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Geodynamic evolution in the post-collisional stage of the East Kunlun 
Orogenic Belt: constraints from the Late Triassic intermediate–felsic igneous 
rocks

A-K. Zhanga, S-Y. Hea, Y. Zhanga, J-L. Sunb,c and Y. Qianb,d 

aThe Third Geological Exploration Institute of Qinghai Province, Xi’ning, China; bCollege of Earth Sciences, Jilin University, 
Changchun, China; cState Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 
Guiyang, China; dShandong Provincial Engineering Laboratory of Application and Development of Big Data for Deep Gold Exploration, 
Weihai, China 

ABSTRACT 
The Late Triassic igneous rocks associated with post-collision are widely distributed in the East Kunlun 
Orogenic Belt (EKOB), but their specific dynamic mechanism and evolutional process are still contro
versial. To address these key issues, we investigated the geochronology and geochemistry of inter
mediate–felsic igneous rocks from the EKOB, including trachyandesite, rhyolite, porphyritic 
monzogranite, syenogranite, granite porphyry and crystalline tuff. Zircon U–Pb isotopes of these rocks 
indicate that they were formed between 231.1 and 215.8 Ma (i.e. Late Triassic). These igneous rocks 
have moderate to high SiO2 (60.29–79.56 wt%) and low mantle compatible element contents (e.g. Co: 
0.37–12.62 ppm; Ni: 1.55–15.59 ppm), suggesting that continental crustal-derived material played an 
important role in their formation. Porphyritic monzogranite (231.1 Ma), syenogranite (228.1 Ma), tra
chyandesite (227.4 Ma) and rhyolite (215.8 Ma) have Nb/U (1.41–4.71) and Ce/Pb (1.48–6.19) ratios like 
that of the crust, with eHf(t) values (–1.31 to 2.26) and old two-stage model (TDM2) ages of 1340– 
1119 Ma, suggesting that they originated from the partial melting of a Mesoproterozoic crust with 
minor mantle material involved in their source. Crystalline tuff (224.6 Ma) and granite porphyry 
(222.3 Ma) have Nb/U (1.93–3.81) and Ce/Pb (0.30–3.18) ratios, negative eHf(t) values (–7.04 to −5.12) 
and old TDM2 ages (1703–1581 Ma) closer to those of crust, suggesting that they were derived from 
the partial melting of a Paleo–Mesoproterozoic continental crust without addition of mantle material. 
Based on our new data and published data, the Late Triassic igneous rocks from the EKOB can be div
ided into three stages, 236–227, 226–218 and 216–208 Ma, corresponding to slab break-off, litho
spheric mantle delamination and thickened lower crust delamination, respectively.

KEY POINTS
1. The intermediate–felsic igneous rocks from the East Kunlun Orogenic Belt are dated from 

231.1 to 215.8 Ma (i.e. Late Triassic).
2. These igneous rocks were derived from the partial melting of ancient continental crust.
3. The Late Triassic igneous rocks from the East Kunlun Orogenic Belt can be divided into three 

stages, including slab break-off, lithospheric mantle delamination and thickened lower crust 
delamination.
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Introduction

The East Kunlun Orogenic Belt (EKOB) is a typical collisional 
orogenic belt in the north of the Tibetan Plateau (Figure 1a; 
Sun et al., 2009; Windley et al., 2007; Xiao et al., 2009). It not 
only records the earliest accretion history of the Gondwana 
and Laurasia supercontinent (Roger et al., 2003; Yin & 
Harrison, 2000), but also completely preserves the evolution 
of Proto-Tethys Ocean before the early Paleozoic, and the 
Paleo-Tethys Ocean from the Paleozoic to Mesozoic 
(Mo et al., 2007; Roger et al., 2003; Seng€or, 1979; Sun et al., 

2009, 2021; Xiong, 2014). The evolutional process of the 
Paleo-Tethys Ocean controlled the present-day geological 
structure of the EKOB. The opening of the Paleo-Tethys 
Ocean took place in the Late Devonian to Carboniferous (Mo 
et al., 2007), and initial subduction began in the Early 
Permian (Chen et al., 2001; Liu et al., 2014; Xiong, 2014). 
Rocks associated with the collision appeared in the Early– 
Middle Triassic (Hu et al., 2016; Li et al., 2018; Xiong et al., 
2014). Most scholars proposed that the EKOB had entered 
the post-collisional stage in the Late Triassic (Sun et al., 2021; 
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Xiong et al., 2012, 2014; Yu et al., 2015; Zhao et al., 2020). 
However, Ding et al. (2014) reported that the Anisian granite 
dykes (ca 244 Ma) had the characteristics of A2-type granites 
and suggested that the EKOB entered the post-collisional 
stage prior to the Middle Triassic. In addition, the specific 
dynamic mechanism and evolutional process of the post-col
lisional stage are still controversial, and several dynamic 
models have been proposed, such as slab break-off (Luo 
et al., 2014; Xia, Wang, et al., 2014) and delamination of thick
ened lithospheric mantle (Xiong et al., 2014; Zhou et al., 
2021), whereas no model can explain fully the petrogenesis 
and rock assemblages of the Late Triassic in the EKOB.

Intermediate–felsic igneous rocks are the most impor
tant rock types in orogenic belts and are widely distributed 
in various evolutional stages of orogenic belts. Their spa
tial–temporal distribution records fully the timelines and 
processes of dynamic evolution, such as subduction, colli
sion, post-collision, slab break-off and lithospheric delamin
ation (Bellos et al., 2015; Xia, Wang, et al., 2014; Xin et al., 
2019). Therefore, a systematic summary of the types and 
genesis of intermediate–felsic igneous rocks can provide 
constraints on the dynamic mechanism and evolutional 
process. During the Late Triassic, numerous intermediate– 
felsic igneous rocks associated with post-collision occurred 
in the EKOB (Figure 1b). In this study, samples of the Late 
Triassic intermediate–felsic igneous rocks from the Yazigou 
and Harizha areas of the EKOB have been collected, and 
experiments undertaken on geochemistry, zircon U–Pb 
geochronology and Hf isotopes. We analysed their petro
genesis and tectonic setting, and summarised the rock 
assemblages and their distribution, with the aim of provid
ing a new insight into the post-collisional stage of the 
Paleo-Tethys Ocean in the EKOB.

Geological setting and sample descriptions

The EKOB is in the north Tibetan Plateau, bounded by the 
Qaidam Block to the north, the Bayan Har–Songpanganzi 
Terrane (BH-SG) to the south, and the Tarim block to the 
west (Figure 1a). The EKOB is more than 1500 km long in 

an east–west direction and about 50–200 km wide, and div
ided into three tectonic belts (NKB, North Kunlun Belt; CKB, 
Central Kunlun Belt; SKB, South Kunlun Belt) by three faults 
(NKF, North Kunlun fault; CKF, Central Kunlun fault; SKF, 
South Kunlun fault; Figure 1b; Sun et al., 2009).

The Precambrian basement is mainly the Paleo– 
Mesoproterozoic Jinshuikou Group in the NKB and CKB. The 
Jinshuikou Group contains moderate–high metamorphic rocks, 
comprising the Baishahe and Xiaomiao formations (Chen et al., 
2006; Wang et al., 2007). The Precambrian strata in the SKB 
consist mainly of the Proterozoic Kukai Group and 
Meso–Neoproterozoic Wanbaogou Group (Xiong, 2014). The 
Kukai Group consists of greenschist to amphibolite 
metamorphic rocks, and the Wanbaogou Group is a very thick 
volcano–sedimentary unit. Permian and Triassic strata in the SKB 
include the Buqingshan Group, and the Gequ, Hongshuichuan, 
Naocanjiangou and Xilikete formations. Note that the Middle 
Triassic Naocanjiangou Formation is angularly unconformably 
overlain by the Middle Triassic Xilikete Formation (Chen, 2014).

The igneous rocks are mainly distributed in the CKB 
with minor occurrences in the NKB and SKB (Figure 1b). 
These rocks were mainly formed from the late Paleozoic to 
Mesozoic, especially the Late Permian to Late Triassic (Chen 
et al., 2019; Mo et al., 2007). Intrusive rocks include mafic 
rocks, diorites, granites and parts of ophiolitic complexes. 
Granites are the most extensive with an area of 48 000 km2 

in large complex batholiths (Figure 1b; Liu et al., 2011; Sun 
et al., 2021; Xin et al., 2019; Xiong et al., 2011, 2012, 2014). 
Granites contain mafic microgranular enclaves (MMEs, 
Xiong, 2014). In addition, the Devonian Maoniushan 
Formation and Late Triassic Elashan Formation, which are 
composed of continental volcanic rocks, occur in the 
region. The Elashan Formation consists of lower volcanic 
lava (basalt, andesite and rhyolite) and upper volcaniclastic 
rocks (crystalline tuff) (Ding et al., 2011).

The study areas are in the Yazigou area of the NKB and 
the Harizha area of the CKB (Figures 1b and 2). Exposed 
strata are mainly the Jinshuikou Group, Ordovician–Silurian 
NaijTai Group, Permian Dachaigou Formation and Late 
Triassic Elashan Formation. The NaijTai Group consists of 

Figure 1. (a) Tectonic map of China (after Yuan et al., 2010). (b) Schematic geological map of the East Kunlun Orogen Belt (after Fan et al., 2022). NKB, North 
Kunlun Belt; CKB, Central Kunlun Belt; SKB, South Kunlun Belt. The geochronological data are listed in the Supplemental data (Table S4).
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typical volcano-sedimentary assemblages, which are div
ided into three parts: (1) phyllite with marble interlayers in 
the lower part; (2) phyllite, dacite and slate in the middle 
part; and (3) altered basalt and tuff in the upper part. The 
Dachaigou Formation comprises mainly marble and lime
stone. The Elashan Formation comprises mainly tuff and 
rhyolite. In addition, numerous igneous rocks occur in the 
study areas and include andesite, rhyolite, tuffaceous rocks 
and granite (Figure 2). In this study, six representative sam
ples of intermediate–felsic igneous rocks were collected, 
including porphyritic monzogranite (YZG-N1), syenogranite 
(YZG-N2), trachyandesite (YZG-N3), rhyolite (YZG-N4), gran
ite porphyry (HRZ-N4) and crystalline tuff (HRZ-54) 
(Figure 2). Except for the syenogranite, all other samples 
have a porphyritic structure (Figure 3). The porphyritic 
monzogranite has phenocrysts (40 vol%) and matrix 
(60 vol%) of K-feldspar, plagioclase, quartz, with minor bio
tite and amphibole. The syenogranite comprises K-feldspar 
(60 vol%), quartz (20–25 vol%), plagioclase (�10 vol%) and 
minor biotite (<5 vol%). The trachyandesite has phenoc
rysts (�30 vol%) and matrix (70 vol%) of quartz, K-feldspar, 
plagioclase, amphibole and biotite. The rhyolite exhibits 
phenocrysts (�25 vol%) and matrix (�75 vol%) of plagio
clase and quartz, in which plagioclase is altered by sericite. 
The granite porphyry has phenocrysts (�30 vol%) and 
matrix (70 vol%) of K-feldspar, plagioclase and quartz. The 
crystalline tuff has phenocrysts (25–30 vol%) and matrix 
(60–75 vol%) of K-feldspar, plagioclase, quartz and biotite.

Analytical methods

Zircon U–Pb dating and major- and trace-element analyses 
were carried out at the Key Laboratory of Mineral 
Resources Evaluation in Northeast Asia, Ministry of Nature 
Resources of China, Changchun.

Zircon U–Pb dating

Zircons were separated from the six samples by magnetic 
and heavy-liquid separation techniques at Langfang 
Regional Geological Survey, Hebei Province, China. These zir
cons were imaged in transmitted light and cathodolumines
cence to reveal their internal morphology. The zircon U–Pb 
analyses were determined by Agilent 7900 ICP-MS with a 
193 nm ArF excimer laser system. The beam diameter was 
32 lm, with a frequency of 8 Hz and energy density of 10 J/ 
cm2 during the analyses. The zircon standards 91500 and GJ 
were adopted for age calibration, and NIST610 silicate glass 
was used to quantify the element concentration. During the 
analyses, the zircon standard 91500 showed an average age 
of 1064.90 Ma, which is consistent with the recommended 
age values of 1065.4 ± 0.6 Ma (Wiedenbeck et al., 1995). 
Details of the method are given by Liu et al. (2008). The ICP- 
MS DataCal 10.8 (Liu et al., 2008) and Isoplot3 program 
(Ludwig, 2003) were used to plot age and concordia plots. 
Common Pb corrections followed the method of Andersen 
(2002). Zircon U–Pb age data are listed in the Supplemental 
data (Table S1).

Major- and trace-element analyses

Thirty-four samples for major and trace elements were 
tested by X-ray fluorescence (XRF; ZXS Primus II) and 
Agilent 7500a ICP-MS. After removing the weathered surfa
ces, samples were smashed to 200-mesh size. The sample 
powder and lithium borate flux were mixed, melted and 
cooled into glass discs for XRF testing. Sample powders 
were dissolved by acid (HFþHNO3) in a Teflon bomb and 
dissolved into an aqueous solution for ICP-MS analysis. The 
accuracy of the samples was monitored using national 
standard GBW07103 and GBW07104. The precision is 

Figure 2. Detailed geological map of the Yazigou (a) and Harizha (b) areas with sample locations. Modified after 1:100 000 geological maps of Qinghai 
Provincial Bureau of Nonferrous Metal and Geological Exploration.
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<±5% for major elements and <±10% for trace elements. 
The major- and trace-element data are provided in the 
Supplemental data (Table S2).

Zircon Hf isotopic compositions

Zircon Hf isotopic analyses were completed by Neptune 
plus MC-ICP-MS with a 193 nm ArF excimer laser system at 

the Institute of Mineral Resources, Chinese Academy of 
Geological Sciences, Beijing, China. Ablation protocol 
employed a spot diameter of 55 lm with an 8 Hz repetition 
rate and laser energy of 10 J/cm2. The 91500 zircon stand
ards were used for precision control. During the analyses, 
the 91500 zircon standards yielded a weighted-mean 
176Hf/177Hf ratio of 0.282298, which is in good agreement 
with the recommended Hf isotopic ratio (176Hf/177Hf ¼

Figure 3. (a–f) Field photographs and photomicrographs showing typical texture features. (g–l) Cross-polarised light. (a, g) Porphyritic monogranite, (b, h) syenogranite 
(c, i) trachyandesite, (d, j) rhyolite, (e, k) granite prophyry, and (f, l) crystaline tuff. Kfs, K-feldspar; Pl, plagioclase; Qtz, quartz; Bt, biotite; Ser, sericite.
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0.282302 ± 0.000008; Goolaerts et al., 2004). Details of the 
calibration methods followed Wu et al. (2006). Zircon Hf 
isotopic compositions are listed in the Supplemental data 
(Table S3).

Results

Zircon U–Pb ages and Hf isotopic compositions

Zircons from the samples are mainly subhedral, with some 
being euhedral. Their length ranges from 50 to 100 lm, 
with an aspect ratio of 1–2. Zircons from samples YZG-N1, 
YZG-N3 and HRZ-N4 have obvious oscillatory growth zon
ing, whereas other zircons have only weak growth zoning. 
All zircons have high Th/U ratios (0.25–1.3) indicating an 
igneous origin (Hoskin & Schaltegger, 2003).

Twenty-six zircons from porphyritic monzogranite (YZG- 
N1) yielded 206Pb/238U ages between 234.9 and 227.6 Ma, 
with a weighted-mean age of 231.1 ± 0.92 Ma (MSWD ¼
0.83; Figure 4a) considered to be the crystallisation age of 
the porphyritic monzogranite. Ten zircons have eHf(t) val
ues of −0.93 to 1.45, Hf single-stage model ages (TDM1) 
ages of 919–819 Ma and two-stage model (TDM2) ages of 
1324–1172 Ma (Figure 5).

Thirteen zircons from syenogranite (YZG-N2) showed 
206Pb/238U ages ranging from 231.5 to 225.3 Ma, giving a 
weighted-mean age of 228.1 ± 1.3 Ma (MSWD ¼ 0.66; 
Figure 4b), which is regarded as the emplacement age of 
the syenogranite. Ten zircons have eHf(t) values of −1.24 to 
2.26, TDM1 ages of 930–786 Ma and TDM2 ages of 1340– 
1119 Ma (Figure 5).

Twenty-one zircons from trachyandesite (YZG-N3) dis
played 206Pb/238U ages that vary between 229.5 and 
226.0 Ma, with a weighted-mean age of 227.4 ± 1.3 Ma 
(MSWD ¼ 0.21; Figure 4c), representing the crystallisation 
age of the trachyandesite. Nine zircons have eHf(t) values 
of −1.08 to 0.70, TDM1 ages of 912–866 Ma and TDM2 ages 
of 1330–1217 Ma (Figure 5).

Twenty zircons from rhyolite (YZG-N4) have 206Pb/238U 
ages from 218.7 to 212.5 Ma, with a weighted-mean age of 
215.8 ± 0.94 Ma (MSWD ¼ 0.63; Figure 4d), which can be 
taken as the crystallisation age of the rhyolite. Ten zircons 
have eHf(t) values of −1.31 to 2.01, TDM1 ages of 928– 
794 Ma and TDM2 ages of 1332–1123 Ma (Figure 5).

Twenty-five zircons from granite porphyry (HRZ-N4) 
yielded 206Pb/238U ages ranging from 228.7 to 219.5 Ma, 
giving a weighted-mean age of 222.3 ± 0.94 Ma (MSWD ¼
0.44; Figure 4e), which is recorded as the crystallisation age 
of the granite porphyry. Nine zircons have eHf(t) values of 
−7.04 to −5.12, TDM1 ages of 1151–1077 Ma and TDM2 ages 
of 1703–1581 Ma (Figure 5).

Seventeen zircons from crystalline tuff (HRZ-54) showed 
206Pb/238U ages between 227.7 and 222.5 Ma, with a 
weighted-mean age of 224.6 ± 1.9 Ma (MSWD ¼ 0.14; 
Figure 4f), which is interpreted to be the crystallisation age 
of the crystalline tuff.

Major and trace elements

Most of the samples have low loss in ignition (LOI) con
tents (0.39–2.81 wt%). All samples have moderate to high 
SiO2 (60.29–79.56 wt%) and moderate Al2O3 (10.3– 
17.54 wt%) and total alkali (K2OþNa2O) contents (5.71– 
8.82 wt%). Except for the trachyandesite sample, the con
tents of CaO, MgO, P2O5, TiO2 and MnO from other sam
ples are less than 2 wt%, and the Fe2O3

T is less than 4 wt%. 
The trachyandesite samples have low–moderate MgO 
(1.89–2.11 wt%), CaO (3.46–4.25 wt%) and Fe2O3

T contents 
(5.51–5.93 wt%). All samples show subalkaline and high-K 
to shoshonite features (Figure 6). The porphyritic monzog
ranites have positive Eu anomalies (Eu/Eu�¼ 1.23–1.67), 
whereas other samples have negative Eu anomalies (Eu/ 
Eu�¼ 0.12–0.87). Except for the granite porphyry, other 
samples show obvious enrichment in light rare earth elem
ent (REE) and depletion in heavy REE, with high (La/Yb)N 

ratios of 4.3–26 (Figure 7). These samples are marked by 
enrichment in Rb, K, U, Pb, Zr and Hf elements, and deple
tion of high-field-strength elements (HFSEs, e.g. Nb, Ta and 
Ti; Figure 7).

Discussion

Petrogenesis

Although the LOI of these samples is low (0.39–2.81 wt%), 
it is necessary to exclude the effect of alteration on the 
major and trace elements before using them to discuss the 
potential magma sources. Published studies have shown 
that large-ion lithophile elements (LILEs) migrate more 
readily in hydrothermal fluids than HFSEs, so some LILEs 
(e.g. K, Sr, Rb) can be used to monitor alteration effects 
(Alirezaei & Cameron, 2002; Rudnick et al., 1985). In the 
K2O and Sr vs LOI diagrams (Supplementary material, 
Figure S1a, b), the relative stability of K2O and Sr in these 
rocks indicates that LILEs do not change significantly dur
ing weak alteration. In addition, zirconium (Zr) in the mag
matic rocks is immobile during alteration, so some HFSEs 
are plotted against Zr to determine their migration. The Nb 
and Ta display linear relationships or clumps with Zr 
(Supplementary material, Figure S1c, d), suggesting that 
the HFSEs were not affected by weak alteration. Thus, the 
major and trace elements can be used for the following 
magmatic source assessment.

Porphyritic monzogranite and syenogranite

Granitic rocks can generally be divided into four rock types 
(I-, S-, M- and A-type; Chappell, 1999; Eby, 1992). The 231– 
228 Ma porphyritic monzogranite and syenogranite from 
the Yazigou area have high SiO2 contents (66.50– 
75.64 wt%) and low MgO (0.15–0.62 wt%), Co (1.91– 
5.12 ppm) and Ni (3.30–7.93 ppm) contents, suggesting 
they are not M-type granite. These samples have low zircon 
saturation temperatures (TZr) between 763 and 845 �C 
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(Watson & Harrison, 1983), and low ZrþNbþCeþ Y values 
(162–348 ppm; only one sample is 375 ppm), which are not 
consistent with the features of A-type granite (>850 �C; 
>350 ppm). In the Fe2O3

T/MgO and (K2OþNa2O)/CaO vs 
ZrþNbþCeþ Y diagrams (Figure 8a, b; Whalen et al., 
1987), these samples plot in areas of non-A-type granite. In 
fact, these rocks show the characteristics of I-type granite. 

They lack peraluminous minerals (e.g. cordierite and musco

vite) and contain some amphibole and biotite (Figure 3). In 

addition, the negative correlation between P2O5 and SiO2 

also indicates that they belong to I-type granite.
I-type granite is thought to generated in three ways: 

fractional crystallisation of mantle-derived basaltic magmas 
(Chappell, 1999), partial melting of crustal materials 

Figure 4. U–Pb concordia diagrams and weighted-mean age for zircons from the samples. Cyan dotted and red solid circles represent the locations of Hf iso
tope and U–Pb age.
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(Gao et al., 2016; Richards, 2011) and mixing of crust- and 
mantle-derived magma (Champion & Chappell, 1992; Xie 
et al., 2021). Fractional crystallisation of mantle-derived bas
altic melts generally produces peralkaline magma, which is 
inconsistent with the calc-alkaline characteristics of these 
rocks (Figure 6a). High SiO2 and low mantle compatible 
elements show also that mantle-derived magma was not 
obviously involved in their formation. Granitic rocks formed 
by mantle-derived magmatic differentiation are generally 
accompanied by many mafic and intermediate rocks in 
time and space (Turner et al.,1992; Xin et al., 2019), but this 
is not the case for rocks in the Yazigou area (Figure 2a, b). 
Their Nb/U (2.92–4.71) and Ce/Pb (1.48–6.19) ratios are 
closer to the crustal component (10 and 4) than to the 
mantle component (30 and 9) (Hofmann et al., 1986), indi
cating that these samples have an affinity with continental 
crust. Their Rb/Sr (0.35–4.07) and Lu/Yb (0.16–0.19) ratios 

are more consistent also with the partial melting of the 
crust (>0.5; 0.16–0.18) than those of the mantle (0.03– 
0.047; 0.14–0.15; Rudnick & Gao, 2003; Sun & McDonough, 
1989). Porphyritic monzogranite and syenogranite have old 
TDM2 ages (1324–1172 Ma; 1340–1119 Ma), suggesting 
that they were formed by the partial melting of a 
Mesoproterozoic crust. In addition, their eHf(t) contents 
(–0.93 to 1.45; −1.24 to 2.26) indicate that only minor man
tle material might have been added to their source.

Trachyandesite

Andesite is an important rock in orogenic belts, and its 
genetic study is significant for revealing crustal formation, 
growth and crust–mantle interaction (Chen & Zhao, 2017; Ji 
et al., 2018). In general, andesites are formed in the follow
ing ways: (1) partial melting of mantle wedges that are 

Figure 5. (a) eHf(t) vs age diagrams for zircon samples. (b) Histograms of TDM2 age for the zircons. The eHf isotope data for magmatic rocks in the EKOB are 
from Xiong et al. (2011, 2012, 2014) and Sun et al. (2021).

Figure 6. Major-element geochemical plots for samples from the Yazigou and Harizha areas in the EKOB: (a) total alkali vs SiO2 (TAS) diagrams; (b) SiO2 vs K2O 
diagrams (Irvine & Baragar, 1971; Peccerillo & Taylor, 1976).
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metasomatised during subduction (Carmichael, 2002; Yu 

et al., 2017), (2) assimilation and fractional crystallisation 

(AFC) of mantle-derived basaltic magma (Bonin, 2004; Lee 

et al., 2014), (3) partial melting of the lower crust (Flierdt 

et al., 2003; Guffanti et al., 1996) and (4) mixing of crust- 

derived felsic and mantle-derived basaltic magma (Guo 

et al., 2007; Reubi & Blundy, 2009).
Partial melting of the mantle wedge will produce a rock 

with a high Mg# value (>60) and high Sr/Y ratio (Ji et al., 

2018; Xin et al., 2019), which are not consistent with the low 

Figure 7. (a, c, e) Primitive mantle-normalised and (b, d, f) chondrite-normalised REE pattern trace-element diagrams for the samples (Boynton, 1984; Sun & 
McDonough, 1989). The model bulk continental crust is from Rudnick and Gao (2003).
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Mg# values (40–42) and low Sr/Y ratios (20–25) characteristic 
of the trachyandesite. Furthermore, the moderate–high SiO2 

contents (60.29–61.03 wt%) also suggest a crustal affinity 
rather than a mantle-derived magma. The rock types in the 
Yazigou area are mainly granite, tuff and rhyolite, and there 
are no large-scale basaltic magmatic rocks (Figure 2a), indi
cating that the samples were not formed by AFC of basaltic 
magma. The AFC will exclude plagioclase and result in an 
large Eu anomaly, which is contradicted by the weak Eu 
anomaly (Eu/Eu�¼ 0.78–0.84) of the trachyandesite. Samples 
have low mantle compatible element values (e.g. Co: 10.34– 
12.62 ppm; Ni: 5.64–11.19 ppm), which is more like the com
position of crust than mantle. Partial melting of the lower 
crust will produce low Mg# (<45; Rapp et al., 1999; Rapp & 
Watson, 1995), which is consistent with the trachyandesite. 
The Lu/Yb (0.156–0.16), Nb/U (3.36–4.16) and Ce/Pb (2.38– 
3.60) ratios also support an origin from the partial melting of 
lower crust (Rudnick & Gao, 2003; Sun & McDonough, 1989). 
Trachyandesite has old TDM2 ages (1330–1217 Ma), suggest
ing that it was formed by the partial melting of a 
Mesoproterozoic lower crust. In addition, their eHf(t) con
tents (–1.08 to 0.7) indicate that only minor mantle material 
might have been added into their source.

Granite porphyry and crystalline tuff

Granite porphyry and crystalline tuff samples from the 
Harizha area have high SiO2 (74.66–78.52 wt%), low 
ZrþNbþCeþ Y values (80–211 ppm), low 10 000 Ga/Al 
ratios (1.18–2.82) and low TZr (734–789 �C) (Watson & 
Harrison, 1983), indicating that they are neither A- nor 
S- type granites. Samples have low Fe2O3

T/MgO and mod
erate–high (K2OþNa2O)/CaO ratios, showing a signature 
transitional from I-type to A-type.

There are no contemporaneous large-scale mafic rocks 
in the Harizha area (Figure 2b), indicating that they were 
not derived from the differentiation of magma sourced 
from the mantle. Their Nb/U (1.94–3.81), Ce/Pb (0.3–3.18) 

and Rb/Sr (3.65–21.41) ratios suggest that they were 
related to the crust rather than the mantle. Granite por
phyry has negative low eHf(t) values (–7.04 to –5.12) and 
old TDM2 ages (1703–1581 Ma). In addition, Fan et al. (2022) 
reported that the Harizha crystalline tuff (225 Ma) has eHf(t) 
values between –8.87 and −2.31 and TDM2 ages between 
1820 and 1406 Ma. The age and location of this rock are 
similar to the crystalline tuff of this study. Thus, we propose 
that the Harizha granite porphyry and crystalline tuff origi
nated from the partial melting of a Paleo–Mesoproterozoic 
crust without the addition of mantle material.

Rhyolite

Rhyolite samples have high SiO2 contents (77.08–79.56 wt%) 
and low mantle compatible element values (e.g. Co: 1.65– 
2.37 ppm; Ni: 6.18–15.59 ppm), showing that they are not M- 
type. Samples have high Fe2O3

T/MgO and (K2OþNa2O)/CaO 
ratios, which are consistent with the characteristics of A-type 
granite (Figure 8a, b). However, it also has low 10 000 Ga/Al 
ratios (1.67–2.23) and a low TZr (754–772 �C) (Watson & 
Harrison, 1983), which are consistent with an I-type granite. 
Therefore, it may be transitional between I- and A-type. Their 
Nb/U (1.41–2.64), Ce/Pb (1.82–2.14) and Rb/Sr (3.63–5.43) 
ratios imply that they were derived from the crust. Based on 
their TDM2 age (1332–1123 Ma), we propose that it originated 
from the partial melting of a Mesoproterozoic crust. The 
eHf(t) contents (–1.31 to 2.01) suggest that there was an 
injection of mantle material into the source.

Geodynamic evolution

Opening of the Paleo-Tethys Ocean is constrained to the 
Early Carboniferous by ages of the Haerguole ophiolites 
(323 Ma) and Derni ophiolites (345–308 Ma; Liu et al., 2011; 
Yang et al., 2004). Liu et al. (2014) reported that initial sub
duction of the Paleo-Tethys Ocean began at 278 Ma based 
on a study of the Xiaomiao mafic dyke swarm. Subsequently, 

Figure 8. (a) Fe2O3
T/MgO vs ZrþNbþ Ceþ Y and (b) (K2OþNa2O)/CaO vs ZrþNbþ Ceþ Y (Whalen et al., 1987). FG, fractionated granite; OGT, unfractio

nated M-, I-, and S-type granite.
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rocks associated with subduction were reported increasingly 
in the EKOB, such as the Jiadang gabbro (262 Ma; Kong et al., 
2017), Wulonggou granodiorite (260 Ma; Luo et al., 2015), 
Naxiguole gabbro and gabbrodiorite (255–252 Ma; Sun et al., 
2021), Shuizhadonggou appinite (248 Ma; Xin et al., 2019) 
and Xiangride quartz diorite (243 Ma; Xiong et al., 2014). 
Although the timing of closure of the Paleo-Tethys Ocean is 
still debated, it is generally considered to have closed prior 
to the Late Triassic (e.g. Xin et al., 2019; Xiong et al., 2014). 
The angular unconformity between the Middle Triassic 
Naocanjiangou Formation and the overlying Xilikete 
Formation supports this conclusion (Chen, 2014). Many 
extensional-related igneous rocks (e.g. Langmaitan A-type 
granite, 232 Ma; Li et al., 2021) appeared in the EKOB during 
the Late Triassic, indicating that it was undergoing 
post-collisional extension at this time. We have collected pre
viously published high-quality geochronological and geo
chemical data to establish the specific dynamic evolution of 
the EKOB during the Late Triassic.

The age histogram of Late Triassic igneous rocks in the 
EKOB reveals three stages of magmatism (Figure 9): stage 1 
(S1; 236–227 Ma), stage 2 (S2; 226–218 Ma) and stage 3 (S3; 
216–208 Ma). The three stages of magmatism may corres
pond to different dynamic settings. Post-collision occurs 
mostly at the end of orogenic cycle, marking the final oro
genesis and magmatic activity in the orogenic belt. 
Magmatism during the period is generally associated with 
the collapse and extension of the orogenic belt, such as 
slab break-off and delamination of the lithospheric mantle 
or lower crust (Rey et al., 2001; Zhou et al., 2021).

In this study, the trachyandesite, porphyritic monzogranite 
and syenogranite of S1 were formed in the continental crust 
source with little input of mantle material. Some igneous 
rocks with MMEs have been reported in this period in the 
EKOB, such as the Hutouya granodiorite (235 Ma; Feng et al., 
2011) and Weibao granodiorite (228 Ma; Zhou et al., 2015). 
These examples suggest an asthenospheric upwelling during 
this stage. Based on the Sr/Y and (La/Yb)N ratios (Figure 10), 
the crust was still in the process of thickening, so we infer 
that asthenospheric upwelling was caused by slab break-off 
rather than delamination, which is one of the common driv
ing forces of magmatism in the early stage of post-collisional 
extension (Yan et al., 2022). In fact, some magmatic rocks 
associated with slab break-off have been reported, such as 
the Elashan quartz monzodiorite (236 Ma; Wu et al., 2021) and 
Tuoketuo granodiorite (232 Ma; Xia, Qing, et al., 2014). 
Therefore, we propose that the asthenospheric upwelling 
caused by the slab break-off provided heat for the partial 
melting of lithospheric mantle during S1. The rising of hot 
lithospheric mantle melt resulted in the partial melting of a 
Mesoproterozoic crust in the EKOB, and only minor mantle 
material was added to the crustal melt, producing various 
types of rocks during the process (Figure 11a).

Previously published data have shown the appearance 
of large amounts of adakitic rocks during S2, such as the 
Xilikete granodiorite (225 Ma; Chen et al., 2013), Xiangride 
porphyritic granodiorite (223 Ma; Xiong et al., 2014) and 

Figure 9. Histogram of zircon U–Pb ages of the Late Triassic magmatism in 
the EKOB.

Figure 10. (a) Sr/Y vs age and (b) (La/Yb)N vs age for the Late Triassic rocks from the EKOB.
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Xiao-Nuomuhong granodiorite (222 Ma; Xia, Wang, et al., 
2014). In addition, some igneous rocks are also character
ised by high Sr/Y and (La/Yb)N ratios during this period 

(Figure 10), suggesting that there was a thickened crust in 
the EKOB at this time. Moreover, Luo (2012) reported an 
uplift event in the EKOB triggered by extrusion related to 

Figure 11. Schematic diagram showing a genetic model for the Late Triassic igneous rocks in the EKOB.
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the closure of the Paleo-Tethys Ocean. Xia, Wang, et al. 
(2014) and Xia, Qing, et al. (2014) reported that there was 
approximately 35 km crust beneath the EKOB at about 
222 Ma. All geochemical data confirm a thickened crust 
beneath the EKOB. There are mafic rocks and granitic rocks 
with MMEs (Figure 9), implying that the delamination 
occurred at this stage. Studies have shown that the thick
ened crust cannot sink directly because of the refractory 
and buoyant nature of the underlying lithospheric mantle 
(Deng et al., 2007), so the lithospheric mantle delamination 
is the best explanation for the genesis of igneous rocks in 
this interval. Asthenospheric upwelling caused by delamin
ation heated the thickened lower thickened crust to pro
duce adakitic rocks and granitic rocks, and some mantle 
material rose directly to the crust to form mafic rocks or 
was added to felsic magmas in the form of MMEs 
(Figure 11b).

The Sr/Y and (La/Yb)N ratios of igneous rocks in the S3 
interval were decreasing (Figure 10), indicating that the 
crust was in the process of thinning. The occurrence of 
intrusive rocks (e.g. Yemaquan syenogranite; 213 Ma; Gao 
et al., 2014) and volcanic rocks (e.g. Xiangride rhyolite; 
213 Ma; Ding et al., 2011) with the characteristics of A-type 
granite indicate also that the EKOB was undergoing exten
sional magmatism during the S3 interval. In addition, Zhao 
et al. (2020) reported that the Kengdenongshe granite por
phyry (211 Ma) was associated with asthenospheric upwell
ing in the EKOB. We infer that the extensional magmatism 
was probably caused by asthenospheric upwelling trig
gered by delamination of the thickened lower crust. 
Previous studies have shown that the subsequent collision 
will cause the crust to continue to thicken, forming the 
lower crust of eclogite facies (Chiaradia et al., 2009; Kapp 
et al., 2008). The increase in density results in the change 
in its stability, and the upwelling of asthenosphere caused 
by lithospheric delamination further changes the physical 
properties of the thickened crust. Under the influence of 
various processes, the thickened lower crust of eclogite 
facies delaminated, leading to the extensional magmatism 
in the EKOB (Figure 11c).

Conclusions

The intermediate–felsic igneous rocks from the Yazigou 
and Harizha areas were formed at 231.1–215.8 Ma (i.e. Late 
Triassic). The porphyritic monzogranite (231.1 Ma), syenog
ranite (228.1 Ma), trachyandesite (227.4 Ma) and rhyolite 
(215.8 Ma) were formed by the partial melting of a 
Mesoproterozoic crust with only minor input of mantle 
material into their source. Crystalline tuff (224.6 Ma) and 
granite porphyry (222.3 Ma) were derived from the partial 
melting of a Paleo–Mesoproterozoic crust without the add
ition of mantle material. We identify three intervals of mag
matism (S1: 236–227 Ma; S2: 226–218 Ma; S3: 216–208 Ma) 
in the post-collisional stage of the EKOB, and they 

correspond to slab break-off, lithospheric mantle delamin
ation and the thickened lower crust delamination, 
respectively.
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