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1  |  INTRODUC TION

The Great Oxidation Event (GOE) started from 2.43 Ga (Gumsley 
et al., 2017) or 2.33– 2.32 Ga (Bekker et al., 2004; Luo et al., 2016; 
Poulton et al., 2021) is a profound turning point in Earth's history and 
represents the first significant buildup in Earth's atmospheric oxygen 
(Canfield, 2005; Holland, 1999, 2002, 2009; Konhauser et al., 2009; 
Kump, 2008; Lyons et al., 2014). It was followed by Earth's larg-
est known positive δ13Ccarb excursion and perturbation of global 
carbon cycle, termed the Lomagundi– Jatuli Event (LJE) between 
2.22 Ga (or 2.31 Ga) and 2.06 Ga (Bekker & Holland, 2012; Karhu & 
Holland, 1996; Lajoinie et al., 2019; Martin, Condon, Prave, & Lep-
land, 2013; Martin, Condon, Prave, Melezhik, et al., 2013; Melezhik 

et al., 2007; Melezhik & Fallick, 1996; Schidlowski et al., 1976). Re-
cords of the LJE are well preserved and carbonates with extremely 
high δ13Ccarb values from 8‰ to >15‰ have been identified from 
many localities in North America, Russia, Finland, Africa, Australia, 
South America, Scotland, Norway, Sweden and India (Table 1). Al-
though carbonates with δ13Ccarb values of 5‰ were reported from 
the Guanmenshan Formation in the northeastern North China Cra-
ton (NCC) (Tang et al., 2008, 2011), no carbonate with δ13Ccarb values 
of >6‰ has been identified, which resulted in highly controversial 
on existence of the LJE records in the NCC (Martin, Condon, Prave, 
& Lepland, 2013; Melezhik et al., 2013).

Recently, some researchers proposed that the δ13Ccarb trend of 
LJE was linked to facies changes and argued that the LJE can be 
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neither construed as a priori as representative of the global carbon 
cycle or a planetary- scale disturbance to that cycle, nor as direct 
evidence for oxygenation of the ocean– atmosphere system (Baka-
kas Mayika et al., 2020; Prave et al., 2022). If valid, these new inter-
pretations mean that the end of LJE was merely a facies shift from 
shallow- marine towards deeper- water settings (Bekker et al., 2021). 
Resolving whether the LJE was globally synchronous or asynchro-
nous is essential for discriminating between different models (Hodg-
skiss et al., 2023). In this contribution, we present carbon– oxygen 
isotopes and chemical compositions of the newly confirmed ~2.20– 
2.06 Ga carbonates from Fanhe Basin in the northeastern NCC, and 
firstly identified carbonates with δ13Ccarb values of 10.6‰– 11.7‰ 
from the Daposhan Formation and 3.8‰– 6.0‰ from the Kuang-
zhuangzi and Lower Tongjiajie formations. These new results pro-
vide solid evidence for existence of the LJE records in the NCC and 
global significance of the LJE.

2  |  GEOLOGIC AL SET TING , PRE VIOUS 
STUDIES AND SAMPLES

The Fanhe Basin is located in the Longgang Block in the northeastern 
NCC (Figure 1a). Proterozoic successions in the basin were termed the 
Fanhe Group (or Sanchazi, Shuyatun and Huishitun groups) and are 
8– 9 km thick (Chen et al., 2006). They have an areal extent of 3300 km2 
and consist of marine carbonates, clastic rocks and minor mafic vol-
canic rocks that unconformably overlie Neoarchean basement rocks 
(Figure 1b). Proterozoic successions of the lower Fanhe Group have 
been divided into Daposhan, Kangzhuangzi, Guanmenshan and Tongji-
ajie formations from bottom to top, and were previously considered as 
Mesoproterozoic in age (Bureau of Geology and Mineral Resources of 
Liaoning Province (BGMRLP), 1989, 1997; Chen et al., 2006).

The Daposhan Formation consists of sandstone, sand- bearing do-
lostone and dolostone and components of carbonate increase from 
the bottom to top. The Kangzhuangzi Formation consists of sandstone, 
sand- bearing dolostone, phyllite and slate in its bottom, carbonaceous- 
rich slate and silty slate in the middle part, and micritic limestone and 
carbonaceous- rich limestone in its upper part. The Guanmenshan For-
mation consists of dolostone and minor sand- bearing dolostone. The 
Tongjiajie Formation consists of sand- bearing dolostone and sand-
stone in its lower part, and sandstone, silty dolostone and silty slate in 
its upper part. No evaporite has been identified. There is no sedimen-
tary hiatus between the Daposhan, Kangzhuangzi, Guanmenshan and 
Tongjiajie formations, but a disconformity between the Tongjiajie For-
mation and the overlaying Hutouling Formation has been identified (Xu 
et al., 1997). Some carbonates were weakly recrystallized due to the 
emplacement of Proterozoic dolerite sills. Representative outcrop and 
photomicrographs are shown in Figures 2 and 3 and Figures S1– S6.

Previous researches show that carbonates from the Guanmen-
shan Formation have δ13CV- PDB values of 3.5‰– 5.9‰ and δ18OV- SMOW 
values of 15.4‰– 24.8‰ (Tang et al., 2008, 2011). However, the 
above positive excursion has neglected by many researchers study-
ing GOE and LJE, mainly due to poor age constraints and low positive 

excursion when compared to the typical range in global δ13Ccarb val-
ues of between −5‰ and 5‰ (Melezhik et al., 2013). Recent U– Pb 
geochronological results revealed that the Daposhan, Kangzhuangzi, 
Guanmenshan and Tongjiajie formations were deposited between 
~2.20 Ga and 2.06 Ga (Cai et al., 2022). This new age is consistent 
with previous carbon– oxygen isotopes of carbonates from the Guan-
menshan Formation (Tang et al., 2008, 2011), indicating deposition of 
the lower Fanhe Group as the same period as LJE. Different to other 
Palaeoproterozoic successions (Figure 1a) that were affected by 1.95– 
1.80 Ga high- grade metamorphism, the Palaeoproterozoic successions 
in Fanhe Basin are unmetamorphosed or low- grade metamorphosed 
(Figures 2 and 3). Therefore, the lower Fanhe Group represents the 
best- preserved geological records of GOE and LJE in the NCC (Cai 
et al., 2022). However, carbon– oxygen isotopes of carbonates from 
the Daposhan, Kangzhuangzi and Tongjiajie formations have not been 
analysed and it is not sure whether positive excursion exists.

Samples for carbon– oxygen isotopes and chemical compositions 
were mainly collected from the Daposhan, Kangzhuangzi, Guanmen-
shan and Tongjiajie formations in the lower Fanhe Group (Figures 1, 
4 and 5). Some samples from the Hutouling and Shimen formations 
from the middle Fanhe Group were also collected for comparison. 
Lithology of samples is listed in Tables S1 and S2.

3  |  ANALY TIC AL METHODS

Carbon and oxygen isotope analyses were performed by using a 
Thermo Fisher Finnigan MAT- 253 mass spectrometer at the Analyti-
cal Laboratory of the Beijing Research Institute of Uranium Geology 

Significance Statement

The Lomagundi– Jatuli Event (LJE) represents Earth's larg-
est known positive carbonate carbon isotope excursion 
and records of the LJE are well preserved in many cra-
tons. However, no carbonate with high positive carbon 
isotope excursion has been identified in the North China 
Craton (NCC). Here we firstly identified marine carbon-
ates with high positive δ13Ccarb values of 10.6‰– 11.7‰ 
from the Daposhan Formation in the newly confirmed 
Palaeoproterozoic successions in Fanhe Basin in the north-
eastern NCC. These new identified δ13Ccarb values of 
10.6‰– 11.7‰ from the Daposhan Formation represent 
the largest positive carbonate carbon isotope excursion 
discovered in the NCC till present. The change of δ13Ccarb 
values and end of the positive excursion in Fanhe Basin 
are unrelated to sedimentary facies and recrystallization, 
but are related to timing of deposition, which provide solid 
evidence for existence of the LJE records in North China 
as well as timing, magnitude and global significance of the 
positive δ13Ccarb excursion of the LJE.
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and the State Key Laboratory of Geological Processes and Mineral Re-
sources of China University of Geosciences, Wuhan following methods 
described by Shen et al. (2012), Yang et al. (2013) and Li, Li, et al., 2020. 
Whole- rock major element analyses were performed using a Rigaku 
ZSX Primus II X- ray fluorescence at the Wuhan Sample Solution Ana-
lytical Technology Company Limited. Detailed operating conditions for 
laboratory procedures and data reduction are listed in Data S1.

4  |  RESULTS

4.1  |  Carbon– oxygen isotopes of carbonate rocks

Carbon– oxygen isotopes are listed in Table S1 and plotted in 
Figures 4 and 5. The Daposhan Formation has strongly posi-
tive δ13CV- PDB values of 11.8‰– 10.2‰ and δ18OV- SMOW values of 
22.0‰– 19.2‰. The Kangzhuangzi Formation has positive δ13CV- PDB 
values of 6.0‰– 3.8‰ and δ18OV- SMOW values of 20.2‰– 15.2‰. 
The Guanmenshan Formation has positive δ13CV- PDB values of 
6.8‰– 3.9‰ and δ18OV- SMOW values of 25.4‰– 14.9‰. The Lower 
Tongjiajie Formation has positive δ13CV- PDB values of 4.7‰– 4.3‰ 
and δ18OV- SMOW values of 20.8‰– 20.7‰. The Upper Tongjiajie For-
mation has δ13CV- PDB values from 2.0‰ to −0.7‰ and δ18OV- SMOW 
values of 22.3‰– 12.0‰. The Hutouling Formation has δ13CV- PDB 

values from 1.0‰ to −0.2‰ and δ18OV- SMOW values of 23.7‰– 
15.9‰. The Shimen Formation has δ13CV- PDB values of 1.5‰ and 
δ18OV- SMOW values of 22.5‰– 22.4‰.

4.2  |  Major element compositions

Major element compositions are listed in Table S2. They are charac-
terized by large variable SiO2 contents from 0.12 wt.% to 52.97 wt.% 
and Al2O3 contents of 0– 5.35 wt.%. Their CaO contents range from 
15.51 wt.% to 53.88 wt.% and MgO contents range from 0.38 wt.% 
to 22.46 wt.%. The carbon– oxygen isotopic compositions show no 
correlation with contents of SiO2, Ti, Al2O3, TFe2O3, Mn, Na2O, K2O, 
P2O5 and Ca/Mg ratios (Figures 4 and 5).

5  |  DISCUSSION

5.1  |  Positive δ13Ccarb excursion identified in the 
lower Fanhe Group

Our new results show that all marine carbonates from the Lower 
Tongjiajie, Guanmenshan, Kangzhuangzi and Daposhan formations 
are characterized by positive carbon isotope excursion with δ13Ccarb 

F I G U R E  1  Geological map of the Fanhe Basin and sample locations (modified after Cai et al. (2022) and Chen et al. (2006). [Colour figure 
can be viewed at wileyonlinelibrary.com]

(a)

(b)
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values mostly >5‰, consisting with their deposition ages of ~2.20– 
2.06 Ga (Cai et al., 2022). Specially, those from the Daposhan Forma-
tion have high positive δ13Ccarb values of 10.2‰– 11.8‰, which is 
the largest positive δ13Ccarb excursion identified in the NCC. In con-
trast, carbonates from the Upper Tongjiajie, Hutouling and Shimen 
formations exhibit normal δ13Ccarb compositions, consisting with 
their deposition after 2.06 Ga (Cai et al., 2022).

On δ18Ocarb versus δ13Ccarb plot (Figure 6), there is no correla-
tion between δ18Ocarb and δ13Ccarb values and most samples have 
δ18OV- SMOW values >18‰, indicating that their carbon– oxygen 
isotopic compositions were not significantly affected by late geo-
logical processes and represent those of the original sedimentary 
carbonate protolith. Some dolomitic marbles and recrystallized 
limestones have low δ18OV- SMOW values <16.0‰ (δ18OV- PDB val-
ues <−14.5‰) due to recrystallization, but their δ13Ccarb values 
remain unaffected. Our carbon– oxygen isotopes confirm exis-
tence of positive δ13Ccarb excursion of ~5‰ in the Guanmenshan 

Formation as previously suggested (Tang et al., 2008, 2011), and 
identified positive δ13Ccarb excursions of ~5‰ from the Lower 
Tongjiajie and Kangzhuangzi formations and of 10.2‰– 11.8‰ 
from the Daposhan Formation in the lower Fanhe Group. The 
Palaeoproterozoic carbonates with positive δ13Ccarb values we re-
ported in the Fanhe Basin are ~3– 4 km thick with an areal extent 
of 3300 km2, and represent the best- preserved geological records 
for the LJE in China.

5.2  |  Comparing C- O isotopes of carbonates with 
different lithology, sedimentary facies and chemical 
compositions

Lithology of the lower Fanhe Group shows that deposition of the 
Daposhan Formation occurred in supralittoral tidal and inter-
tidal zones; the Kangzhuangzi Formation occurred in intertidal to 

F I G U R E  2  Representative outcrop 
photographs of the lower part of the 
Fanhe Group. (a) Sand- bearing dolostone 
in southern Fanhe Basin (Daposhan 
Formation, site 21LD330, GPS position: 
123°57.6′ E; 42°02.0′ N). (b) Sand- bearing 
dolomitic marble in southern Fanhe Basin 
(Daposhan Formation, site 21LD221, 
GPS position: 124°00.1′ E; 42°02.0′ N). (c) 
Limestone and recrystallized limestone 
related to contact metamorphism 
during emplacement of Proterozoic 
dolerite sills in northeastern Fanhe Basin 
(Kangzhuangzi Formation, site 21LD248, 
GPS position: 124°10.0′ E; 42°17.6′ N). 
(d) Limestone and carbonaceous- rich 
slate in northwestern Fanhe Basin 
(Kangzhuangzi Formation, site 21LD246, 
GPS position: 124°09.5′ E; 42°18.1′ N). 
(e) Dolostone in southern Fanhe Basin 
(Guanmenshan Formation, site 21LD227, 
GPS position: 123°54.4′ E; 42°02.6′ N). (f) 
Dolomitic marble in southern Fanhe Basin 
(Guanmenshan Formation, site 21LD228, 
GPS position: 123°56.5′ E; 42°03.1′ N). 
(g) Argillaceous dolostone from the 
Lower Tongjiajie Formation in southern 
Fanhe Basin (site 21LD275, GPS position: 
124°14.1′ E; 42°04.4′ N). (h) Sand- bearing 
dolostone from the Upper Tongjiajie 
Formation in southern Fanhe Basin (site 
21LD280, GPS position: 124°04.8′ E; 
42°02.9′ N). [Colour figure can be viewed 
at wileyonlinelibrary.com]
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infralittoral zone and shallow- marine shelf; the Guanmenshan For-
mation occurred in shallow- marine reef; and the Tongjiajie Forma-
tion occurred in shallow- marine reef and offshore beach (Figures 4 
and 5, Xu et al., 1997; Chen et al., 2006). The water depths increase 
from the Daposhan to Kangzhuangzi formations and reach the high-
est sea level in the upper Kangzhuangzi Formation, and then de-
crease from Guanmenshan to Tongjiajie formations (Figures 4 and 5). 
The large variable SiO2 (0.12– 52.97 wt.%), Al2O3 (0– 5.35 wt.%) and 
TiO2 contents (0.002– 0.294 wt.%) indicate differential involvement 
of terrigenous clastics or clays. Since some recent results considered 
the δ13Ccarb trend of the LJE as facies dependent and challenged 
the global meaning of the LJE (Bakakas Mayika et al., 2020; Prave 

et al., 2022), whether the positive δ13Ccarb excursions in the lower 
Fanhe Group is related to lithology and facies changes should be 
examined.

Comparing carbon– oxygen isotopes of carbonate rocks with 
different lithology and chemical compositions shows that there 
is no correlation between δ13Ccarb values and lithology, SiO2, Ti, 
Al2O3, TFe2O3, Mn, Na2O, K2O and P2O5 contents and Ca/Mg ra-
tios (Figures 4 and 5), indicating that the δ13Ccarb values are unre-
lated to lithology and chemical compositions. During deposition 
of the Tongjiajie Formation, sedimentary facies changed from 
shallow- marine reef setting in its lower part (δ13Ccarb values of 
~5‰) to offshore beach setting in its upper part (δ13Ccarb values 

F I G U R E  3  Representative 
photomicrographs (cross polarized 
light) of the lower part of the Fanhe 
Group. (a) Dolomitic marble (Daposhan 
Formation, sample 21LD288- 1, GPS 
position: 124°26.5′ E; 42°09.9′ N). (b) 
Sand- bearing dolostone (Daposhan 
Formation, sample 21LD330- 1, GPS 
position: 123°57.6′ E; 42°02.0′ N). (c) 
Recrystallized limestone near the contact 
between lime stone and Proterozoic 
dolerite sill (Kangzhuangzi Formation, 
sample 21LD348- 1, GPS position: 
123°55.7′ E; 42°12.6′ N). (d) Limestone 
(Kangzhuangzi Formation, sample 
21LD348- 2, GPS position: 123°55.7′ E; 
42°12.6′ N). (e) Dolostone in southern 
Fanhe Basin (Guanmenshan Formation, 
sample 21LD220- 1, GPS position: 
123°58.2′ E; 42°02.9′ N). (f) Sand- bearing 
dolomitic marble in northwestern Fanhe 
Basin (Guanmenshan Formation, sample 
21LD347- 1, GPS position: 123°57.5′ E; 
42°14.5′ N). (g) Argillaceous dolostone 
from the Lower Tongjiajie Formation 
in southern Fanhe Basin (21LD275- 1, 
GPS position: 124°14.1′ E; 42°04.4′ N). 
(h) Sand- bearing dolostone from the 
Upper Tongjiajie Formation in southern 
Fanhe Basin (21LD280- 1, GPS position: 
124°04.8′ E; 42°02.9′ N). Mineral 
abbreviations: Dol, dolomite; Cal, calcite; 
Q, quartz; Pl, plagioclase; Kf, K- feldspar; 
Py, pyrite. [Colour figure can be viewed at 
wileyonlinelibrary.com]
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of ~0‰), which is inconsistent with the previous inferences that 
shallow- marine setting is marked by the strongly positive values, 
whereas deeper- marine setting is characterized by weak or no pos-
itive excursions (Bakakas Mayika et al., 2020; Prave et al., 2022). 
Moreover, there is no difference between δ13Ccarb values of the 
recrystallized and unrecrystallized carbonates (Figure 6). In fact, 
samples from the same formations in different locations have sim-
ilar δ13Ccarb values (Figures 4 and 5), indicating that the positive 
carbon isotope excursion we identified is facies independent and 
represents a strong perturbation of the global carbon cycle re-
corded in the NCC.

5.3  |  Implications for global record of GOE and LJE

Although Chen (1988) firstly proposed a palaeoenvironmental ca-
tastrophe at ~2.3 Ga by studying the REE geochemistry of the 
Palaeoproterozoic high- grade metamorphosed sediments in the 
southern NCC (Chen, 1990; Chen & Zhao, 1997), intensive meta-
morphism, poor age constraints and lack of reliable diamictites and 
carbonates with strong positive carbon isotope excursion in the 

Palaeoproterozoic successions seriously restricted the studying of 
GOE and LJE in the NCC (Melezhik et al., 2013).

Our results show that all marine carbonates from the Daposhan, 
Kangzhuangzi, Guanmenshan and Lower Tongjiajie formations are 
characterized by positive δ13Ccarb values from ~5‰ to ~11‰ and 
represent the largest positive δ13Ccarb excursion identified in the 
NCC, and those from the Upper Tongjiajie Formation and the over-
lying Hutouling and Shimen formations have no positive carbon 
isotope excursion. There is no correlation between δ13Ccarb values 
and their chemical compositions, indicating that the positive carbon 
isotope excursion is facies independent. Deposition of the marine 
carbonates with positive carbon isotope excursion occurred during 
~2.2– 2.06 Ga and carbonates with no carbon isotope excursion 
were deposited after 2.06 Ga. The above deposition ages and car-
bon isotope in Fanhe Basin are consistent with timing of the LJE 
occurred mostly between 2.22 Ga and 2.06 Ga and termination of 
the LJE at 2.06 Ga constrained in other continents (Bekker & Hol-
land, 2012; Karhu & Holland, 1996; Lajoinie et al., 2019; Melezhik 
& Fallick, 1996; Table 1). In the deposition age versus δ13CV- PDB plot 
(Figure 7), the δ13CV- PDB values of carbonates from the lower Fanhe 
Group are similar to those of carbonates from other cratons and 

F I G U R E  4  Lithostratigraphic columns, C- O isotopes and major element compositions of the lower and middle parts of the Fanhe Group in 
the northeastern Fanhe Basin. [Colour figure can be viewed at wileyonlinelibrary.com]
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exhibit a decreasing trend from ~2.2 Ga to 2.06 Ga as other cratons. 
Similar deposition ages and variation trend from 2.22 Ga to 2.06 Ga 
between the carbonates with positive carbon isotope excursion 
newly identified in the NCC and those in other continents (Table 1) 

confirm that the LJE is a globally synchronous event and represent 
the largest perturbation of the global carbon cycle in Earth's history 
(Martin, Condon, Prave, & Lepland, 2013; Melezhik et al., 2007; 
Melezhik et al., 2013).

F I G U R E  5  Lithostratigraphic columns, C- O isotopes and major element compositions of the lower and middle parts of the Fanhe Group in 
the southern Fanhe Basin. [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E  6  δ18OV- SMOW versus 
δ13CV- PDB plot for carbonate rocks from 
the lower and middle parts of the Fanhe 
Group. [Colour figure can be viewed at 
wileyonlinelibrary.com]
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6  |  CONCLUSIONS

Our results show that the ~2.20– 2.06 Ga carbonates from the 
newly confirmed Palaeoproterozoic successions in the lower 
Fanhe Group in the northeastern NCC have high positive carbon 
isotope excursion similar to the carbonates deposited during LJE 
in other continents. We firstly identified marine carbonates with 
δ13Ccarb values of 10.6‰– 11.7‰ from the Daposhan Formation 
and of 3.8‰– 6.0‰ from the Kuangzhuangzi and Lower Tongjia-
jie formations. The carbonates of the Daposhan Formation record 
the largest positive carbon isotope excursion identified in the 
NCC.

The ~2.20– 2.06 Ga marine carbonates in Fanhe Basin have 
similar δ13Ccarb values as those synchronously deposited in other 
cratons and their δ13Ccarb values exhibit a decreasing trend from 
~2.20 Ga to 2.06 Ga. These ~3– 4 km thick Palaeoproterozoic car-
bonates with positive δ13Ccarb values represent the best- preserved 
geological records for LJE in China. Our identification of carbon-
ates with high positive carbon isotope excursion shed new lights 
on the geological records of the LJE in the NCC as well as timing, 
magnitude and global significance of the positive δ13Ccarb excur-
sion of LJE.
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