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Abstract: In a space-based infrared system, the enhancement of targets plays a crucial role in im-
proving target detection capabilities. However, the existing methods of target enhancement face
challenges when dealing with multi-target scenarios and a low signal-to-noise ratio (SNR). Further-
more, false enhancement poses a serious problem that affects the overall performance. To address
these issues, a new enhancement method for a dim moving multi-target with strong robustness for
false enhancement is proposed in this paper. Firstly, multi-target localization is applied by spatial–
temporal filtering and connected component detection. Then, the motion vectors of each target
are obtained using optical flow detection. Finally, the consecutive images are convoluted in 3D
based on the convolution kernel guided by the motion vectors of the target. This process allows
for the accumulation of the target energy. The experimental results demonstrate that this algorithm
can adaptively enhance a multi-target and notably improve the SNR under low SNR conditions.
Moreover, it exhibits outstanding performance compared to other algorithms and possesses strong
robustness against false enhancement.

Keywords: space-based infrared target; dim moving multi-targets; target enhancement; strong
robustness for false enhancement

1. Introduction

With the increase in human space activities, the application of space-based infrared
target search and tracking technology in the military and civilian fields has become more
and more extensive. Its main task is to analyze and identify targets, requiring detection
of all targets in the image. However, there are some factors that limit the ability to detect,
such as the dim and small features of the space targets caused by long detection distances,
the deficiency of the detection system and the interference of the environment. In addition,
when multiple targets appear in the field of view simultaneously, it is difficult to detect
them all due to their unknown number and different states. Therefore, the enhancement
of the dim moving target and improvement in its adaptability to multi-target has been
regarded as the key to solve the above problems, as it can improve the SNR (signal-to-noise
ratio) of the image and further improve the detection capability of space-based infrared
target detection technology.

The existing infrared target enhancement methods can be divided into two categories:
indirect target enhancement and direct target enhancement. Indirect enhancement that
processes the background mainly relies on the background characteristics and can be
divided into two types: spatial domain processing and transform domain processing.
Background suppression methods in the spatial domain include histogram equalization [1],
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grayscale linear transformation, 2D least mean square filtering [2], max-mean filtering [3]
and max-median filtering [4], Butterworth high-pass filtering, morphological filtering [5–9]
and so on. In addition, the background suppression methods in the transform domain
include the traditional frequency domain filtering [10] such as the ideal high-pass filter,
Butterworth high-pass filtering and Gauss high-pass filtering, as well as the wavelet
transform and its extended transform [11,12], such as the ridgelet transform, curvelet
transform, contourlet transform and so on. These methods have the advantages of low
computation and easy engineering implementation, and they can adapt to the multi-target
situation because only the background characteristic has been considered. However, the
performance of these methods is limited such that it cannot adapt to low SNR conditions.
Meanwhile, a significant amount of noise remains after processing.

The methods of direct target enhancement are mainly based on the characteristics of
the target, including the single-frame method based on the intensity attributes, the gradient
attributes and the Gauss-like shape of the target, as well as the multi-frame method based
on the motion characteristics of the target. Methods based on the intensity and gradient
attributes of the target, such as the algorithms based on rough set theory [13,14], have
limited applications for images with a low SNR. Methods based on the Gauss-like shape
of the target, such as human visual characteristics (HVS)-based algorithms [15–18], do
not take the interference of the background into account. Although the single-frame
methods can adapt to multi-target conditions, they are prone to target misidentification
and removal due to the limited available information. This makes it difficult to recover
the targets in the subsequent processing. The multi-frame methods mainly based on the
motion characteristics of the target perform better than the above algorithms because
they utilize both the spatial and temporal characteristics of the targets. In particular,
the model-based method [19,20] requires prior information about the target motion and
therefore cannot enhance multiple targets because of inconsistency in the motion state of
each target. Then, the algorithms based on a 3D matching filter [21], including the three-
dimensional double-directional filtering (3DDDF) algorithm [22], 3D wide-to-exact search
directional filtering [23] and three-dimensional collaborative filtering and spatial inversion
(3DCFSI) algorithms [24], judge the existence of the target by traversing the trajectory
and then enhance the target. In addition, the algorithms based on dynamic programming
(DPA) [25–30] can enhance the target by optimizing the merit function. Unfortunately,
when applied to multi-target scenarios, these approaches can be seriously affected by the
blind pixels and noise. A blind pixel is easily identified as a target due to its high grayscale
value. Once the blind pixel or noise is mistaken as the target during the judgment process,
the performance of the algorithm will be greatly reduced, and the subsequent processing
will be seriously affected.

Thus, the issues and challenges of the enhancement methods can be summed up into
three points: stability at a low SNR, adaptability to multiple targets and robustness for false
enhancement. In conclusion, a new enhancement method for a dim moving multi-target
with strong robustness for false enhancement is proposed in this paper in order to meet
the aforementioned requirements. Firstly, two filtering operations are conducted within
a single frame using spatial information, and part of the noise is removed with temporal
information. And the blind pixels are suppressed as well. After that, multiple targets are
windowed through coarse positioning, and the optical flow of each target is detected within
the corresponding window. Finally, the consecutive frames are locally convolved in 3D
based on the individual optical flow. The experimental results demonstrate a significant
improvement in the SNR, as well as the achievement of adaptive enhancement of multiple
targets through the algorithm. Meanwhile, this method has strong robustness against
false judgment, and it is not easy to cause false enhancement. Moreover, its performance
surpasses that of other contrast algorithms.

The rest of this paper is structured as follows. In Section 2, the characteristics of
infrared images with the dim moving multi-target are analyzed. Section 3 explains the
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proposed algorithm in detail. In Section 4, the experimental results and comparison are
presented. Finally, a conclusion is given in Section 5.

2. Analysis of Dim Moving Infrared Target Images

Basically, there are three parts in a space-based infrared image: the targets, the back-
ground and the noise [31], which can be expressed as

r(x, y, k) = t(x, y, k) + b(x, y, k) + n(x, y, k) (1)

where k is the frame index; (x, y) is the pixel’s coordinates; r(x, y, k) denotes the gray value
at (x, y) in frame k; and t(x, y, k), b(x, y, k) and n(x, y, k) denote the target, background and
noise gray values, respectively.

2.1. Characteristics of the Target

In theory, a space target can be viewed as a point light source [32,33] and the response
of an imaging system to a point source can be described by the point spread function (PSF).
Due to the influence and limitation of various factors, the actual optical system image of
the point target is speckled, and then the PSF can be expressed by the Gauss function [34]:

t(x, y, k) = 1
2πρxρy

· exp
[
− 1

2

(
(x−x0)

2

ρ2
x

+ (y−y0)
2

ρ2
y

)]
(2)

Generally, the main intensity of a space target is concentrated in a pixel area of 3× 3,
and the intensity distribution will change with the change in its position, which can be
expressed by the energy concentration [35]. Then, the energy concentration for the target of
size d× d is expressed as

EC =
∫ d

2
− d

2

∫ d
2
− d

2

1
2πρxρy

· exp
[
− 1

2

(
x2

ρ2
x
+ y2

ρ2
y

)]
dxdy (3)

In addition, the target center may be at the center of the pixel or across the pixel in the
case of the same intensity. Figure 1 shows the shape of the target at the center of the pixel
and across the pixel with different energy concentrations:
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In addition to considering the radiation and geometric characteristics of space targets,
the motion characteristics of targets can be analyzed based on the two aspects of the moving
trajectory and moving velocity. The moving trajectory of the space target is determined by
the height of the target, the detection distance, the detection angle and the resolution of
the detector. The actual detection angle typically falls within the range of 0 to 90 degrees.
Taking STSS satellite parameters as an example, the target’s trajectory appears as a nearly
straight line when observed for a short duration (where the target moves approximately
200 pixels on the focal plane). The moving velocity of the target can be expressed using
the ratio of angular acceleration to angular velocity. The angular velocity and acceleration
of the target can be inferred from the orbit height, the height of the target, the detection
distance and the detection angle. Analyzing the results reveals that the angular velocity
is much larger than the angular acceleration. Thus, the space target moves at a relatively
constant speed on the image plane under short-time observation [36].

In the actual scenario, multiple targets may appear simultaneously within the field of
view, each with its own characteristics. The long-wave infrared image depicting 10 different
simulated targets is shown in Figure 2.
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2.2. Characteristics of the Background and Noise

This paper primarily focuses on the space background without complex features and
clouds in it. When observed by the infrared detection system outside the atmosphere, the
background radiation mainly comes from the microwave emission from space matter.

The noise of the infrared detection system includes shot noise, 1/f noise, thermal noise
and compound noise. In this paper, the total noise of the detector under the combined effect
of various noises is analyzed. The noise distribution approximately follows a Gaussian
distribution [37], and each pixel is independent in each frame.

In addition, infrared images often exhibit the presence of blind pixels, which greatly
impact image quality. Blind pixels are abnormal pixels caused by infrared sensor degrada-
tion, which can be categorized as either fixed blind pixels or random blind pixels. Fixed
blind pixels typically arise from process and material defects that cause irreversible damage
to the pixel. The blind pixels manifest as overheated or over-darkened pixels, constituting
a form of fixed noise in the detector. Specifically, superheated pixels appear as isolated
bright spots in the image, affecting target identification.

In conclusion, target enhancement aims to suppress background, noise and blind
pixels while simultaneously enhancing the energy of the targets, which is indeed a chal-
lenging task.
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3. Method

To solve the problems discussed in Section 1, a new enhancement method for a dim
moving multi-target with strong robustness for false enhancement is presented, considering
the model of infrared images in Section 2. This algorithm consists of three parts: multi-
target localization, motion detection by optical flow and 3D convolution. The flow chart of
the proposed algorithm is shown in Figure 3.
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3.1. Multi-Target Localization

According to the analysis in Section 2, the number of targets is uncharted, and every
target has a different state of motion in the infrared images. As a result, multi-target
localization forms the basis of the identification and separate processing of the target.

3.1.1. Spatio-Temporal Filtering and Blind Pixels Suppression

Considering the weakness and dispersion of the targets’ energy and the influence of
the blind pixels and the noise, the infrared images are preprocessed.

Firstly, the energy of the targets is collected by spatial filtering, which can be ex-
pressed as

f1(x, y) = f (x, y)−mean( f∆), (x, y) ∈ Θ
f ′(x, y) = f1(x, y)× w1 × w2

w1 = max( fΘ)
std( fΨ)

w2 = mean( fΘ)
std( fΨ)

(4)

where Θ is the region of size γ× γ centered at (x, y) and Ψ is the region of size 3γ× 3γ ,
and ∆ = Ψ −Θ. And f (x, y) denotes the gray value at (x, y) on a frame of input images
{I}. Then, the blind pixels are suppressed by removing the isolated and bright spots:

w =
center( f ′Θ)
sum( f ′Θ)

(5)

i f w > Tblind, f ′center = min( f ′) (6)

where f ′center denotes the gray value at the center of Θ, w denotes the energy concentration
while the blind pixels have a high value of it. And Tblind = 0.65, considering that the
practical energy concentration of the targets is less than 0.6. Then, the maximum filter is
used to enlarge the targets:

f
′′(x,y) = max( f ′Φ(x, y)) (7)
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where Φ is the region of size λ × λ centered at (x, y). At the same time, a new image
sequence {I ′′ } is generated.

In addition, there is a lot of random noise in infrared images, leading to the low SNR.
Then, the temporal mean filter is used to partly remove the noise [38]. Meanwhile, the
target will leave a track in the image due to its movement:

f ramek =
[I′′ k+I′′ k+1+···+I′′ k+M−1]

M
(8)

where k is the frame index. M is the number of accumulated frames.

3.1.2. Multi-Target Judgement and Rough Localization

The thick stripes of the target trajectories will appear obviously after the preprocessing.
Based on it, the thresholding segmentation and the connected component detection are
applied to confirm the number and the approximate moving area of the targets.

The image is usually segmented by the threshold before detection to remove most of
the disruptive pixels:

z
′(x,y) =

{
1, z(x, y) > T
0, else

(9)

where z(x, y) is the gray value, and the threshold T = µ + τ × σ, while µ and σ represent
the mean and standard deviation of the image, respectively, and τ = 2 ∼ 5, which is a
constant. Then, the first step of the connected component detection is 8-neighbor connected
component labeling. After that, we obtain the connected components {ψ1, ψ2, ψ3, . . .}, and
the thick stripes of the target trajectories can be extracted from among them. Considering
both the size and the intensity of ψn, the confidence is defined as

ωψn =
Nψn

max{Nψ1 ,Nψ2 ,Nψ3 ,...} +
mean( fψn )

max{mean( fψ1),mean( fψ2),mean( fψ3),...} (10)

where Nψn denotes the number of non-zero pixels and fψn denotes the gray values in ψn.
The confidence is used to judge whether the connected component is the thick stripe of the
target trajectory that the weights of the connected components formed by the target will be
greater than those formed by the noise or clutter:

ϕi = ψn , i f ωψn > δ×mean
{

ωψn

}
(11)

where δ is the key threshold such that δ = 1.1 ∼ 1.4. We choose the connected components
whose weights are δ times higher than the average value of all the connected components
as the potential target region. Finally, the thick stripes of the target trajectories {ϕi} and the
corresponding windows {Ωi} are obtained, while {Ωi} is the approximate moving area of
the target during this time period. At the same time, a new image sequence

{
f rame

′
}

is
generated. The process is visualized in Figure 4.

3.2. Motion Detection by Optical Flow

After multi-target rough localization, the motion vectors of each target can be obtained
by using optical flow detection in the corresponding window.

3.2.1. Pyramid Lucas–Kanade (L-K) Optical Flow

Optical flow refers to the vector that represents the movement of moving objects
or moving cameras between two consecutive images. It provides information about the
instantaneous speed and direction of pixels in the imaging plane. The Lucas–Kanade (L-K)
optical flow algorithm [39] is a classic algorithm used for estimating the sparse flow from
a two-frame sequence. Furthermore, image pyramids are often used to improve the L-K
optical flow algorithm.

The overall processing of the pyramid L-K optical flow algorithm is as follows:
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(1) The optical flow on the top layer of the image is calculated after the pyramid is built.
(2) The displacement of the pixel on the current layer (Lm) is estimated initially by the

calculation results of the optical flow on the upper layer (Lm+1). Then, the optical flow
on the current layer is calculated, which would be passed to the next layer (Lm−1).

(3) It is iterated until layer (L0) is obtained. The resulting optical flow is the sum of all
the layers.
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3.2.2. Motion Detection by Pyramid L-K Optical Flow

Based on Section 3.1, only the thick stripes of the target trajectories are preserved in
the processed image. And the displacement of these thick stripes in the adjacent frames
can be equivalent to the motion of the target in the adjacent frames. As a result, the motion
vector of the target can be obtained by detecting the optical flow of the thick stripe in the
adjacent frames in the corresponding window.

In addition, there are two requirements for the optical flow method: brightness
constancy and spatial coherence. On the one hand, the processed image is a binary image,
and the pixel values of the thick stripes are all 1, so the first condition is satisfied. On the
other hand, the thick stripes of the same target are almost the same shape in the adjacent
frames, so the second condition is also satisfied.

Considering that the displacement of the target in the adjacent frames is very small,
leading to the difficulty in detecting the optical flow, we use interlaced frames for the
processing, which is called sampling:

(u, v)k,i = Flow f rame′k,k+L
(Ωi) (12)

where Flow() denotes the pyramid L-K optical flow algorithm, Ωi is the target window and
f rame′k is the image processed by algorithm and L is the number of frames in the interval.
(u, v)k,i represents the detected optical flow, which is actually the displacement of the thick
stripe of the target trajectory and can be regarded as the motion vector of the target.

The size of the window {Ωi} will affect the accuracy of detection of the target motion
vectors. If the window is too large, different targets may appear in the same window. If the
window is too small, the two states representing the target motion cannot appear in the
window at the same time. Then, both will result in the failure of the detection of optical
flow and cannot obtain the accurate target motion vectors.

In addition, if two targets are close to each other, that is, the other target exists in the
window Ωi of the target numbered i, this may affect the performance of the optical flow
detection and make the motion vector estimation of the target numbered i inaccurate. Then,
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the enhancement effect of the algorithm on this target is affected, so the performance of the
algorithm is reduced.

3.3. Target Enhancement by 3D Convolution

Based on the convolution kernel guided by the motion vector of the target, the consec-
utive images are convoluted in 3D, which can accumulate the target energy and enhance
each target adaptively.

3.3.1. Three-Dimensional Convolution

The general two-dimensional (2D) convolution extracts different information through
filters and processes or combines them to form the result. However, this approach does
not take into account the inter-frame motion information. Furthermore, three-dimensional
(3D) convolution [40,41] can better capture the temporal and spatial features of an image
sequence, which is a generalization of the 2D convolution.

The process of 3D convolution is shown in Figure 5. Successive images are stacked
to form a 3D space and then the 3D kernel slides across the three dimensions, performing
a convolution and obtaining the result. In addition, the structure of the output is also 3D
when the kernel slides through the entire 3D space.
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3.3.2. Target Enhancement by 3D Convolution

The key to 3D convolution is the determination of the kernel parameters, and different
kernels will lead to different results. The corresponding kernel parameters are calculated
according to the motion vector of the target and the number of frames stacked. Then, the
target energy can be accumulated along its trajectory by 3D convolution. In addition, there
are different kernels for different targets because of their different motion states. Finally,
the enhancement results can be obtained by local processing.

The kernel size m×m× F is determined adaptively by the motion vector of the target
and the number of frames stacked, where F is the number of frames stacked and m is
calculated by the detected optical flow:

mk,i =
∣∣∣max

{
uk,i
L , vk,i

L

}
× (F− 1)

∣∣∣× 2 + 1 (13)

where uk,i and vk,i are calculated in the previous section.
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The enhancement by 3D convolution for a target can be expressed as

resultk,Ωi
= Conv3d

(
Ik∼k+F,Ωi

, kerneli
)

(14)

where Conv3d() denotes the function of 3D convolution, kerneli denotes the kernel deter-
mined by (u, v)k,i, F is the number of stacked images and {I} is the input images. And
resultk,Ωi

is the enhanced window, forming the resulting images {Re}. Finally, the output
images {output} are obtained with background subtraction and blind pixel suppression:

outputk = Rek −mean
(

fRek

)
(15)

wRek =
center( fΘ)
sum( fΘ)

(16)

i f wRek > Tblind, fRek center = min
(

fRek

)
(17)

where Θ is the region of size γ× γ and fRek center denotes the gray value at the center of Θ
in the k th image of {Re}, and Tblind = 0.6.

The results of the enhancement by 3D convolution are shown in Figure 6.

Remote Sens. 2023, 15, x FOR PEER REVIEW 9 of 20 
 

 

addition, there are different kernels for different targets because of their different motion 

states. Finally, the enhancement results can be obtained by local processing. 

The kernel size � × � × �  is determined adaptively by the motion vector of the 

target and the number of frames stacked, where � is the number of frames stacked and 

� is calculated by the detected optical flow: 

��,� = ���� �
��,�

�
,
��,�

�
� × (� − 1)� × 2 + 1 (13)

where ��,� and ��,� are calculated in the previous section. 

The enhancement by 3D convolution for a target can be expressed as 

�������,��
= ����3����~���,��

, �������� (14)

where ����3�()  denotes the function of 3D convolution, �������  denotes the kernel 

determined by (�, �)�,�, � is the number of stacked images and {�} is the input images. 

And �������,��
 is the enhanced window, forming the resulting images {��}. Finally, the 

output images {������}  are obtained with background subtraction and blind pixel 

suppression: 

������� = ��� − ���������
� (15)

����
=

������(��)

���(��)
(16)

�� ����
> ������, ���� ������

= �� ������
� (17)

where � is the region of size � × � and ����������
 denotes the gray value at the center of 

� in the � �ℎ image of {��}, and ������ = 0.6. 

The results of the enhancement by 3D convolution are shown in Figure 6. 

 

Figure 6. The enlarged view of targets and the 3D display of them in original and enhanced 

images. 

  

Figure 6. The enlarged view of targets and the 3D display of them in original and enhanced images.

4. Experiments

To analyze the enhanced results of the dim moving multi-target by the proposed
algorithm, qualitative and quantitative experiments were conducted. Meanwhile, this
algorithm was compared with other classic enhancement methods, including the improved
top-hat algorithm [42], traditional dynamic inter-frame filtering [43], the 3DCFSI-based
method [24] and the ECA method [20] to test the performance.
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4.1. Experimental Setup
4.1.1. Evaluation Metrics and Test Images

As per usual, the signal-to-noise ratio (SNR) was used to measure the quality of the
image with the targets, which was defined as the ratio of the average power of the targets
to the average power of the noise [44]:

SNR = T−B
σn

(18)

where T was the average of the peaks of all targets and B was the background’s gray value.
And σn was the standard deviation of the image, which referred to the noise. Furthermore,
in this paper, we took the SNR gain as the index of the algorithm’s performance, which
was defined as

SNRG = SNRout
SNRin

(19)

where SNRout represented the SNR of the output image, and SNRin represented the SNR of
the input image. And the higher the SNR gain was, the greater the effect of the enhancement
algorithm.

In addition, the precision (P) and the recall (R) were used to measure the application
of the algorithm to the multi-target case:

P = TP
TP+FP (20)

R = TP
TP+FN (21)

where TP was the number of true-targets detected as targets, FP was the number of false-
targets detected as targets and FN was the number of true-targets not detected as targets.

Considering the difficulty obtaining the real space-based infrared images, we used the
long-wave infrared camera (LWIR) to shoot the background and then added the simulated
targets. At the same time, the effect of turntable jitter was considered. The information of
the images including the background characteristic, the target characteristic and the noise
characteristic was consistent with the analysis in Section 2. The velocities of the simulated
targets were all in the range of 0.5~1.5 pixel/frame, and the sizes of the targets were all in
the range of 2× 2~5× 5.

4.1.2. The Analysis of Parameters

There were several parameters in the proposed algorithm, and some of them could
be set according to the easy experiments and the experience: the energy collected area
γ = 3, the maximum filtering area λ = 5, the number of frames of the temporal mean
filter M = 8, the parameter τ = 3.5 in the thresholding segmentation and the number of
frames in the interval L = 5 when using the optical flow. In addition, we set the number of
frames used for the 3D convolution as F = 5. In addition, there was a crux parameter that
had the threshold δ in the connected component detection, which was closely related to
the performance of the algorithm. To analyze the influence of this value on the algorithm,
8 types of test images were adopted, which are described in Table 1. The target states in
each sequence, including the velocity, direction, SNR and size of the targets, are different.
And the SNR shown in the table is the combined SNR of all the targets in the whole image.

The threshold δ in the connected component detection was the key to judge whether
the connected component was the thick stripe of the target trajectory. If this value was too
small, it would not only detect the true-targets but also detect other interference, which
would be mistaken for the targets in subsequent processing. If this value was too large,
some low-weight thick stripes of the target trajectories would be removed as clutter, which
could not be enhanced. Figure 7 shows the curves of the precision (P), the recall (R) and the
SNR gain (SNRG) after the processing with different values of δ.
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Table 1. A detailed description of eight infrared sequences.

Image Size Number of Frames SNR Number of Targets

Seq.1 512× 512 50 4.39 5
Seq.2 512× 512 50 3.13 5
Seq.3 512× 512 50 2.37 5
Seq.4 512× 512 50 3.07 10
Seq.5 512× 512 100 3.53 5
Seq.6 512× 512 100 2.67 5
Seq.7 512× 512 100 1.57 5
Seq.8 512× 512 100 2.96 10
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It is shown in Figure 7 that the value of P increased, and the value of R decreased
as the value of δ increased. At the same time, the value of SNRG went up first and then
went down or all the way down. That was because the small value of δ led to the false
judgement, and then the P and SNRG got smaller. And the large value of δ led to the missed
judgement, and then the R and SNRG got smaller. In addition, the SNRG peaked when δ
was moderate, making both the P and R large. It was explained that the performance of the
algorithm would decrease when the value of δ was too small or too large.

4.2. Validation of the Algorithm
4.2.1. The Influence of Missed and False Judgement on the Algorithm

Based on the definition in Section 4.1.1, P and R were important indexes of the algo-
rithm, which were caused by the missed and false judgement of the targets. As per usual,
R < 100% meant missed judgement and P < 100% meant false judgement. To analyze the
impact of these two types of events on the performance of the algorithm, we took Seq.4 in
Table 1 as an example and assumed the various cases by adjusting the parameters.

As is shown in Table 2, it can be seen from Nos. 4~5 that the smaller the value of R, the
smaller the SNRG. And it can be seen from Nos. 1~2 that the value of P had little influence
on the SNRG. It proved that both the missed judgement and the false judgement would
degrade the performance of the algorithm. In addition, the data in Table 2 also show that R
had a greater impact on the performance of the algorithm, which meant the consequences of
missed judgement were even worse. That was because once the judgement was missed, the
missed targets could not be processed in the following steps, and then the targets could not
be enhanced, leading to the degradation of the performance of the algorithm. In addition,
the false judgement was to regard the clutter or noise as the targets, but because the clutter
and noise were random in the sequence images, their energy could not be accumulated by
the 3D convolution. Then, the false judgement could not cause the false enhancement and
had less effect on the algorithm. However, too much false judgement could also affect the
accuracy of the optical flow, leading to the degradation of the performance of the algorithm.
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Table 2. The results of the algorithm in the case of missed or false judgement of the targets.

Number Recall Precision SNRG Remark

1 1 45% 2.11 δ = 1.15
2 1 71% 2.13 δ = 1.2
3 90% 71% 1.77 δ = 1.25
4 80% 1 1.62 δ = 1.3
5 70% 1 1.42 δ = 1.35

Therefore, both the theory and experiments prove that this algorithm is less affected
by false judgement, that is, it has strong robustness to false enhancement.

4.2.2. The Results of the Algorithm

To show the results of the algorithm under different conditions, we processed the 8
types of images in Table 1 and the enhanced images are shown in Figure 8, where the targets
are marked with a rectangle. In addition, the evaluation metrics are shown in Table 3.

Table 3. The results of different images processed by the algorithm.

Recall Precision SNRG

Seq.1 1 1 2.01
Seq.2 1 1 2.64
Seq.3 1 56% 2.37
Seq.4 1 83% 1.83
Seq.5 1 1 2.31
Seq.6 1 42% 2.49
Seq.7 80% 45% 2.92
Seq.8 1 83% 2.20

Through the visual comparison in Figure 8, the blind pixels were extremely bright
and the targets were completely invisible in the original image, while most of the blind
pixels were suppressed and the targets were revealed in the output image. It proved that
the targets could be enhanced by the proposed algorithm under different conditions. It
also can be seen in Table 3 that the SNR of the image was significantly improved after the
processing. In addition, Table 3 also shows the degradation of the enhanced performance
when the SNR of the input image decreased. This was because the low SNR could lead to
the increase in missed judgements and false judgements. Meanwhile, it was shown that the
algorithm was affected when there were more targets in the input image.

To further explain the adaptive enhancement of the proposed algorithm to the multi-
targets, Seq.4 in Table 1 was adopted to show the processing results of each target.

As is shown in Figure 9, the targets were difficult to identify in the original image,
and all the targets were revealed in the output image, showing that they were extremely
enhanced by the algorithm. Meanwhile, the 3D display of the targets also showed that the
energy of the targets was effectively increased. In addition, it is shown in Table 4 that the
SNRG of each target was much bigger than 1, which meant all the targets with a different
size, velocity and SNR were enhanced reliably by the proposed algorithm. In addition, the
SNR could reach

√
F times after F frames were processed by 3D convolution according

to the energy accumulation theory of targets [37]. As we set F to 5 in the experiments
that were described in Section 4.1.2, then the theoretical value of the SNRG should be
2.24. Therefore, the proposed algorithm worked well so that the result was close to the
ideal value.
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Figure 9. The enhancement results of the multi-targets. (A) shows the original targets. (B) shows the
3D display of them. (C) shows the enhanced targets, and (D) shows the corresponding 3D displays
of them, and the red oval represents the target.

Table 4. The results of each target in an image processed by the algorithm.

Size Velocity (pixel/Frame) SNR_in SNRG

Target1 3× 3 1.3 3.85 1.72
Target2 3× 3 0.5 2.82 1.91
Target3 4× 4 1.1 3.66 1.56
Target4 5× 5 0.9 2.53 2.38
Target5 3× 3 0.7 3.36 1.43
Target6 3× 3 1.2 2.96 2.02
Target7 3× 3 1 3.36 1.63
Target8 3× 3 0.8 1.53 4.11
Target9 3× 3 1.5 2.54 1.90
Target10 3× 3 0.6 2.99 1.99

Image 512× 512 --- 2.97 2.13

4.3. Comparison

To better evaluate the performance of the proposed algorithm, we compared it with
other methods for target enhancement. In the comparison experiments, the improved top-
hat algorithm [41], traditional dynamic inter-frame filtering [42], 3DCFSI-based method [24]
and ECA method [20] were applied. However, the 3DCFSI-based method and ECA method
were not robust to false enhancement at all as they failed in the presence of blind pixels.
Take the 3DCFSI as an example; as shown in Figure 10, there are several blind pixels in the
original image, which has a large gray value, and the targets are submerged. When the
algorithm is used to enhance the targets, the blind pixel will be misjudged as the target, so
the real targets cannot be enhanced effectively.

In that case, we improved the two algorithms, adding the suppression of blind pixels.
Then, the performance of the SNRG was compared with the proposed algorithm and the
results are shown in Table 5. Meanwhile, the output images are shown in Figure 11, which
were all displayed after blind pixels suppression in order to make the results clearer.

As shown in Figure 11 and Table 5, the improved top-hat algorithm had little effect
and could not enhance the targets effectively. The traditional dynamic inter-frame filtering
did some work so that both the visual and quantitative results were fairly good, but it
caused target trailing and energy dispersion. Then, the 3DCFSI-based method and ECA
method performed well after the suppression of the blind pixels. However, they were
fatally affected by false judgement. The proposed algorithm showed the best performance
in both the qualitative and quantitative results. The contrast between the targets and the
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surrounding pixels was significantly improved, and the center of the target hardly changed
and the energy was not diffused. In addition, the SNRG was greater than the others in all
the sequences. And it had a strong robustness that could deal with the interference of blind
pixels and noise adaptively.
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Table 5. Comparison of SNR gain for five methods.

Method Seq.1 Seq.2 Seq.3 Seq.4

Improved top-hat 1.17 1.08 1.20 1.07
Dynamic inter-frame filtering 1.47 1.24 1.48 1.36

3DCFSI-based method 1.59 1.38 1.62 1.38
ECA method 1.68 1.31 1.66 1.55

Proposed algorithm 2.23 1.72 1.72 1.74
The best values are indicated in bold.

4.4. Experiments on Real Data

To make our experiment more convincing, we used the real data to validate our
algorithm. We used the shortwave infrared camera to observe the stars in different sky
regions and obtained 3 sets of images, where several stars appeared in the field of view
at the same time. Then, the enhancement algorithm was used to enhance all the stars in
the images and to improve the SNR. The results are shown in Figure 12, where the stars
are marked with a rectangle. In addition, the description of the images and the evaluation
metrics are shown in Table 6.

Table 6. The description of images with stars and the results of them processed by the algorithm.

Image
Size

Number
of Frames

Number
of Stars Recall Precision SNRG

Seq.9 512× 512 200 2 1 1 2.09
Seq.10 512× 512 200 3 1 1 2.62
Seq.11 512× 512 200 3 1 1 2.10
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Figure 11. Visual comparison between typical methods and proposed algorithm. Squares represent
the targets. (a) The raw images of Seq.1-Seq.4, respectively. (b–e) are the enhanced results of
improved top-hat algorithm, DPA-based energy accumulation, 3DCFSI-based method, ECA method
and proposed algorithm, respectively.

As shown in Figure 12, the blind pixels were removed and the noise was reduced,
while the stars were enhanced in the output images. It also can be seen in Table 6 that the
SNR of the image was significantly improved after the processing. In conclusion, both
the qualitative and quantitative results proved the effectiveness of our algorithm with real
data. However, there are some differences between this scene and space-based infrared
detection. Generally, the stars are brighter than the space targets, so the SNR of the star
image is higher than that of the target image. In addition, stars are stationary such that the
motion of a star can only be simulated by the motion of the camera. Thus, the moving state
of all the stars is the same, which is different from the targets. Therefore, we will also use
on-orbit data to further validate our algorithm in the future.
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5. Conclusions

This paper investigates the target enhancement task in a space-based background.
The problems and challenges of the task are summarized as the stability at a low SNR,
adaptability to multiple targets and robustness for false enhancement. A new enhancement
method for a dim moving multi-target with strong robustness for false enhancement is
proposed to meet these requirements. The algorithm is mainly based on multi-target
localization, motion detection by optical flow and 3D convolution. On this basis, long-
wave infrared images with simulated targets are used to evaluate the performance of the
algorithm. It has been proved that each target in the image can be enhanced effectively
and the SNR can be improved significantly under different conditions. The SNR gain can
reach two by convolving five images in 3D. Meanwhile, both the theoretical analysis and
experimental results show that this algorithm is less affected by the wrong judgement of
the targets. In addition, the proposed algorithm has outstanding performance compared to
other methods.

In the traditional image sequences, only the spatio-temporal information is included,
but the multi-spectral image can provide more effective information [45,46], which can
further improve the adaptability of the algorithm. Thus, we will conduct some research on
it in the future.
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