low resolution, and these shortcomings limit the appli-
cation of SIF (Zhang et al., 2018). Recently, Zhang et al. combined the 
SIF retrieved from the Orbiting Carbon Observatory (OCO-2) satellite 
and the surface reflectance from the Moderate Resolution Imaging 
Spectroradiometer (MODIS) on board the Terra and Aqua satellites, and 
applied machine learning and neural network algorithms to generate a 
global continuous CSIF product, which supplements the insufficient 
temporal and spatial resolution of the OCO-2 data, which is comparable 
to that of the OCO-2 and the Global Ozone Monitoring Experiment-2 
(GOME-2) daily SIF (Zhang et al., 2018). We therefore chose to use 
CSIF data, which has been published in the National Third Pole Envi-
ronment Data Center (https://data.tpdc.ac.cn/en/), with a temporal 
resolution of 4 days and a spatial resolution of 0.05◦

2.2.2. Climate data set 
We used temperature and precipitation data from 2001 to 2020, 

sourced from the National Earth System Science Data centre (http 
s://www.geodata.cn/), The temporal resolution is month and the 
spatial resolution is 0.0083333◦(about 1 km). Based on global 0.5◦

climate data released by CRU and global high-resolution climate data 
released by WorldClim, the data were generated in China by Delta 
spatial downscaling scheme. It was verified with data from 496 inde-
pendent meteorological observation points, and the verification results 
were credible, which has been widely applied to ecology, geoscience and 
other fields (Li et al., 2022, 2023b; Peng et al., 2021; Yu et al., 2022). 

2.2.3. NPP data 
MODIS Terra from 2001 to 2020, provided by the National Aero-

nautics and Space Administration (NASA), was used for this study NPP 
data (MOD17A3HGF) (https://search.earthdata.nasa.gov/search), 
temporal resolution for years, the spatial resolution of 0.0044915764◦

(500 m). We use the professional processing TOOL MRT TOOL provided 
by MODIS website for projection conversion, stitching, cropping and 
other work. 

2.2.4. land use and land cover change data (LUCC) 
Since the cultivated land phenology is greatly influenced by human 

subjectivity, in order to ensure the accuracy of the study, cultivated land 
types were excluded in this study according to the LUCC data provided 
by Data Center for Resources and Environmental Sciences (htt 
ps://www.resdc.cn/). 

Finally, all the data were resamped to the same spatial resolution 
(0.05◦) as the CSIF data to facilitate our research. The resampling 
method we adopted was bilinear interpolation, which had high inter-
polation accuracy and moderate computation, and was suitable for 
continuous data. This interpolation method could generate smoother 
surfaces. 

2.3. Methods 

2.3.1. SOP methods 
We carried out a polynomial fit analysis between the 4-day CSIF time 

series data for the whole study area from January to December and the 
corresponding dates to obtain a smooth seasonal curve of the annual 
CSIF time series for each pixel, removing anomalies due to the influence 
of cloudiness, atmosphere, etc. (Piao et al., 2006; Zhang et al., 2013). 

SIF = a + a1x1 + a2x2 ++a3x3 + ...+ anxn, n = 6 (1) 

Here x corresponds to a day of the year in the SIF and a is a coeffi-
cient. The vegetation growth curve was then fitted with a hybrid 
segmented logistic function (Zhang et al., 2022c) to determine SOP 
timing and was more suitable for fitting vegetation growth at high lat-
itudes than other fitting methods, and we used spring photosynthetic 
phenology as the corresponding CSIF value to reach 20% of the seasonal 
amplitude, respectively, a threshold that follows previous phenology 
studies (Buyantuyev and Wu, 2012; Cong et al., 2013b; Qiu et al., 2020; 
Zhou et al., 2016), and this threshold was also used in the VIIRS land 
surface phenology product. The formula is as follows: 

f (t) = a1 +
a2

1 + e− θ1(t− β1)
−

a3

1 + e− θ2(t− β2)
(2)  

where parameters a1, a2 and a3 represent the minimum values of the 
seasonal cycle, the amplitude of the seasonal cycle before and after, θ1 
and θ2 are coefficients that determine the rate of vegetation growth and 
senescence, and β1 and β2 are fit parameters. 

2.3.2. Theil-Sen Median analysis and Mann-Kendall mutation test 
The Theil-Sen Median is a robust, non-parametric statistical method 

of trend calculation. This method is computationally efficient, inde-
pendent of outliers and is often used in trend analysis of long time series 
data (Li et al., 2018b): 

Sen = Median
(

xi − xj

i − j

)

(3)  

where x, y denote SOP values in year i and j respectively, and median is 
the median of the time series, usually used in conjunction with the 
Mann-Kendall test to further determine the significance of the trend, 
which has the advantage of calculating samples that do not have to 
follow a specific regular distribution (Kendall, 1938; Ran et al., 2023). 
Results vary significantly at the p < 0.05 level. 

2.3.3. Partial correlation analysis 
In order to further identify the dominant climatic factors in SOP, a 

bias correlation analysis was performed between SOP and ’pre-seasonal’ 
climate for each of the 20 years of the year, with pre-season defined as 
the period with the largest bias correlation coefficient between SOP and 

Fig. 1. Location map of the study area.  
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climatic variables (Chen et al., 2022a; Li et al., 2021a; Meng et al., 2021; 
Piao et al., 2007; Xiao et al., 2023), where precipitation is cumulative 
precipitation and temperature is average temperature. 

Rx1y =
Ryx1 − Ryx2 Rx1x2̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(

1 − R2
yx2

)(
1 − R2

x1x2

)√ (4) 

Rx1yis the partial correlation coefficient of the x1 factor, Ryx1 Ryx2 

Rx1x2 are the simple correlation coefficients between x1 and the depen-
dent variable y, x2 and y, x1 and x2 respectively. 

2.3.4. Structural equation model 
We used AMOS 26 software to construct the Structural equation 

model (SEM), a multivariate statistical method based on the covariance 
matrix, which is a multivariate analytical equation that includes statis-
tical methods such as factor analysis and path analysis. Based on theo-
retical research and empirically developed conceptual models, SEM can 
capture direct, indirect and combined effects between variables (Stone, 
2021). The method has been applied to the fields of ecology and 
climatology (Hao et al., 2020; Weterings et al., 2018; Ye et al., 2022). 
The interrelationship between temperature, precipitation, SOP and NPP 
is complex. In order to reveal the impact of SOP advancement on NPP, 
we used SEM model to evaluate the direct and indirect relationships 
between climate factors, NPP and SOP. 

In this study, the maximum likelihood method in SEM modeling was 
used to estimate the path coefficients and each parameter. All the 
models have chi-square degrees of freedom less than 3 and root mean 
square error RMSEA less than 0.05.The model fit is good. 

3. Results 

3.1. Spatial and temporal distribution pattern of SOP in China 

The average SOP for vegetation in China during the last 20 years was 
on the 123rd day of the year (Fig. 2a), and the vegetation photosynthetic 
phenology has obvious spatial specificity in different regions, exhibiting 
a gradual delay from low to high latitudes (Fig. 3a). On average, the SOP 
in the SR occurs earliest, concentrated in 70–100 days, and the SOP in 
the QTR occurs latest, concentrated in 130–160 days. In addition, the 
SOPs in the NWR and NR are concentrated in the ranges of 110–140 days 
and 90–120 days respectively (Fig. 2a). In terms of the inter-annual 
trends, the average SOP in China advanced at a rate of 0.43 days per 
year. The interannual trend was fastest (0.48 days per year) in the QTR 
and slowest (0.25 days per year) in the NWR, and it advanced at ranges 
of 0.44 days per year and 0.45 days per year in the NR and SR, 
respectively (Fig. 1b). The greatest trend fluctuations occurred in the 
mid-latitude region (Fig. 3b). 

In terms of the spatial trends, the SOP overwhelmingly advanced in 
the last 20 years with a trend of 0–0.5 days/a (Fig. 2c).According to the 
Mann-Kendall (M-K) test, the spatially advanced SOP trend accounted 
for 71% of the elements, of which 25% were significantly advanced, 
mainly in the northern Tibetan Plateau, the Yunnan-Guizhou Plateau, 
the western Loess Plateau, the southern hills and the Greater Khingan 
Mountains region (Fig. 2d). The SOP exhibite a delayed trend in 20% of 
the elephant elements, mainly in the southern Qinghai-Tibet Plateau and 
northwestern Inner Mongolia, with significant delays in only 3% of the 
areas (Fig. 2d). We found that the SOP tend to advance more rapidly in 
highland and high-altitude areas. In general, the SOP in China exhibited 
show an overall trend of non-significant advancement over a large area. 

Fig. 2. Spatial distribution of multi-year average SOP (a) Interannual trend (b) Theil-sen Slop trend of SOP in the last 20 years (c) Theil-sen Slop after M-K test.  
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3.2. Climate determinants of SOP 

The bias correlation coefficients between the SOP and the pre-season 
temperature and precipitation are shown in Figs. 4a–b. It can be see that 

the pre-season temperature was often negatively correlated with the 
SOP in approximately 76% of the total pixels, (with 16.1% being 
significantly negatively correlated (p < 0.05). This mainly occurred in 
the central QTR, northeastern SR and NR areas (Fig. 4a). The positive 
correlation between the pre-season temperature and the SOP accounted 
for the remaining 24% of the pixels (of which 0.9% were significantly 
positively correlated), mostly sporadically in the southern part of QTR 
and the north-western part of the NWR (Fig. 4a). In contrast, the positive 
correlation coefficient of the bias between the precipitation and the SOP 
was about 46% (with 3.36% exhibiting a significant positive correla-
tion), mainly in the eastern coastal zone of the SR and the northeastern 
part of the study area. The negative correlation coefficient between the 
precipitation and SOP was approximately 53.8% (with 5.53% exhibiting 
a significant negative correlation), mainly in the central QTR and 
western SR. 

The spatial distributions of the relative importance of the tempera-
ture and precipitation in each pixel are shown in Fig. 4c (the quadrant 
defined as the maximum value of the bias correlation coefficience be-
tween the SOP and precipitation and temperature), and the proportion 
of the quadrants for the main controls of the temperature and precipi-
tation at different pre-season precipitation gradients is shown in Fig. 4d. 
Temperature determined 53% of the quadrates across the study area, 
while precipitation determined 47% (Fig. 4c). Interestingly, the deter-
minant of the elephant element changed from temperature to precipi-
tation as the precipitation gradient decreased. Using the average pre- 
season precipitation of 300 mm as the boundary, the SOP was domi-
nated by temperature control when the pre-season precipitation was ≧ 
300 mm. When the pre-season precipitation was ≦ 300 mm, the SOP was 

Fig. 3. Latitudinal distribution of the average SOP over the last 20 years (a) 
Latitudinal distribution of trends (b). 

Fig. 4. (a-b) Spatial patterns of bias correlation coefficients between temperature and precipitation and SOP, with inserted pie charts indicating Ps (positive sig-
nificant), Pn (positive non-significant), Ns (negative significant), Nn (negative non-significant), spatial distribution of the main climate controls on SOP in the study 
area (c), and the share of the main controls in the different precipitation conditions (d). 
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dominated by precipitation control, i.e., temperature was the main 
determinant of the SOP in areas with sufficient precipitation, while 
precipitation was the main determinant of the SOP in areas with pre- 
season water deficit. 

3.3. Effect of SOP advancement on net primary productivity of vegetation 
as indicated by SEMs 

In Fig. 5, the structural equation model (SEM) shows that there were 
complex interactions between the temperature, precipitation, SOP, and 
NPP in the four regions. In addition to the significant negative direct 
effect of the SOP on the NPP in the NWR, the temperature and precip-
itation indirectly affected (negatively affected) NPP in the NWR by 
influencing the SOP, and the indirect effect of temperature (flux coef-
ficient: 0.603) on the NPP was greater than that of precipitation (flux 
coefficient: 0.308). The effect of the SOP on NPP was also significant in 
the NR area. Although temperature and precipitation still had indirect 
effects on the SOP, there effects were not significant. In the QTR area, 
the effect of the SOP on the NPP was not significant, but both temper-
ature and precipitation significantly and negatively affected the NPP 
indirectly, and the indirect effect of temperature (flux coefficient: 0.5) 
was greater than that of precipitation (flux coefficient: 0.407). In the SR 
area, the NPP was significantly directly influenced by the temperature 
and SOP. The temperature significantly influenced the NPP by indirectly 
influencing the SOP, and precipitation did not have a significant effect 
on the NPP in the SR area. 

In summary, the NPP was negatively and indirectly influenced by the 
temperature and precipitation in all four regions, and the temperature 
most significantly affected the NPP indirectly by influencing the SOP. 
The hypothesis that climate change has advanced the SOP and thus 
increased the vegetation NPP is supported. 

4. Discussion 

4.1. Spatial and temporal distributions pattern of SOP 

We compared the SOP calculated in this study with the results of 
previous studies to further confirm the reliability of our results The 
spatial pattern identified in this study is similar to that reported in 
previous studies, i.e., a gradual delay from low latitude to high latitude 
and a faster advancement of the SOP at high altitudes (Cong et al., 
2013b; Jiao et al., 2020; Luo and Yu, 2017; Ma and Zhou, 2012; Wang 
et al., 2022b). However, the trends are different. For example, based on 
EVI data, Jiao et al. (2020) calculated that the SOP advanced by 2.88 
days per decade from 1981 to 2016. Based on four methods, namely, 
species observation, meta-analysis, remote sensing influence, and 
phenological modeling, Ma et al. (2012) concluded that the SOP in 
China has advanced by 2.88 days every decade. These results are less 
than our results (4.3 days earlier per decade), which may be because we 
calculated the phenology based on photosynthesis, while previous 
studies were based on the phenology of the greenness. In addition, dif-
ferences in the research periods will lead to some deviations. In addition, 
comparative studies have also shown that the SOP calculated based on 
the SIF is earlier than that based on the NDVI and EVI (Wang et al., 
2022c). In addition, based on meta-analysis, Zhang et al. (2022a) 
concluded that the SOP advanced at a rate of 0.23 ± 0.47 days/a over 
the last 40 years and our results are within their range. In addition, Li 
et al. (2021b) used SIF data and various methods (Gaussian-midpoint 
method, piecevise logistic method, HANTS-maximum method, and 
spline-midpoint method) to calculate the SOPs of 91 ± 9 days for Chi-
nese subtropical mixed evergreen-deciduous forests, 87 ± 7 days for 
Central Asian evergreen forests, and 72 ± 8 days for southern monsoon 
evergreen forests, which are similar to our findings. Therefore, we 
consider our findings to be credible. 

Fig. 5. Structural equation modeling results between temperature precipitation, SOP and NPP for the four regions. In Figure 7, boxes indicate observed variables; 
one-way arrows indicate effect relationships between two variables, with the variable indicated by the arrow being influenced by another variable. Double-headed 
arrows indicate associations between variables. The numbers near the single or double-headed arrows are normalization coefficients, and the black lines (macros) of 
the arrows indicate positive (negative) relationships, respectively; the thicker the line, the stronger the relationship. **** is the significance level of 0.01, 0.05 and 
0.1, respectively, and R2 is the magnitude of the variance being explained. 
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4.2. Climate controls on the SOP in China 

We found that there was a negative correlation between the SOP and 
the mean pre-season temperature in most quadrats (76%) of the study 
area, which demonstrates that a warm spring does advance the SOP in 
the southwest. This is consistent with previous findings that vegetation 
regrowth advances with increasing temperature based on vegetation 
indices such as the NDVI and EVI (Cong et al., 2013a; Ge et al., 2015; 
Jeong et al., 2011; Piao et al., 2006; Shen et al., 2022; Zhou et al., 2020). 
The correlation between the SOP and the pre-season temperature was 
more significant than that between the SOP and the pre-season precip-
itation, indicating that temperature remains the main determinant of the 
SOP in China, which is also consistent with previous results obtained in 
the northern temperate zone (Piao et al., 2006). We observed that there 
was gradual weakening of the bias correlation coefficient between the 
temperature and SOP along the weakening precipitation gradient (from 
east to west) and a shift in the determinant from temperature to pre-
cipitation. It has previously been shown that vegetation growth requires 
more heat supplementation when pre-season precipitation is high (Fu 
et al., 2014; Gao et al., 2022), that under relatively wet conditions (i.e., 
areas with higher average pre-season precipitation), the SOP has more 
access to water accessible and vegetation growth is not limited by water 
scarcity (Chen et al., 2014; Gao et al., 2022; Zhang et al., 2005), and the 
SOPs are more sensitive to temperature due to the demand for heat. In 
addition, temperature increases caused by anthropogenic land use (e.g., 
spring ploughing and grazing, etc.) also contribute to the early SOP (Li 
et al., 2019; Morisette et al., 2009). Since the 1980s, temperatures in 
crop-growing areas have increased significantly at an average rate of 
0.06 ◦C/a, which is one reason for the early planting in these areas (Piao 
et al., 2006). There are also a number of quadrates in which temperature 
is positively correlated with the SOP, possibly because a certain amount 
of cumulative low temperature is required to break the natural 
dormancy of vegetation prior to the onset of spring phenological events, 
and the associated winter warming results in insufficient low tempera-
tures (Fu et al., 2015; Piao et al., 2019). 

In relative terms, the bias correlation coefficient between precipita-
tion and the SOP gradually increases along the weakening precipitation 
gradient, with the determinant shifting from temperature in the east to 
precipitation in the west, indicating the increasing importance of pre-
cipitation as the pre-season accumulated precipitation decreases. In 
areas with low average pre-season precipitation, the soil moisture may 
not reach optimal moisture conditions in spring, when the SOP is 
determined by precipitation rather than temperature (Shen et al., 2015). 
The higher evapotranspiration in these areas reduces water availability 
and may delay the SOP under future warming conditions (Yu et al., 
2003). 

As a result, the relative importance of precipitation and temperature 
changes under different rainfall conditions. We speculate that future 
warming may further advance the SOP in areas with higher average pre- 
season precipitation; while in areas with lower average pre-season 
precipitation, limited by increased moisture availability and evapo-
transpiration, warming will have less impact on the SOP in China or 
even delay it. Future warming and drying of the climate will further 
expand areas of limited water resources and the control of precipitation 
on the SOP in China will increase (Zhang et al., 2020). 

4.3. Impacts of SOP advancement and climate change on NPP 

Temperature and precipitation directly affect the NPP. In general, 
both temperature and precipitation led to an increase in the NPP from 
2001 to 2020. Compared with other regions, the SR region had the 
highest direct positive influence on the temperature. This may be 
because the Yunnan-Guizhou Plateau and other parts of this region are 
characterized by higher altitudes and abundant precipitation, but the 
sunshine duration and solar radiation are lower, thus limiting the 
growth of vegetation (Bai et al., 2023). Therefore, the rising temperature 

is conducive to the photosynthesis of vegetation, thus promoting vege-
tation growth (Yu et al., 2023). Regarding precipitation, the increase in 
precipitation improves the supply of soil water and increases the 
photosynthetic rate (Sun and Du, 2017). Therefore, the precipitation in 
these four regions of China has a direct positive impact on the NPP, and 
the precipitation in the QTR has the greatest direct impact. This may be 
due to the fact that the forests on the Qinghai-Tibet Plateau are mostly 
distributed in the east and southeast, where the temperature is higher. 
The amount of precipitation directly affects the growth of vegetation 
(Zhang et al., 2014b). A large part of the grassland in central China is 
distributed in the Gobi desert and saline-alkali land, the long-term water 
shortages in these areas increases the importance of precipitation (Bai 
et al., 2021; Ma et al., 2022b), and the sensitivity of the grassland to 
precipitation is also higher (Yu et al.,2023). These factors combine to 
increase the direct impact of precipitation. 

Structural equation modeling shows that the NPP in all four regions 
is indirectly influenced by climate change. Climate change affects the 
vegetation productivity in two ways, either by directly affecting vege-
tation growth and photosynthesis, and by changing the phenology 
(Fang et al., 2003; Piao et al., 2007; Piao et al., 2017; Wan et al., 2005). 
The SIF has a greater potential as a direct proxy for photosynthesis than 
indices such as the NDVI and EVI for monitoring phenology and pro-
ductivity in evergreen forests (Zhang et al., 2022b). The NPP has 
increased since the 1980s (Nemani et al., 2003), 

The increase in the NPP may be mainly be the result of a longer 
growing season, particularly an increase in vegetation activity in early 
spring (Fang et al., 2003; Gu et al., 2022; Randerson et al., 1999). This is 
probably because the solar radiation and moisture conditions are most 
favorable for vegetation productivity in spring (Smith et al., 2004) when 
the photosynthetic carbon uptake is greater than respiratory carbon 
release (Keeling et al., 1996), and vegetation can fix more carbon 
thereby increasing the terrestrial ecosystem carbon sink. In addition, 
despite the increase in temperature, soil temperatures are still relatively 
low and do not significantly increase soil respiration (Randerson et al., 
1999); however, this progression may shift under future warming, and 
earlier advancement of the SOP may exacerbate soil water loss causing 
summer drought stress and thus reducing productivity (Fu, 2022b; Piao, 
2008; Zhang et al., 2020). Additionally, recent studies have shown that 
there is a significant decrease in the effect of increasing temperature on 
spring carbon uptake (Piao, 2017a; Wang, 2018), further suggesting the 
importance of future precipitation in related research. 

4.4. Limitations and prospects 

Based on remote sensing images, in this study, the response of the 
SOP to climate change and its impact on the NPP over the past 20 years 
were investigated. Although important basic results were attained, this 
study also has some limitations. 

The SOP and NPP are affected by multiple climatic factors, and in 
this study, only temperature and precipitation were considered. 
Although these factors are considered to be the main driving factors 
(Korner and Basler, 2010; Liu et al., 2016; Menzel et al., 2006; Tao et al., 
2017), other climatic factors should also be considered in future studies, 
including the photoperiod (Flynn and Wolkovich, 2018), nutrient (Fu 
et al., 2019), air humidity (Sparks and Menzel, 2002), and phenological 
interaction (Buermann et al., 2013). In addition, the impacts of human 
activities on climate change and the NPP are increasing (Ge et al., 2021). 
Although we used land use data to exclude arable land in our study, it is 
still not possible to completely exclude the impact of human activities on 
climate change and the SOP. Therefore, the relationships between 
human activities and the SOP and NPP need to be further investigated in 
the future. 

Conclusions 

In this study, we assessed the spatial and temporal patterns affecting 
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SOP in China and its main controlling climate factors, revealing the 
interrelationship between SOP and NPP. Our conclusions are as follows:  

(1) In the last 20 years, the average SOP in China was on the 123rd 
day of the year, and the SOP has advanced at an average rate of 
4.3 d (10 a)− 1, with SOP advancing more rapidly in highland and 
high-altitude areas;  

(2) 64% of SOP in China are controlled by temperature; 36% of SOP 
in China are controlled by precipitation;  

(3) As the precipitation gradient decreases the relative importance of 
temperature and precipitation reverses, with SOP dominated by 
temperature control for pre-season precipitation ≧300 mm and 
precipitation control for pre-season precipitation ≦300 mm;  

(4) Future warming and drying of the climate will further expand the 
area of limited water resources, making precipitation increas-
ingly important for the control of the SW SOP;  

(5) Climate change indirectly increases vegetation NPP through 
earlier SOP. 

Our results highlight the importance of future precipitation for SOP 
and find that climate change indirectly increases NPP by advancing 
SOP. Our study has important implications for research on the car-
bon cycle in terrestrial ecosystems. 
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