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ABSTRACT
Komatiites and picrites generated by high degrees of mantle partial melting serve as poten-

tial probes of Earth’s deep mantle. Tungsten (W) isotopes in these rocks offer a rare chance 
to better understand early differentiation, late accretion, core-mantle interaction, and sub-
sequent evolution of Earth’s mantle. We present new W isotope data for Archean komatiites 
and basalts from the Barberton (South Africa) and Suomussalmi (Finland) Greenstone Belts 
and Permian picrites from the Emeishan large igneous province (China). The Paleoarchean 
samples from the Barberton Greenstone Belt have modern ocean island basalt (OIB)–like 
μ182W values ranging from –20.4 to +5.6, whereas the Mesoarchean komatiites from the 
Suomussalmi Greenstone Belt show μ182W values of –2.2 to +11.3. The Permian Emeishan 
picrites give μ182W values of –7.1 to +3.1. Our data, combined with the published global data 
set, show that W isotope heterogeneity in the mantle has existed throughout Earth’s history, 
with positive μ182W values transitioning to near-zero in the upper mantle by the end of the 
Archean. The negative μ182W values of Paleoarchean samples in the Barberton Greenstone 
Belt and modern OIBs likely result from either early differentiation or core-mantle interac-
tion. The incorporation of a plume-delivered negative μ182W component and enhanced mantle 
mixing is a viable mechanism to explain the transition of μ182W values in the upper mantle 
from positive to near-zero, while recycling of crustal materials into the mantle would result 
in a shift of negative μ182W values of the lower mantle closer to zero since the onset of plate 
tectonics. The latter process could possibly explain the slightly negative to near-zero μ182W 
values of the Emeishan picrites and some kimberlites. The well-resolved negative μ182W 
anomalies observed in this study provide important insights into the generation, preserva-
tion, and obliteration of W isotope heterogeneities in the lower mantle.

INTRODUCTION
Chemical heterogeneities in the terrestrial 

mantle have long been identified, and some of 
them have been proposed to have been gener-
ated early in Earth’s history, by studies that 

investigated short-lived isotope systematics 
(e.g., 129I–129Xe, 146Sm–142Nd, and 182Hf–182W; 
Willbold et al., 2011; Mukhopadhyay, 2012; 
Touboul et al., 2012; Peters et al., 2018; Puch-
tel et al., 2022). Archean mantle-derived rocks 
show a wide range of isotopic tungsten (μ182W) 
values (–11.4 to +23.4), where the μ value rep-
resents the deviation of measured isotope ratio, in 
parts per million, from laboratory standards (e.g., 

Puchtel et al., 2022). These W isotopic heteroge-
neities are interpreted as the result of either early 
differentiation that occurred within the lifetime 
of 182Hf or an initially uneven distribution of late 
accreted materials (grainy late accretion) in the 
ancient mantle and provide important constraints 
on Earth’s geodynamic evolution (e.g., Willbold 
et al., 2011; Touboul et al., 2012; Puchtel et al., 
2016a, 2022; Tusch et al., 2022).

Recent studies suggest that positive μ182W 
anomalies in the upper mantle dissipated by 
the end of the Archean (Mei et al., 2020; Tusch 
et al., 2021; Nakanishi et al., 2023). During 
Earth’s core formation (within the lifetime 
of 182Hf), Hf was completely partitioned into 
the mantle because it is a strongly lithophile 
element. The core, therefore, became highly 
depleted in 182W relative to the mantle because 
no radiogenic 182W accumulated in the core 
after the metal-silicate segregation. Mass bal-
ance calculations imply that the core has a 
strongly negative μ182W value of ∼–220 (e.g., 
Kleine et al., 2009; Touboul et al., 2012). Thus, 
core-mantle interaction offers a plausible cause 
for the decrease in μ182W during the Archean 
and the 182W deficits observed in the Phanero-
zoic ocean island basalts (OIBs) (e.g., Rizo 
et al., 2019; Mundl-Petermeier et al., 2020; 
Peters et al., 2021). Tungsten isotopes of the 
plume-derived samples (i.e., komatiite, picrite, 
and OIBs formed at different periods) have the 
potential to reveal the nature of the deep mantle 
and to trace core-mantle interaction through-*jinhui@mail​.igcas​.ac​.cn
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out Earth’s history. We report high-precision 
W isotope data for the Archean komatiites and 
basalts from the Barberton Granitoid–Green-
stone Terrane (BGGT, southern Africa) and the 
Suomussalmi Greenstone Belt (SGB, Finland) 
as well as Permian picrites from the Emeishan 
large igneous province (Emeishan LIP, China) 
to better understand the mechanisms for creat-
ing early mantle heterogeneities and possible 
core-mantle interaction throughout Earth’s his-
tory. High-precision 142Nd isotope analyses were 
performed for those samples showing W isoto-
pic anomalies to evaluate the influence of early 
mantle differentiation processes.

SAMPLES AND ANALYTICAL RESULTS
The BGGT komatiites and basalts are from 

the Kromberg (ca. 3.33 Ga) and Theespruit 
(ca. 3.53 Ga) Formations, Onverwacht Group 
(Lowe and Byerly, 2007) (Fig. 1A). A 3.28 Ga 

granodiorite was collected from the Ngwane 
gneiss suite, Ancient Gneiss Complex (AGC) 
(Kröner et al., 2019). The SGB (2.94–2.82 Ga) 
komatiite samples were from drill cores of the 
Hietahrju Ni-Cu-Co-PGE deposit (Konnunaho 
et al., 2016; Lehtonen et al., 2017) (Fig. 1B). The 
picrites of the ca. 0.26 Ga Emeishan LIP were 
collected from Lijiang and Dali areas (Zhong 
et al., 2014) (Fig. 1C). Detailed information on 
the geological background is provided in the 
Supplemental Material1.

Major and trace element concentrations 
and W-Nd isotope compositions of the samples 
were measured at the Institute of Geology and 

Geophysics, Chinese Academy of Sciences 
(Beijing). Tungsten and Nd isotope measure-
ments were conducted using the Thermo Fisher 
Neptune multicollector–inductively coupled 
plasma–mass spectrometer (MC-ICP-MS) and 
Triton Plus thermal ionization mass spectrom-
eter (TIMS), respectively. The detailed proce-
dures are described in the Supplemental Mate-
rial. The external reproducibility of μ182W for 
standard solution Alfa Aesar W in this study is 
±6.1. The external reproducibility of μ142Nd 
for standard solution JNdi-1 is ±4.8 (Li et al., 
2015).

Measured μ182W and μ183W values of the 
samples are shown in Figure 2. The basalt sam-
ple (15SA07) from the Theespruit Formation 
displays similar μ182W and μ183W relative to the 
standard. The basalt sample from the Krom-
berg Formation (15SA22) has μ182W values 
of –20.4 ± 6.1 (2 standard errors [SE]) and 

1Supplemental Material. Supplemental informa-
tion, tables, and figures. Please visit https://doi​.org​/10​
.1130​/GEOL​.S.23669295 to access the supplemental 
material, and contact editing@geosociety​.org with 
any questions.

Figure 1.  Simplified geo-
logic maps showing 
sample locations. (A) 
Ancient Gneiss Complex 
and Barberton Granit-
oid–Greenstone Terrane 
in the eastern Kaapvaal 
Craton, southern Africa; 
after Kröner et al. (2019). 
(B) Suomussalmi Green-
stone Belt in Finland 
(based on DigiKP, the 
digital map database of 
the Geological Survey 
of Finland, available at: 
http://www​.geo​.fi​/en​/bed-
rock​.html). (C) Emeishan 
large igneous province in 
China, after Kamenetsky 
et al. (2012).
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–17.7 ± 6.1 (2SE) for two duplicate dissolu-
tion aliquots and μ183W values indistinguish-
able from the standard. Sample 15SA22 has 
a μ142Nd value of +3.6 ± 4.6 (2SE), indistin-
guishable from the standard. Individual mea-
surements of granodiorite sample SA31 from 
the AGC also gave negative μ182W values of 
–6.9 ± 6.1 (2SE) and –11.7 ± 6.1 (2SE), 
μ183W values close to 0, and a μ142Nd value of 
0.0 ± 4.5 (2SE). The drill core samples from 
the SGB show μ182W values of –2.2 to +11.3 
and μ183W values of –2.1 to +9.9. Emeishan 
picrites exhibit no well-resolved μ182W anom-
aly but a wide range of μ183W values varying 
from –14.3 to +6.3. Sample DJ-0803 from 
Lijiang has the lowest μ182W value (–7.1 ± 6.1, 
2SE) among the analyzed Emeishan picrites. 
The negative μ183W anomalies in Emeishan 
picrites likely indicate the mass-independent 
isotope fractionation caused by magnetic iso-
tope effect (Budde et al., 2022), which has 
negligible effects on the measured μ182W val-
ues that are calculated from isotopic ratios 
normalized to 186W/184W = 0.92767. Data for 
all samples and standards are provided in the 
Supplemental Material.

DISCUSSION AND CONCLUSION
The BGGT and SGB samples have experi-

enced greenschist- to amphibolite-facies meta-
morphism (Lowe and Byerly, 2007; Konnu-
naho et al., 2016) and have high W/Th ratios 
(0.82–1.77), indicating a possible fluid-induced 
W enrichment in these samples. However, the 
negative correlation between μ182W and ε143Nd(t) 
of the BGGT samples indicates that their W iso-
topic compositions have not been affected by 
post-magmatic processes, as suggested by Tusch 
et al. (2022) and our data (see the Supplemen-
tal Material). The Permian Emeishan picrites 
have near-canonical W/Th ratios of 0.06–0.17, 
reflecting undisturbed elemental W systematics.

Our new results and the published global 
data set for mantle-derived rocks are shown in 
Figure 3. It shows that Eoarchean rocks com-
monly have positive μ182W values averaging 
∼+13 (Tusch et al., 2021). Most Paleoarchean 

to Neoarchean samples have either positive or 
near-zero μ182W values except for some sam-
ples from the Kaapvaal Craton (i.e., Schapen-
burg Greenstone Remnant, BGGT, and AGC) 
that exhibit resolvable negative μ182W values 
(Puchtel et al., 2016a; Tusch et al., 2022). Tusch 
et al. (2022) first observed a negative covaria-
tion of μ182W with ε143Nd(t) and ε176Hf(t) for 
mantle-derived rocks in the Kaapvaal Craton, 
and proposed a geodynamic model involving 
early silicate differentiation and recycling of 
lower crustal restites that remained after par-
tial melting of a Hadean protocrust, in order to 
explain the 182W-142Nd-143Nd-176Hf isotope com-
positions of these rocks. Notably, our new W-Nd 
isotope data for samples from the Kromberg and 
Theespruit Formations are consistent with the 
covariation (Fig. 4A). The sample with the most 
negative μ182W value among the Kaapvaal rocks 
shows a near-zero μ142Nd value, possibly indicat-
ing a two-stage differentiation model; i.e., the 
first differentiation occurred within the lifetime 
of 182Hf and the second differentiation occurred 
while 146Sm was still extant but 182Hf was extinct 
(Fig. 4B). This is consistent with the two-stage 
process proposed by Tusch et al. (2022); i.e., 
formation of a mafic protocrust by ca. 50 Ma 
after solar system formation and partial proto-
crustal anatexis between ca. 4.35 and 4.25 Ga.

Apart from early differentiation within 
the lifetime of 182Hf, a sluggish mixing of late 
accreted materials and core-mantle interaction 
provide alternative explanations for the negative 
μ182W anomalies in the mantle-derived rocks due 
to strongly negative μ182W values of chondrites 
(∼–190) and Earth’s core (∼–220) (Kleine et al., 
2009; Willbold et al., 2011; Rizo et al., 2019; 
Mundl-Petermeier et al., 2020; Nakanishi et al., 
2021). However, the 3.46 Ga Dwalile komati-
ite suite from the AGC has modern mantle-like 
Ru isotope composition, distinct from coupled 
100Ru–102Ru deficits of late accreted materials, 
arguing against the explanation that the 182W 
deficits in the Kaapvaal Craton originated from 
an excess of late accreted materials (Fischer-
Gödde et al., 2020; Tusch et al., 2022). Another 
potential reservoir with negative μ182W anoma-
lies is Earth’s core. However, direct physical 
input of core metal into plumes can be ruled out 
due to the absence of highly siderophile element 
enrichments in OIBs. Possible mechanisms for 
core-mantle interaction include Si-Mg-Fe oxide 
exsolutions and isotopic core-mantle equilibra-
tion (Rizo et al., 2019; Mundl-Petermeier et al., 
2020). Conceptually, these core-mantle inter-
action mechanisms can explain negative μ182W 
signatures in the source of samples from the 
Kaapvaal Craton.

Figure 2.  Measured μ182W and μ183W values for 
samples of this study. Error bars represent 2 
standard errors.

Figure 3.  Compilation of the μ182W values for the mantle-derived rocks. Error bars represent 2 
standard errors. References and information about the data, including geographic locations, 
are provided in Table S5 in the Supplemental Material (see text footnote 1). The large blue 
arrow indicates the dissipation of 182W anomalies in the Archean upper mantle (Mei et al., 
2020; Nakanishi et al., 2023).
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Previous studies on Proterozoic mantle-
derived samples reported near-zero to nega-
tive μ182W values for the 2.41 Ga and 2.05 Ga 
komatiitic basalts (Vetreny and Lapland) and 
kimberlites (Tanzania and South Africa) (Fig. 3; 
Puchtel et al., 2016b, 2020; Tappe et al., 2020; 
Nakanishi et al., 2021). Recently reported W 
isotopes of granites and schists with ancient 
Nd model ages (from ca. 3.6 Ga to 2.3 Ga) fur-
ther strengthen the transition of μ182W values 
in the upper mantle from averaging +13 at the 
Eoarchean to near-zero at the early Proterozoic 
(Nakanishi et al., 2023). This transition may be 
caused by efficient mixing of the unhomoge-
nized late-accreted components (Puchtel et al., 
2022) and/or by addition of plume materials 
with negative μ182W (e.g., the source of the mea-
sured Kaapvaal samples) (Peters et al., 2021). A 
similar disappearance of resolvable positive and 
negative 142Nd anomalies in the mafic-ultramafic 
rock record during the transition period (from 
3.6 to 2.4 Ga) has also been observed (e.g., 
Schneider et al., 2018; Puchtel et al., 2022). 
These transitions indicate that the primordial 
182W-142Nd isotopic heterogeneities in the upper 
mantle had been largely destroyed through vig-
orous convective mantle mixing by the begin-
ning of the Proterozoic (Mei et al., 2020; Puchtel 
et al., 2022; Nakanishi et al., 2023).

Phanerozoic OIBs, kimberlites, and samples 
from the Deccan Traps and Emeishan LIP have 
a wide range of μ182W values, from near-zero 
to negative values as low as –23 (Rizo et al., 
2019; Mundl-Petermeier et al., 2020; Tappe 
et al., 2020; Nakanishi et al., 2021; Peters et al., 
2021) (Fig. 3). Jackson et al. (2020) revealed 
that the most negative μ182W anomalies were 
exclusively observed in the OIB samples with 

high 143Nd/144Nd ratios and low 206Pb/204Pb ratios, 
while the OIBs without anomalous 182W com-
positions were derived from a mantle source 
that had been added by recycled materials. The 
characteristics of Sr-Nd-Pb and W isotopes for 
OIBs suggest that recycled crustal materials may 
result in a shift of μ182W values closer to zero 
(Jackson et al., 2020). Our results show that the 
Dali picrites have no μ182W anomalies, while one 
of the Lijiang picrites has a negative μ182W value 
of –7.1 ± 6.1 (2SE). Previous Sr-Nd-Pb isoto-
pic studies on melt inclusions and whole rock 
demonstrate that more recycled crustal materials 
had been involved in the source of Dali picrites 
than that of Lijiang picrites (Zhang et al., 2006; 
Hanski et al., 2010; Ren et al., 2017; Zhang 
et al., 2019; Zhang et al., 2021). Therefore, we 
consider it most likely that the W isotope com-
position of the Emeishan picrites was influenced 
by recycled materials in their mantle sources, 
similar to OIBs (Jackson et al., 2020).

Collectively, the global data set for terres-
trial rocks reveals W isotopic heterogeneities in 
the Archean mantle, likely resulting from early 
silicate differentiation, grainy late accretion, or 
core-mantle interaction (Willbold et al., 2011; 
Touboul et al., 2012; Rizo et al., 2019; Mundl-
Petermeier et al., 2020). Notably, our Paleoar-
chean Kromberg sample has a μ182W value of 
–19.1 ± 4.3 (2SE), identical to the most-neg-
ative μ182W value observed in modern OIBs 
(–22.7 ± 3.3, 2SE; Mundl-Petermeier et al., 
2020). The W isotopic heterogeneities in the 
upper mantle had been largely eliminated by 
the end of the Archean (Mei et al., 2020; Tusch 
et al., 2021; Nakanishi et al., 2023). Moreover, 
Phanerozoic plume-derived rocks (e.g., Emeis-
han picrites in this study) have μ182W values 

ranging from negative to zero. These indicate 
that recycling of crustal materials and mantle 
mixing would have partially homogenized W 
isotopes in the lower mantle since the onset of 
plate tectonics on Earth.
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