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Abstract
Premature deaths in China due to exposure to  PM2.5-bound heavy metals (HMs) are notably more prevalent in rural areas 
than in urban ones. In suburban rural areas, electricity and natural gas have emerged as the primary energy sources. However, 
in remote rural locations far from urban centers, coal and biomass are still commonly used for cooking and heating. This 
disparity in energy use can lead to variations in health risks among populations and may cause significant discrepancies 
between implemented policies and actual conditions. Winter  PM2.5 samples were collected from rural sites across the North 
China Plain. To identify the effects of air exposure on rural populations with different types of energy use, we employed 
probabilistic and source-specific risk assessment methods. Results showed that the average  PM2.5 mass was 10.08 and 10.91 
times higher than the World Health Organization's recommended guideline (15 μg/m3). This indicates a higher contamination 
burden in suburban rural areas. Children were found to be at higher risk of noncarcinogenic risks (NCR) but at a lower risk 
of carcinogenic risks (CR) compared to adults. Interestingly, the NCR and CR of HMs from coal and biomass combustion 
in remote rural areas were 2.68 and 2.47 times higher, respectively, than those in suburban rural areas. The widespread use 
of electricity and natural gas in suburban areas has decreased the health burden of HMs on residents when compared to the 
use of coal and biomass. Coal and biomass combustion was identified as the primary source of health risks in remote rural 
areas. In suburban rural areas, it is essential to reduce coal and biomass combustion, vehicle emissions, and industrial emis-
sions. Our results provide valuable scientific insights for the prevention of air pollution throughout the rural energy transition 
process, not only in China but also in developing countries worldwide.
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Introduction

Exposure to hazy weather pose a significant public health 
issue for global populations. This is due to the associated 
health hazards, reduced visibility, and slow dispersion time 
(Chen et al. 2021; Quan et al. 2014). Although they consti-
tute approximately only 10% of  PM2.5 mass, particle-bound 
heavy metals (HMs) pose a significant threat. They are car-
cinogenic, non-degradable, and highly enriched (Lai et al. 
2015; Xie et al. 2019). Pb (lead) exposure, in particular, 
can severely impact the development of children's cogni-
tive abilities (Liu et al. 2018a). Other metals, such as Ni 
(nickel), Cr (chromium), Mn (manganese), and Co (cobalt), 
can infiltrate the human body and cause DNA damage, lead-
ing to impaired respiratory function (Chen et al. 2021; Feng 
et al. 2022a). HMs present in respirable particulate matter 
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represent key pollutants threatening human health (Hus et al. 
2021; Wang et al. 2019b, 2022).

The quantification of health risks to populations exposed 
to air pollution, which is the foundation for research to 
assess the local public health burden accurately, is already 
underway in many cities and regions (Faraji Ghasemi et al. 
2020; Peng et al. 2017). Currently, health risk studies of 
 PM2.5-bound HMs depend excessively on point estimates 
with deterministic parameters; meanwhile, the variability of 
exposure factors between individuals, such as body weight 
and duration of exposure, are ignored; this approach may 
severely underestimate or overestimate risk values (Huang 
et al. 2021). However, probabilistic risk assessment based 
on Monte Carlo simulation (MCS) ensures the accuracy 
of risk calculations by integrating the proportion of risk 
thresholds that are exceeded and those that are not, and its 
reliability was confirmed in the previous studies (Widzie-
wicz and Loska 2016). The toxicity of atmospheric HMs 
emitted by different sources varies (Bell et al. 2014). Source 
apportionment models are a proven technique for accurately 
identifying the sources of environmental pollutants and have 
been widely used in source analysis studies of atmospheric, 
water, and soil pollutants (Ma et al. 2018; Xie et al. 2020; 
Hus et al. 2021). Source-specific risk assessment based on 
source apportionment models has received increasing atten-
tion recently (Liu et al. 2018a; Yan et al. 2022). A reasonable 
assessment of the health risk caused by  PM2.5-bound HMs 
from multiple perspectives is still an open topic (Men et al. 
2021; Heidari et al. 2021). In the present study, health risk 
assessment based on probabilistic and source-specific risks 
was explored to provide more reliable evidence for quan-
tifying regional population health burden and controlling 
pollution sources.

PM2.5-bound HMs enter the body through various path-
ways that increase the incidence of cardiovascular and res-
piratory disease and even cause premature death by induc-
ing oxidative stress and systemic inflammation (Guo et al. 
2021; Jimenez et al. 2009). The all-cause mortality rate 
(deaths from all causes as a proportion of the total popula-
tion) among Chinese residents was about seven per 1000 in 
2018; deaths due to cardiovascular and respiratory systems 
accounted for 57.9% of the all-cause deaths in rural areas, 
compared with 54.6% in urban areas (National Bureau of 
Statistics of China, http:// www. stats. gov. cn/; China National 
Center for Cardiovascular Disease, https:// www. nccd. org. 
cn/). The health of rural residents may be more sensitive to 
air pollution than that of urban populations. Previous studies 
have shown that agricultural activities and using biomass 
energy and coal in rural areas lead to more haze events (Du 
et al. 2018; Hu et al. 2019). Although rural China is promot-
ing energy transition, it is still quite limited in many rural 
areas (Liu and Ren 2020; Zhao et al. 2020). Outdoor expo-
sure of the population is exacerbated by the poor planning 

of rural buildings and the occupational characteristics of 
farmers who regularly engage in outdoor activities (Liu and 
Ren 2020; Liu et al. 2016). A report contended that rural res-
idents are more sensitive to air pollution than urban residents 
by using a distributed lag nonlinear model, and  PM2.5 is an 
essential factor that causes premature mortality in rural areas 
(Zhao et al. 2021). The public health burden on Chinese 
rural residents has long been neglected. Approximately 40% 
of the Chinese population faces serious health threats from 
air pollution while not receiving widespread social attention.

Suburban rural areas located on the outskirts of cities are 
gradually being classified within the scope of centralized 
urban heating because of the advancement of China’s urban 
infrastructure; the ban on coal and biomass use is more 
stringent than that in remote rural areas, and electricity and 
natural gas become the only forms of energy utilization in 
suburban rural areas (Wang et al. 2021a). A survey in Tang-
shan, China, has demonstrated significant differences in the 
characteristics and sources of outdoor  PM2.5 in coal-fired 
and centrally heated areas (Wang et al. 2021a), and different 
types of energy utilization may cause variations in popula-
tion health risks in rural areas (Feng et al. 2021). However, 
the characteristics of air pollution in rural areas are not fully 
recognized due to the difficulty in obtaining information on 
haze pollution and the decentralized distribution character-
istics. Studies on the health risks of rural populations under 
 PM2.5 exposure are scarce, and research on different rural 
types has never been conducted. To fill this gap, health risks 
from  PM2.5-bound HMs to rural populations of different 
energy use types were investigated based on probabilistic 
and source-specific risk assessment models. This work may 
contribute to a comprehensive understanding of the effect of 
air pollution on the target population’s public health burden. 
Now insights into air pollution control in the rural energy 
transition process in developing countries around the world 
are also provided.

Materials and Methods

Sampling Sites

The North China Plain (NCP), which is the second larg-
est plain in China, is located at latitude 32°–40° North and 
longitude 114°–121° East and has a temperate monsoon cli-
mate. NCP is an area in China with a high population, rural 
agglomeration, and well-developed agriculture; it is one of 
the most polluted areas in China in terms of haze (Jin et al. 
2020; Wang et al. 2015). Two rural sites located in the west-
ern portion of the NCP, Qizhuang Village (QZV; 36° 11′ 15″ 
N, 114° 23′ 51″) and Liuji Village (LSV; 36° 11′ 15″ N, 114° 
22′ 41″), Anyang were considered in this study, as shown 
in Fig. 1. Anyang is a typical heavy industrial city, and its 

http://www.stats.gov.cn/
https://www.nccd.org.cn/
https://www.nccd.org.cn/
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leading industrial products are steel product, steel, pig iron, 
and coke.  PM2.5 filter samples were simultaneously collected 
at two rural sites during the heating season from November 
24 to December 3, 2020. An atmospheric sampler was set 
up on the roof of a specific residential building (about 5 m 
above the ground) at each rural site. QZV, which is far from 
the urban center and surrounded by much farmland, is a 
remote rural site. After our actual investigation, industrial 
agglomeration was observed about 4 km to the west and east 
of QZV. The Beijing–Hong Kong–Macao Expressway was 
about 1.6 km east of the sampling site. The nearby facto-
ries and roads might contribute to air pollution. During the 
sampling period, residential chimneys frequently produced 
smoke from coal combustion because the sampling site was 
outside the centralized city heating range. This situation is 
a widespread phenomenon in remote rural areas of China 
far from urban centers. Although the former bulk coal was 
primarily replaced by clean coal at the government’s request, 
coal combustion emissions still require attention. QZV has 
similar contamination sources to its surrounding villages 
and reflects the air pollution characterization in remote rural 
areas in China. According to the Chinese urbanization pro-
cess, factories and enterprises in the former urban areas have 
been relocated to the suburbs (Liu 2013). LSV is a suburban 
rural site with many factories, including steel smelting, ther-
mal power generation and mechanical engineering, within 
1 km of the site, and large steel smelters located approxi-
mately 6 km to the west and 9 km to the northwest. In addi-
tion, the urban roads around LSV were denser than those 
around QZV. The local government department vigorously 
promoted the measure of “zero loose coal and natural gas 
coverage in villages” during the sampling period. LSV is 

located in a centralized heating zone of the city, where the 
use of coal and biomass for heating in winter has completely 
disappeared. The air pollution characteristics of LSV are 
representative of the rural suburbs of China.

PM2.5 Sampling and HM Analysis

The 12 h continuous  PM2.5 samples (from 9:00 to 21:00) 
were collected on Teflon filters using an atmospheric 
sampler of medium flow rate (KDB-120B; at a flow rate 
of 0.96 ± 0.04 L/min). Blank filters were also collected to 
eliminate the effect of atmospheric background values of 
crustal elements, such as Ca, Fe, and Al (Feng et al. 2022b; 
Xu et al. 2016). The volume of air passing through the filter 
for each sample was recorded at the end of sampling, and all 
filter samples were equilibrated in a clean room at a constant 
temperature and humidity (22 ± 2 °C, 40 ± 5%) for 48 h. The 
filters were weighed with an electronic microbalance before/
after sampling (MS105DU, Mettler-Toledo, Switzerland). 
A total of 38 filter samples were stored and sealed at − 4 °C 
until chemical analysis.

Quarter filter samples were chopped with ceramic scis-
sors and placed in Teflon digestion tubes with 4 mL 60% 
nitric acid, 2 mL 40% hydrofluoric acid, and 0.5 mL 30% 
hydrogen peroxide. The metal elements were extracted in a 
microwave digestion system (Multiwave PRO, Anton Paar, 
Austria) under a specific temperature program. The digestion 
solution was evaporated to 1−2 mL on an electric hot plate 
heated to 120 °C for about 5 h. The extract was diluted to 
20 mL by adding 5%  HNO3 after cooling, and the solution 
was passed through pinhole filters of 0.45 μm. Nine HMs 
(Co, Ni, Mn, Pb, Cr, Zn, As, V, and Cu) and six conventional 

Fig. 1  Location of sampling sites
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metal elements (K, Mg, Ca, Na, Al, and Fe) were analyzed 
with an inductively coupled plasma optical emission spec-
trometer (PerkinElmer Optima 8000, USA).

Quality Control in Analysis

The standard reference material (GBW-07401, National 
Research Centre for Certified Reference Materials, China) 
and blank filters were analyzed in the same way as the sam-
ples to achieve quality assurance and control. The analyti-
cal results for all samples were subtracted from the blank 
control to reduce the error caused by the background val-
ues. Average repeatability of less than 6% was obtained for 
15 metal elements with recoveries that ranged from 89.5 to 
109.2% (Table S1). The detection limits of K, Mg, Ca, Na, 
Al, Fe, Co, Ni, Mn, Pb, Cr, Zn, As, V, and Cu were 1.00, 
0.04, 0.05, 0.5, 1.00, 0.10, 0.20, 0.50, 0.10, 1.00, 0.20, 0.20, 
1.00, and 0.50 μg/L, respectively. If the element concentra-
tion is below the detection limit, then half the detection limit 
is used instead.

Evaluation of  PM2.5‑Bound HM Contamination

The pollution risk of  PM2.5-bound HMs was quantified by 
using the ecological risk index (ERI) proposed by Swed-
ish geochemist Hakanson in 1980 (Hakanson 1980). The 
method is frequently adapted to HM pollution assessment 
and ecological risk evaluation in atmospheric particulate 
matter (Zhang et  al. 2021). The ERI was calculated as 
follows:

where Ei
r
 is the potential ecological risk coefficient of the ith 

HM, Ti
r
 is the biotoxicity response coefficient of the ith metal, 

Ci
f
 is the contamination factor, Ci

sample
 is the content of the ith 

metal in the sample, and Ci
crust

 is the soil background value 
of the ith HM. In this study, the Ei

r
 values of nine HMs were 

estimated. The biotoxicity response factors of Co, Ni, Mn, 
Pb, Cr, Zn, As, V, and Cu were chosen as 5, 5, 1, 5, 2, 1, 10, 
2, and 5, respectively, according to the previous studies 
(Zhang et al. 2021; Zhi et al. 2021; Liu et al. 2018b). The 
ERI ranking of HMs in  PM2.5 is shown in Table S1.

Source Identification Method

Positive matrix factorization (PMF), which was proposed by 
Paatero and Tapper (1994), is a useful tool for determining 
the source and contribution of  PM2.5-bound HMs. PMF does 
not require measurements of the source component spectrum 
and has nonnegative species contribution in the decompo-
sition matrix compared with other source apportionment 

(1)ERI =

m
∑

i

Ei
r
=

m
∑

i

Ti
r
× Ci

f
=

m
∑

i

Ti
r
×

Ci
sample

Ci
crust

,

models (Paatero and Tapper 1994; Hassan et al. 2021). The 
principle of the PMF model can be obtained from previous 
studies (Xie et al. 2020; Amato and Hopke 2012).

In this study, the concentrations of 15 metal elements 
(K, Mg, Ca, Na, Al, Fe, Co, Ni, Mn, Pb, Cr, Zn, As, V, and 
Cu) and  PM2.5 were inputted into the model to calculate the 
composition spectrum and contribution of each factor. The 
optimal solution of the model was tested between two and 
seven factors according to the Qrobust/Qture value. The result 
showed that the model was most reliable when the number 
of factors was four.

The uncertainty test of the PMF model is essential due 
to the limitation of the sample size, data variability, model 
structure instability, and parameter sensitivity. Displace-
ment (DISP) and BootStrap (BS) methods recommended 
by Paatero et al. (2014) were applied to obtain error esti-
mates for source assignment. Additional details of these 
approaches to uncertainty analysis were presented in previ-
ous studies (Men et al. 2019; Paatero et al. 2014).

Probabilistic Health Risk Assessment

The probabilistic health risk assessment is predicated on 
the health risk assessment model provided by the US EPA 
(2011), with thousands of samples obtained using MCS and 
the results presented in a statistical manner (Xie et al. 2017). 
Airborne HMs pose health risks to humans in three ways, 
namely, direct inhalation by the respiratory system, ingestion 
of food to which HMs are attached, and dermal absorption of 
HMs deposited on the skin surface (Han et al. 2021a; Wang 
et al. 2019a; Zhang et al. 2018). The average daily exposure 
(ADD) for the three pathways was calculated by using the 
following equation:

where C is the measured concentration of HM (mg  kg−1). 
The detailed interpretations and reference values for other 
parameters are presented in Table S2.

Noncarcinogenic risk (NCR) and carcinogenic risk (CR) 
characterization is the final step in quantifying exposure to 
 PM2.5-bound HMs. The NCR of a single metal is expressed 
as a hazard quotient (HQ). The hazard index (HI), which is 
the sum of the HQ of all HMs, is used to assess the compre-
hensive NCR of exposure to multiple pollutants, as shown 
in the following formula:

(2)ADDinhalation =
C × InhR × EF × ED

PEF × BW × AT
,

(3)ADDingestion =
C × EF × IngR × ED

BW × AT
× CF,

(4)ADDdermal =
C × SA × SL × ABS × EF × ED

BW × AT
× CF,
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where RfD is the reference toxicity threshold of HMs in dif-
fident pathways. If HQ or HI ≥ 1, then the exposed popula-
tion is at risk of severe NCR (Zhang et al. 2018), and the 
corresponding level of risk substantially increases with the 
improvement in HQ and HI.

The CR is the potential risk value of developing various 
cancers in humans by different exposure routes, and the 
total CR (TCR) is the sum of the CR of all  PM2.5-bound 
HMs. Both factors are calculated as follows:

where SF is the cancer slope factor of each HM under three 
exposure pathways. CR or TCR less than  10−6 is considered 
safe, while values greater than  10–4 indicate an unacceptable 
CR (Behrooz et al. 2021).

According to the International Agency for Research on 
Cancer (IARC 2016), Cr (VI), Ni, Pb, Co, and As were 
confirmed as carcinogenic HMs. Mn, Zn, V, and Cu were 
used only to calculate the NCR of the exposed population. 

(5)HQ =
ADD

RfD
,

(6)HI =

k
∑

i=1

HQi = HQinhalation + HQingestion + HQdermal,

(7)CR = ADD × SF,

(8)TCR =

k
∑

i=1

ADDi × SFi,

The concentration of Cr (VI) was calculated using 1/7 of 
the Cr concentrations in this study (Massey et al. 2013).

The MCS was performed by loading Oracle Crystal Ball 
v11.1.24 (Oracle, USA) in Microsoft Excel. The various 
parameters in the traditional health risk assessment were 
separately imported according to the type of statistical dis-
tribution to which they belong (Table S4). The distribution 
type for each metal was fitted with a time series of measured 
concentrations using Crystal Ball software. In the end, the 
health risks of different populations were outputted after 
10,000 MCSs.

Results and Discussion

Overview of the  PM2.5 Mass

The temporal variation of the  PM2.5 average concentra-
tions at two rural sites from November 24 to December 3, 
2020 is presented in Fig. 2. During the heating season, the 
 PM2.5 masses in the QZV and LSV were 39.90–266.21, 
and 85.25–282.43 μg  m−3, respectively, with mean values 
of 151.19 ± 64.61 and 163.72 ± 61.01 μg  m−3, respectively. 
The mean concentrations of  PM2.5 at both sites were much 
higher than those in some urban centers in China, such as 
Luoyang (91.1 μg  m−3, 2019.10–2020.01) (Xu et al. 2022), 
Nanjing (113 μg  m−3, 2014.01–02) (Kong et al. 2015), and 
Shanghai (65.0 μg  m−3, 2015.11–12) (Huang et al. 2018). 
The degree of fine particulate matter contamination in rural 
areas, which receive less concern, far exceeds that in some 
urban areas in China. In Fig. 2, all  PM2.5 filter samples 

Fig. 2  Time series of the  PM2.5 
mass and meteorological data 
during the sampling period. 
(WD, wind direction)
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exceeded the 24 h  PM2.5 mass guideline recommended by 
the WHO (15 μg  m−3). Three samples from QZV blew the 
national ambient air quality standards by the Ministry of 
Ecology and Environment of the People’s Republic of China 
(GB3095-2012) (daily average grade II, 75 μg  m−3) out of 
a total of 38 samples collected from two rural sites. The 
burden of air pollution was higher in suburban rural than in 
remote rural areas, which may be related to the proximity to 
urban centers and the presence of more potential pollution 
sources. LSV was surrounded by several factories, dense 
suburban roads, and the Chinese national road G107, and the 
high  PM2.5 levels might be associated with factory exhaust 
and vehicle emissions. Coal and biomass feedstock burning 
is the main form of winter heating in remote rural areas of 
northern China, while combustion for heating might be the 
leading cause of severe local haze events in QZV.

Multiple significant haze events were observed at both 
sampling sites in this study. In addition to the influence of 
anthropogenic activities such as coal combustion and indus-
trial production, meteorological conditions were considered 
critical drivers for the rapid growth of  PM2.5. Hourly data 
of meteorological factors, including wind speed (WS), 
wind direction (WD), temperature (T), and relative humid-
ity (RH), and gaseous pollutants such as  SO2,  NO2, CO, 
and  O3 were provided by Anyang Ecology and Environment 
Bureau. The average RH was 80.50% during the sampling 
period, and it reached 93% when the atmospheric visibility 
significantly decreased. The high RH provides appropriate 
requirements for the heterogeneous reaction of aerosols, 
which causes the production of numerous secondary pol-
lutants such as sulfates. The mean WS during the sampling 
period was 0.64 m/s, and the frequent stationary weather 
sharply diminished the diffusion of the fine particulate 

matter. In the haze episode from November 29th 22:00 to 
December 1st at 10:00, the average RH and WS were 86.26% 
and 0.21 m/s, when the highest  PM2.5 mass concentrations 
peaked at 266.21 and 282.43 μg  m−3, respectively. Adverse 
meteorological conditions also played a dominant role in 
 PM2.5 accumulation. Severe haze occurred in LSV from 
22:00 on November 25th to 10:00 on November 26th. The 
average WS at this time was 0.86 m/s, which was markedly 
higher than the average level. The proximity transport of 
pollutants emitted from nighttime production emissions in 
the surrounding factories could be a key contributor to the 
severe haze in LSV. By contrast, the decrease in  PM2.5 mass 
concentration was related to the reduction in pollutants from 
the surrounding factories and favorable atmospheric disper-
sion conditions.

Mass and Pollution Assessment of Metal Elements

The descriptive statistics of the 15 metal elements at two 
sites are shown in Table 1, and the average mass follows the 
sequence K > Ca > Fe > Al > Na > Mg > Zn > Pb > As > Co > 
Mn > Ni > Cr > Cu > V in QZV while Ca > K > Fe > Al > Na 
> Mg > Zn > Pb > Mn > As > Ni > Cu > Cr > V > Co in LSV 
during the heating season. Similar characteristics of HM 
contamination were observed in two rural sites. The mean 
Co, Pb, and As concentrations of QZV were significantly 
higher than those of LSV. Co, Pb, and As are released when 
fossil energy sources such as coal and oil are burned (Liu 
et al. 2019). The contribution of coal combustion emissions 
to atmospheric  PM2.5 around QZV was likely greater than 
that of LSV, which confirms that coal is still the primary 
energy in remote rural areas of China. Although several 
measures replacing coal with natural gas and electricity have 

Table 1  Summary statistics of 
metal element concentrations in 
 PM2.5 (ng  m−3)

Special QZV LSV

Mean Median SD CV% Mean Median SD CV%

K 1583.99 1359.89 818.11 51.65 1259.56 1206.04 435.43 34.57
Mg 218.15 202.87 115.45 52.92 185.71 183.25 112.27 60.45
Ca 1419.27 1264.52 789.28 55.61 1423.96 1515.43 1066.11 74.87
Na 830.33 777.00 368.66 44.40 657.04 546.10 413.37 62.91
Al 836.99 604.81 636.22 76.06 951.19 797.06 744.50 78.27
Fe 865.08 821.88 411.58 47.58 957.09 797.23 451.21 47.14
Co 49.24 37.16 30.40 61.75 11.97 11.44 5.42 45.30
Ni 22.06 16.95 17.70 80.23 26.29 26.24 12.43 47.30
Mn 41.35 40.14 15.92 38.49 50.34 47.13 17.56 34.89
Pb 97.34 86.33 41.74 50.89 52.28 58.03 16.70 27.74
Cr 18.92 16.96 9.70 51.28 18.41 15.80 6.54 35.53
Zn 163.26 162.94 49.57 30.36 232.97 219.24 87.42 37.52
As 58.63 46.77 31.78 54.21 39.85 38.62 14.08 35.64
V 10.24 7.79 6.92 67.53 14.75 13.71 4.53 30.72
Cu 12.53 12.18 5.08 40.58 23.56 23.19 7.62 32.33
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been implemented in many parts of China, the implementa-
tion in remote rural areas has been far less intensive than in 
suburban rural areas closer to urban centers.

The Ei
r
 values of the six HMs were calculated, as pre-

sented in Fig. 3 (unit converted from μg  m–3 to mg  kg–1). 
The ecological risk caused by atmospheric  PM2.5-bound 
HMs was markedly stronger in QZV than in LSV despite 
the lower average daily  PM2.5 mass, and this result is related 
to the high-enrichment level of HMs in QZV. With regard to 
the mean value of all samples, the Ei

r
 values for Ni, Mn, Cr, 

Zn, and V were all below 40, which indicates that the five 
HMs pose a slight risk to the environment. The ecological 
risk of Co reached a heavy risk level in QZV, but it was neg-
ligible in LSV, which is inseparable from the high Co con-
centration in QZV. The remaining HMs, including Pb, As, 
and Cu, severely threatened the ecological environment. The 
ERI of As was much higher than that of the eight other toxic 
HMs at both sites. Notably, the highest average Ei

r
 value in 

QZV reached an extremely heavy risk level. Although the 
suburban rural area had a higher  PM2.5 pollution burden, it 
was typically less environmentally risky than remote rural. 
The rural air environment of the NCP showed significant 
HM contamination and potential ecological risks, which 
should be addressed, especially As, Pb, Cu, and Co.

Source Distribution of Metal Elements

Based on the PMF model (Fig. 4), four sources of  PM2.5 
were identified for each sampling site, namely, coal and bio-
mass combustion, industrial emissions, dust sources, and 
vehicle emissions.

In the QZV site, factor 1 has high Zn, Cu, Mn, and Pb 
emissions. Zn, Cu, Mn, and Pb can be released using motor 
vehicle lubricants and the wear of tires and brake pads 
(Kong et al. 2020; Han et al. 2020). Accordingly, factor 1 
can be identified as vehicle emissions, and it accounted for 
17.25%. By the end of 2020, the number of motor vehicles 
in Anyang has reached 1,042,600 (AMBS 2021). Increas-
ing motor vehicle ownership means that air pollution from 
vehicle emissions is not negligible, even in rural areas. Fac-
tor 2 was weighted by Ni, Cr, V, and Cu. In 2020, the output 
of steel products and steel in Anyang reached 18,106,100 
and 16,441,900 tons, respectively (AMBS 2021). Metals, 
such as Ni, Cr, V, and Mn, are frequently added during the 
steelmaking process to achieve the best performance from 
the steel product (Liu et al. 2018a). Factor 2 can be con-
sidered an industrial emission source, and it accounted for 
19.37%. Factor 3 has high Co, K, Pb, and As emissions and 
was treated as a coal and biomass combustion source, and 
it accounted for 36.51% (Fig. S1). Previous studies showed 
that Co and Pb were emitted during the combustion of fossil 
fuels such as coal (Simoneit et al. 1999). As is mainly from 
coal combustion (Chen et al. 2021). The field investigation 
was conducted during the heating season when coal burning 
for heating is a common occurrence. K is the signature spe-
cies of biomass burning (Simoneit et al. 1999; Begum et al. 
2004). The burning of agricultural waste still exists in rural 
northern China, despite that numerous bans on the burning 
of biomass materials such as straw were implemented. Fac-
tor 4 showed high loadings of Mg, Ca, Na, Al, and Fe, which 
can be designated as dust sources. This factor accounted for 
26.87%. Al, Fe, Ca, and Na are crustal elements because 

Fig. 3  Description of Ei

r
 in  PM2.5-bound HMs. (a QZV and b LSV, the black circle represents the mean value of Ei

r
 for heavy metals, and the 

black dashed line is the position of the mean value on the right coordinate axis)
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they are the most abundant metallic elements in the Earth’s 
crust. Mg is considered to be associated with construction 
dust (Zhao et al. 2019). In the LSV site, factor 1 has high 
Cu, Zn, and Pb emissions and can be considered a vehicle 
emission source, and it accounted for 27.92%. Factor 2 was 
mainly characterized by V, Ni, Fe, Cr, and Mn, which can be 
identified as industrial emissions. This factor accounted for 
32.05%. High loadings of As, Na, Co, Pb, and K occurred in 
factor 3, and the burning of biomass feedstocks, such as corn 
stover releases Na (Simoneit et al. 1999; Begum et al. 2004). 
Accordingly, factor 3 was interpreted as coal and biomass 
combustion emissions, and it accounted for 32.11%. Factor 4 
has high Mg, Ca, Al, and Fe emissions and can be identified 
as dust sources, and it accounted for 7.92%. During the heat-
ing period, coal and biomass combustion were the dominant 
sources of  PM2.5-bound HMs at both sites. The high per-
centage of this source in QZV was related to the lifestyle of 
remote rural residents who heat their homes by burning coal 
and biomass. However, coal and biomass combustion still 
contributed 32.11% despite that LSV is located in a central-
ized urban heating area. A large number of industrial enter-
prises with high consumption of coal and biomass existed 
around LSV, including thermal power generation and steel 
smelting. The high contribution of coal and biomass com-
bustion may be related to the high consumption of energy 
sources such as coal and biomass in industrial production. 
In the present study, coal and biomass combustion was the 
main source of  PM2.5-bound HMs in remote and suburban 
rural areas, and the contribution of the former was appar-
ently higher than that of the latter. The share of industrial 
and vehicle emissions in LSV was also much greater than 
that in QZV. This result can be explained by two reasons: 
one is that more factories are relocated from urban to sub-
urban rural, and the other is that the road network is dense 
and the traffic load is relatively high in the suburban rural 
areas. For dust sources, the contribution in QZV was as high 

as 26.87%, which is much greater than the 7.92% in LSV. 
According to our investigation, a large amount of farmland 
around QZV had exposed soil and transported from the sur-
face to the atmosphere by wind.

Uncertainty Analysis of the PMF Model

The DISP and BS methods were used to obtain the error esti-
mate (EE) of source contribution obtained from PMF. DISP 
was typically determined as the first step in the selection 
solution. The frequency of factor swapping was inversely 
correlated with the feasibility of the model solution. The 
DISP swap results from the PMF model for both sites were 
less than 0.1% (Table S3), which indicates that the DISP 
swap performance was well, and the data inaccuracies were 
negligible. The DISP results were also acceptable because 
the percentage change in Q was less than 1% (Table S3), 
which is consistent with the results of previous research 
(Brown et al. 2015). In the BS test, the number of bootstrap 
runs was set to 100, the black size was 14, and the correla-
tion R value was 0.6 (Paatero et al. 2014). The diagonal 
values of the mapping matrix from the BS to the base factors 
at the both sampling sites were between 83–98 and 85–97% 
(Table S3), respectively. This finding implies that the match-
ing rate of BS factor was feasible. The uncertainty intervals 
of the estimation errors based on the BS and DISP methods 
are described in Table S6. The interval ratios, which are a 
crucial indicator of the error estimation results for differ-
ent metal elements, were calculated by using the difference 
between uncertainty intervals divided by the 50th percentile 
or mean (Wang et al. 2021b). In Fig. S2, the trends of BS 
and DISP interval ratios were consistent, which shows that 
the uncertainty results of the two methods were in agree-
ment. The metal elements with large interval ratios (near or 
equal to two) indicated significant uncertainty (Wang et al. 
2021b). For instance, in the QZV site, K, Na, Co, Ni, and 

Fig. 4  PM2.5 factor distribution characteristics and contribution based on the PMF model. (a QZV and b LSV)
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Cr are present in factor 1, K, Mg, Ca, Al, Co, Pb, and Zn in 
factor 2, Mg, Ca, and V in factor 3, and Ni, Pb, As, and Cu 
in factor 4. In the LSV site, Ca, Al, Fe, Mn, Cr, Zn, and V 
are present in factor 1, Co, Ni, As, and Cu in factor 2, Na, 
Al, and As in factor 3, and Mg, Ca, and Na in factor 4. The 
interval ratio of BS was also greater than the interval ratio 
of DISP, which suggests that the random error accounted 
for a larger proportion of the uncertainty (Wu et al. 2020). 
Although certain uncertainties remained in the model, espe-
cially for species with a lower share, the four-factor solution 
of PMF model was deemed to be an optimal and reliable 
explanation in our study.

Probabilistic Risk Assessment of Rural Population

MCSs were used to derive probability NCR and CR for all 
residents (including children and adults) through three dif-
ferent routes in two rural areas. The descriptive statistics of 
the results are presented in Table 2.

The cumulative frequency plots of risk for the 10,000 
simulation experiments are shown in Figs. 5 and 6. The 
health risks for all groups exposed to  PM2.5-bound HMs 
were consistent at rural sites in the NCP. The risk of out-
door  PM2.5 exposure for residents around QZV (HI of 4.38 
for children, HI of 9.19E−01 for adults) was higher than that 
around LSV (HI of 2.70 for children, HI of 5.94E−01 for 
adults). Residents of remote rural areas were also more sus-
ceptible to the threat of NCR from haze exposure than those 
of rural suburban areas. The HI values in rural North China 
were much higher than those in Xinxiang urban area in the 
winter of 2014 (HI of 0.38 for children, HI of 0.21 for adults) 
(Feng et al. 2017), Shenzhen urban area in 2014–2020 (HI of 
0.4 for children, HI of 0.3 for adults) (Yan et al. 2022), Kun-
ming industrial area in 2013–2014 (HI of 0.26 for children, 
HI of 0.17 for adults) (Han et al. 2021b), and Beijing educa-
tion area in 2016 (HI of 8.92E−01) (Liu et al. 2018a). The 
HI values were also lower than those in Xian and Nanchang 
urban areas (Li et al. 2021). The NCR in rural northern 
China was comparable to or even higher than those in some 
large cities, particularly in remote rural areas. The HI values 
were greater in children than in adults, which is consistent 
with the result of previous studies. Approximately 100% and 
99.78% of children exceeded the risk threshold for HI, and 
children were more vulnerable to NCR than adults because 
of their habits of playing outdoor and licking contaminants 
attached to their hands (Zhang et al. 2021). The sensitivity 
of hemoglobin to HMs was also much higher than that of 
adults due to the fragile constitution of children (Sah et al. 
2019). In this study, the trend of average HQ values for all 
population was As > Pb > Cr > Zn > V > Co > Mn > Cu > Ni 
in QZV, while the trend was As > Pb > Cr > V > Mn > Ni > 
Zn > Cu > Co in LSV. The high HQ of As was the domi-
nant contributor to the increase in NCR. The HQ values of 

the remaining 6 HMs in children and adults were negligible 
except for As, Cr, and Pb.

According to the cumulative probability distribution of 
CR, the trend of average CR values for all population was 
As > Pb > Co > Cr > Ni in QZV. Meanwhile, the trend was 
As > Pb > Cr > Co > Ni in LSV. The 95% CIs of TCR were 
1.61E−04–1.65E−04 and 9.74E−05–9.93E−05 for chil-
dren and 2.33E−04–2.42E−04 and 1.39E−04–1.44E−04 
for adults at the two rural sites, respectively, both of which 
significantly exceeded the acceptable risk threshold of 
 10−6. Among the 10,000 statistical samples generated by 
MCSs, 74.19% and 82.31% of children and adults, respec-
tively, showed a TCR exceeding  10−4 at QZV. Meanwhile, 
38.18% and 57.29% of children and adults, respectively, 
showed such TCR at LSV. This result indicates that more 
than half of population was at risk of acute carcinogenic 
threats from  PM2.5-bound HMs. Residents in remote rural 
areas also faced much higher CR than suburban rural areas. 
Outdoor As and Pb exposure were the major drivers of high 
CR in all population. Notably, the mean CR values for As 
were near or even exceeded  10−4 at both sites, which sug-
gests a remarkably severe cancer risk. The cancer risk of the 
remaining HMs, including Co, Ni, and Cr, was acceptable. 
In addition to Pb, the CR values were higher in adults than in 
children, which was related to the outdoor exposure time of 
the population due to occupation and lifestyle. Adults spend 
more time outside than children. More attention should be 
paid to rural areas, especially those far from urban cent-
ers, in alleviating haze pollution in China. Exposure of rural 
populations to airborne As and Pb through inhalation, inges-
tion, and dermal contact was the main cause of their high 
carcinogenic burden.

Quantification of Health Risks Based on Pollution 
Sources

PMF–HR, which is a combination of the source appointment 
model and health risk assessment, was applied to the source 
contribution of health risks in rural China based on MCSs 
of risk mean values. In Fig. 7, the health risk contribution 
rates from different sources demonstrated a high degree of 
consistency between adults and children. This finding is 
similar to that of the study in Shanghai urban park (Huang 
et al. 2021).

The source of the mean NCR for children and adults 
in QZV mainly includes coal and biomass combustion, 
vehicle emissions, and industrial emissions. Notably, 
coal and biomass combustion contributed approximately 
63.62% and 59.68%, respectively. The high NCR values 
in remote rural areas were closely linked to the use of coal 
and biomass fuels for heating in winter, and HM emissions 
from coal and biomass combustion having NCR values for 
children and adults were 2.79 and 5.48E−01, respectively. 
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In LSV, the NCR contributions of the four sources were 
also distinctly different. Specifically, coal and biomass 
combustion, vehicle emissions and industrial emissions 
were the highest. The coal and biomass combustion were 
major NCR sources at two sites, and the risk share of LSV 
was lower than that of QZV. Meanwhile, the level of risk 
caused by vehicle and industrial emissions was greater. 
The ownership of motor vehicles in 2019 reached 340 mil-
lion in China and has maintained a high growth rate in 
recent years (Central People’s Government of the People’s 
Republic of China, http:// www. gov. cn/). Specifically, vehi-
cle emissions were identified as a major source of  PM2.5 
in several Chinese cities (Wu et al. 2016; Zíková et al. 
2016; Chao et al. 2019) and in rural in northern China 
(Feng et al. 2006), especially in suburban rural areas. The 

NCR from industrial production activities was also not 
negligible, and it reached mean values of 6.73E−01 and 
1.79E−01 for children and adults, respectively. The coal 
and biomass combustion for CR were also dominant in all 
groups at both sites, with approximately 68% (QZV) and 
46% (LSV), respectively. Coal and biomass combustion in 
remote rural areas where coal is the primary energy source 
contributed more to the CR of residents than in suburban 
rural areas on the edge of urban centers. The use of coal 
and the burning of agricultural waste, in addition to rais-
ing the population’s noncarcinogenic health risks, make 
people more susceptible to cancer in remote rural areas. 
As and Pb, which have the highest loads from coal and 
biomass combustion, should be considered the top pollut-
ants for further risk control.

Fig. 5  Cumulative probabilities of the NCR (HQ) and CR (CR) of HMs in QZV (The blue and red dashed lines represent the location of the 
average risk values for adults and children, respectively)

http://www.gov.cn/


 W. Wang et al.

1 3

The NCR of HMs from coal and biomass combustion to 
the residents was 2.68 times higher in QZV and 2.47 times 
greater in cancer burden than in LSV, while the health risk 
from motor vehicle emissions and industrial emissions was 
lower. This result suggests that the high health risk faced 
by remote rural populations mainly comes from coal com-
bustion compared with that by rural suburban populations. 
The spread of electricity and natural gas reduces the health 
burden on residents from  PM2.5-bound HMs in rural China, 
including noncarcinogenic and cancer risks, compared 
with that of coal. The use of coal and biomass for heat-
ing and cooking should be rigorously prohibited in remote 
rural areas, while motor vehicle exhaust ought to be strictly 
controlled in suburban rural areas. The health hazards that 
industrial pollution poses to rural residents must be regarded 

as an increasing number of highly polluting industries move 
from the cities to the countryside.

Strengths and Limitations

Differences in health risks among rural populations with 
dissimilar types of energy use were first proposed, and 
field observations were implemented in suburban rural and 
remote rural areas. Probabilistic and source-specific health 
risk assessments were coupled to reduce the uncertainty 
introduced by point estimates and provide a scientific basis 
for risk management directions. However, uncertainties 
remain in the health risk assessment of this study. Firstly, 
the CR and NCR exposed to the local population were cal-
culated based only on the sum of the risks of the nine HMs, 

Fig. 6  Cumulative probabilities of the NCR (HQ) and CR (CR) of HMs in LSV (The blue and red dashed lines represent the location of the 
average risk values for adults and children, respectively)
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and more HM species should be considered, such as Cd and 
Hg. Secondly, only the total concentrations of HMs were 
considered in the present study, and health risk assessment 
based on the total concentration may overestimate the poten-
tial health burden relative to that based on bioavailability. 
The finite number of sampling sites is the limitation, and 
more research on both rural types is required in the future 
to complement our perspective.

Conclusion

The likelihood of developing cardiovascular or respiratory 
diseases, and even premature death due to air pollution expo-
sure, is higher among rural populations than urban ones in 
China. There is a significant discrepancy between govern-
ment policies aimed at reducing health risks for rural popu-
lations and the actual situation, primarily due to the lack of 
information about haze pollution in these areas.

Our study quantified the health risks for rural residents 
using different types of energy during hazy weather. Using 
a combination of probabilistic and source-specific risk 
assessment methods in the North China Plain, we found 
that the average  PM2.5 mass greatly surpassed the daily 
guideline recommended by WHO and was higher than in 
most Chinese cities. Suburban rural areas carried a heavier 
air pollution burden than remote rural areas. There was 
considerable variability exists in the probabilistic and 

source-specific health risks among populations located in 
rural areas with different energy use types. At the QZV 
and LSV sites, 100% and 99.78% of children, and 32.17% 
and 8.12% of adults, respectively, exceeded the accept-
able risk threshold of 1 for HI. The TCR values for all 
populations exceeded  10−6, with higher burdens found in 
remote rural areas. Children faced higher NCR but lower 
CR than adults. The NCR of HMs from coal and biomass 
combustion was 2.68 times higher in QZV and carried 
2.47 times more cancer risk than in LSV. However, the 
health risks from vehicle and industrial emissions were 
lower. The widespread use of electricity and natural gas 
decreased the health burden on residents compared with 
coal. The study recommends coordinated control of both 
non-carcinogenic and carcinogenic burdens to mitigate the 
health risks of rural populations exposed to haze.

Coal and biomass combustion in remote rural areas 
should be considered major control sources due to their sig-
nificant contributions to pollution. In suburban rural areas, 
the main focus should be on reducing coal and biomass com-
bustion, vehicle emissions, and industrial emissions. As and 
Pb, which have the highest loads from coal and biomass 
combustion, should be prioritized for risk control. During 
the energy transition, increasing industrial emissions in rural 
areas pose new challenges for local public health manage-
ment. Managing  PM2.5-bound HMs is complex due to the 
dispersed nature of villages and the high exposure of rural 
populations in China. There is a need for further extensive 

Fig. 7  Relative contribution of 
each source to the NCR and CR 
at two sites
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studied on the different types of energy use in rural areas to 
ensure precise policy direction.
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