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Abstract: The Nanpanjiang basin hosts the world’s second-largest concentration of Carlin-type gold
deposits. To decipher the origin and evolution of hydrothermal fluid, this study conducted Sm–Nd
dating, in-situ trace element, and C-O-Sr isotopic analyses on three types of calcite samples from the
giant Lannigou gold deposit in the Nanpanjiang basin, SW China. The type-I calcite, intergrown with
Au-bearing arsenian pyrite, has an Sm–Nd isochron age of 213 ± 7 Ma (MSWD = 0.81), indicating that
gold mineralization occurred in Late Triassic. The type-II calcite, which coexists with high-maturity
bitumens and cut through the main-stage gold orebodies, yields an Sm–Nd age of 188 ± 14 Ma
(MSWD = 0.34), representing a post-ore hydrocarbon accumulation event. The type-I and type-II
calcite samples have low REE contents (5.28–51.6 ppm) and exhibit MREE-enriched and LREE-/HREE-
depleted patterns. Combined with their identical C-O-Sr isotopes, we suggest that hydrothermal
fluids responsible for the precipitation of type-I and type-II calcite samples were derived from a mixed
metamorphic fluid and meteoric water source. In contrast, the type-III calcite samples, associated
with realgar and orpiment, have distinct Mn, Sr, and As contents, REE patterns, and C-O-Sr isotopic
composition from the type-I and II calcites, suggestive of different fluid sources. Based on our and
previously published data, we propose that the fluid evolution, gold mineralization, and hydrocarbon
accumulation in the Nanpanjiang basin are closely related to the Indosinian and Yanshanian orogenies
in South China.

Keywords: calcite Sm–Nd age; C-O-Sr isotope; Lannigou gold deposit; Carlin-type gold deposit;
Nanpanjiang basin

1. Introduction

Carlin-type gold deposits (CTDs) are sedimentary rock-hosted disseminated gold
deposits that account for ~8% of annual worldwide Au production [1,2]. They were first
discovered in Carlin, Nevada, USA in 1961. The Dian–Qian–Gui region is the world’s
second-largest CTD district (Figure 1), containing more than 200 gold deposits or occur-
rences with >800 tons of total proven Au reserves [3]. Recently, significant progress has
been made in the metallogenic age [4–7], source of ore-forming materials [8–11], and
metallogenic regularity [12–14] of these deposits. However, the nature and origin of ore-
forming fluid for these deposits are highly debated [15–17], significantly hampering our
understanding of the ore genesis of these deposits.

Calcite is a common mineral in hydrothermal deposits; its elemental and isotopic
compositions record a wealth of information regarding fluid sources and evolution [18–20].
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Moreover, Sm–Nd geochronology can be applied to constrain the timing of hydrother-
mal events [21–23]. The calcites in the CTDs of the Dian–Qian–Gui region are widely
developed and closely associated with gold mineralization [24–26]. Thus, a system-
atic evaluation of calcite may provide critical insights into the nature and origin of the
ore-forming fluid for CTDs.

Minerals 2023, 13, x FOR PEER REVIEW 2 of 17 
 

 

Calcite is a common mineral in hydrothermal deposits; its elemental and isotopic 
compositions record a wealth of information regarding fluid sources and evolution [18–
20]. Moreover, Sm–Nd geochronology can be applied to constrain the timing of hydro-
thermal events [21–23]. The calcites in the CTDs of the Dian–Qian–Gui region are widely 
developed and closely associated with gold mineralization [24–26]. Thus, a systematic 
evaluation of calcite may provide critical insights into the nature and origin of the ore-
forming fluid for CTDs. 

 
Figure 1. (a) Outline of China showing the location of the Nanpanjiang basin, (b) Simplified geolog-
ical map of the major Carlin-type gold deposits in the Nanpanjiang basin (Modified from [27]). 

The Lannigou gold deposit is one of the largest in the Dian–Qian–Gui area, contain-
ing 109 tons of Au reserves with an average 3.83 g/t grade [27]. In this study, three stages 
of calcite were identified in the deposit. Herein, we conducted in-situ trace element, rare 
earth element (REE), C-O-Sr isotope, and Sm–Nd geochronology analyses of calcite to (1) 
characterize the nature and origin of the hydrothermal fluid and (2) determine the timing 
of the hydrothermal events responsible for gold mineralization. 

2. Regional Background 
The CTDs in the Dian–Qian–Gui area are distributed in the Nanpanjiang basin of the 

southwestern margin of the South China Block (Figure 1). The basin was initially devel-
oped in Devonian through rifting from the southwestern Yangtze Block. It evolved into a 
passive continental margin setting in the Early Carboniferous-Early Permian, a back-arc 
setting in late Permian, and a foreland basin setting in Early-Middle Triassic [28]. The 

Figure 1. (a) Outline of China showing the location of the Nanpanjiang basin, (b) Simplified geological
map of the major Carlin-type gold deposits in the Nanpanjiang basin (Modified from [27]).

The Lannigou gold deposit is one of the largest in the Dian–Qian–Gui area, containing
109 tons of Au reserves with an average 3.83 g/t grade [27]. In this study, three stages
of calcite were identified in the deposit. Herein, we conducted in-situ trace element, rare
earth element (REE), C-O-Sr isotope, and Sm–Nd geochronology analyses of calcite to
(1) characterize the nature and origin of the hydrothermal fluid and (2) determine the
timing of the hydrothermal events responsible for gold mineralization.
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2. Regional Background

The CTDs in the Dian–Qian–Gui area are distributed in the Nanpanjiang basin of the
southwestern margin of the South China Block (Figure 1). The basin was initially developed
in Devonian through rifting from the southwestern Yangtze Block. It evolved into a passive
continental margin setting in the Early Carboniferous-Early Permian, a back-arc setting
in late Permian, and a foreland basin setting in Early-Middle Triassic [28]. The exposed
strata in the northwestern part of the basin primarily comprise shallow-water platform
carbonates interbedded with sandstone, calcareous siltstone, and Permian Emeishan flood
basalt. In the basin’s southeastern segment, the strata mainly exhibit the deep-water
basinal sequence of mudstone, siltstone, siliceous rocks, and micrite [29]. Two episodes
of subduction-related tectonic events of the Paleo-Tethyan and Paleo-Pacific oceans have
affected the sedimentation and deformation of the Nanpanjiang basin, forming a series of
NE- and NW-striking faults and folds in the Nanpanjiang basin [30,31].

Igneous rocks in the Nanpanjiang basin are rare, the sporadically exposed rocks in-
clude the ~260 Ma Permian Emeishan basalt in the northern region of the basin, ~140–130 Ma
quartz porphyry dykes in the central portion [32], and ~88–85 Ma lamprophyre dykes in
the southeastern region [33].

3. Ore Deposit Geology

The Lannigou gold deposit (also known as Jinfeng) is the second-largest gold deposit
in the Nanpanjiang basin [28]. It is located on the eastern flank of the NNE-trending Laizhis-
han anticline in the northern portion of the Nanpanjiang basin (Figure 2). The exposed
strata in the ore district comprise Upper Carboniferous to Permian thick-bedded carbonate
rocks (e.g., limestone, dolomitic limestone, bioclastic limestone, and reef limestone) and
Triassic terrigenous clastic rocks, which from the bottom to the top include the Xuman,
Niluo, Bianyang, and Luolou formations [7,26,34]. Gold mineralization is mainly hosted
in the third and fourth subunits of the fourth Middle Triassic Xuman Formation (T2xm4-3

and T2xm4-4) unit and the Middle Triassic Bianyang Formation (T2by) (Figure 2). The
major rocks in the third subunit of the fourth Xuman Formation unit include calcareous
mudstone, dolomitic siltstone, and sandstone, while the fourth unit comprises sandstone
and argillite [8]. The Bianyang Formation is composed of sandstone, siltstone, and argillite.
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Orebodies in the Lannigou gold deposit occur primarily as lenses and veins. They
are strongly controlled by the NW- and NE-trending F2, F3, and F6 fault zones, with the F3
fault zone controlling ~80% of the Au reserves in the deposit [30,35]. Gold in the deposit is
ionically bound in arsenian pyrite and arsenopyrite [34,36]. Hydrothermal alteration in the
Lannigou deposit includes decarbonatization, silicification, dolomitization, argillization,
and sulfidation. Three stages of minerals have been identified based on mineral paragenesis
and crosscutting relationships [27,34,36]. The early-stage minerals are generally milky white
vein quartz and relatively coarse, anhedral to euhedral pyrite, with nil to very low gold
concentrations. These minerals are locally fractured and cemented by main- and late-stage
minerals. Main-stage minerals comprise tiny arsenian pyrite, arsenopyrite, and marcasite
enclosed by jasperoid quartz or disseminated in quartz-calcite. The late-stage minerals
contain locally crosscut quartz, calcite, realgar, and orpiment or enclosed early- and main-
stage minerals [3,37]. Magmatic rocks in the mining district are absent; the nearest rocks are
the Baiceng ultramafic to mafic dykes (84 ± 1 Ma, SHRIMP zircon U-Pb) [38] ~25–30 km
NNE of the mine.

Calcites are present in the main- and late-stage mineralization. Based on mineral
assemblage and the cross-cutting relationship, three types of calcites have been identified
from the Lannigou gold deposit (Figure 3): (1) type-I calcite (Cal-1) is white, smoky-gray, or
pale-yellow and widely distributed in main-stage ores and altered wall rocks. It typically
occurs as calcite–quartz–pyrite–arsenopyrite veins or veinlets cut through by type-II (Cal-2)
and type-III (Cal-3) calcites. (2) Cal-2 is white and occurs as veins within the F3 fault zones.
This type of calcite generally fills structural cracks or vugs and is closely associated with
high-maturity bitumen. (3) Cal-3 is milk-white and coexists with realgar, orpiment, stibnite,
and quartz. No gold-bearing pyrite or arsenopyrite exists in this type of calcite vein.
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intergrow with solid bitumen that cut through gold ores. (e,f) Type-III calcite coexists with realgar
and orpiment. Mineral abbreviations: Bit-bitumen, Cal-calcite, Orp-orpiment, Rlg-realgar.

4. Analytical Methods

Three types of calcite samples were collected from calcite veins in the Lannigou gold
deposit. Before Sm–Nd and C-O-Sr isotopic analysis, calcite grains were handpicked
under a binocular microscope to ensure 99% purity and then powdered to 200 mesh in
an agate mortar.

4.1. In-Situ Trace Element of Calcite

Calcite trace elements were analyzed at the State Key Laboratory of Ore Deposit
Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, using an Agilent
7900 Inductively Coupled Plasma Mass Spectrometer (ICP-MS) coupled to a New Wave
NWR femtosecond laser ablation system. Analyses were performed with a spot diameter
of 50 µm and a repetition rate of 5 Hz. Helium was applied as a carrier gas, mixed
with Argon via a T-connector before entering the ICP-MS. Each analysis included an 18 s
background signal followed by 40 s data acquisition from the sample. The NIST 610, NIST
612, and MACS-3 standards were used for reference and quality control. The raw data were
processed using the ICPMSDataCal program [39].

4.2. Sm–Nd Dating

Sm–Nd isotopic analyses were conducted at the Guizhou Tongwei Analytical Tech-
nology Co., Ltd., Guizhou, China, using the Nu Plasma HR Multi-Collector Inductively
Coupled Plasma Mass Spectrometer (MC-ICP-MS). For detailed analytical procedures,
please refer to [24]. The Nd ratio was normalized to a 146Nd/143Nd ratio of 0.7219.
The standard materials, BHVO-2 and W-2a, were used for quality control and yielded
146Nd/143Nd ratios of 0.512990 ± 8 and 0.512518 ± 7, respectively, consistent with their
recommended values of 0.512979 ± 14 and 0.512519 ± 15, demonstrating the reliability of
our data. The average blanks were 0.03 ng for Sm and 0.05 ng for Nd. The decay constant
of λ147Sm = 6.54 × 10−12/year was adopted in the age calculation. The Sm–Nd isochron
ages were plotted using the Isoplot/Ex_ver4.15 program [40].

4.3. C-O-Sr Isotope

Calcite C and O isotopic compositions were analyzed at Guizhou Tongwei Analytical
Technology Co., Ltd. and Kunming University of Science and Technology. During analysis,
an appropriate amount of calcite powder was weighed and reacted with 100% phosphoric
acid at 90 ◦C for 4 h. The released CO2 was measured on a stable isotope mass spectrometer
(IsoPrime 100) [25]. The C isotope was reported in per mil (‰) relative to Vienna-Pee Dee
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Belemnite (V-PDB); the O isotope was reported in per mil (‰) relative to Vienna-Standard
Mean Ocean Water (V-SMOW). Analytical precision was considered > 0.2‰.

The calcite Sr isotopes were measured at Guizhou Tongwei Analytical Technology Co.,
Ltd. Based on the Sr content, ~50–100 mg calcite powders were dissolved with a mixture of
concentrated nitric acid and hydrofluoric acid in a bomb at 185 ◦C. The digested solution
was dried on a hot plate at 80 ◦C, mixed with 3 mL of 2 N nitric acid, and processed via
column chemistry to separate Sr, following a previously reported protocol [41]. The Sr
isotopes were analyzed on a VG Sector 54 thermal ionization mass spectrometer (TIMS).
The raw data were corrected assuming an 86Sr/88Sr ratio = 0.1194. The standard materials,
BHVO-2 and W-2a, were simultaneously prepared and measured, resulting in 87Sr/86Sr
ratios of 0.703488 ± 10 and 0.706985 ± 11, respectively, consistent with their recommended
values of 0.703478 ± 34 and 0.706965 ± 37 (http://georem.mpch-mainz.gwdg.de/, accessed
on 15 February 2016).

5. Results
5.1. Trace and Rare Earth Elements

The trace and REE contents for the three types of calcites are presented in Supplemen-
tary Table S1. These calcites are generally enriched in Mg, Na, Fe, Mn, Sr, Si, Ba, and Y.
Other trace elements, such as Al, K, Sc, Ti, V, Co, Ni, Zn, As, Pb, Th, and U, are low or
below the detection limit. Compared to Cal-1 and Cal-2, Cal-3 has relatively lower Mn and
Sr contents but higher As and Zr contents (Table S1).

The total REE of the three types of calcites is highly varied, with ∑REE contents
of 5.28–31.2 ppm for Cal-1, 8.24–51.6 ppm for Cal-2, and 2.24–63.1 ppm for Cal-3. In
the chondrite-normalized diagram, Cal-1 and Cal-2 display similar REE patterns with
remarkable enrichment of middle rare earth elements (MREE: Sm-Ho) and depletion of
light rare earth elements (LREE: La-Nd) and heavy rare earth elements (HREE: Er-Lu)
(Figure 4). However, Cal-3 is depleted of LREE and enriched in MREE and HREE (Figure 4).
Moreover, Cal-1 and Cal-2 exhibit apparent positive Eu anomalies with Eu/Eu* values of
1.51–4.48 and 2.57–8.33, respectively, whereas Cal-3 has a slightly negative Eu anomaly
(Eu/Eu* = 0.66–0.91).

5.2. Sm–Nd Age

The Sm–Nd isotopic data for the calcites are listed in Table 1. Calcites from the
calcite–quartz–pyrite–arsenopyrite veins (i.e., Cal-1) have 147Sm/144Nd and 143Nd/144Nd
values ranging from 0.3303 to 0.5199 and 0.512115 to 0.512381, respectively. They yield
a Sm–Nd isochron age of 213 ± 7 Ma (Figure 5a), with a low mean square of weighted
deviates (MSWD) of 0.81, and an initial 143Nd/144Nd ratio of 0.511653 ± 0.000019. Cal-
cites that coexist with bitumens (i.e., Cal-2) have 147Sm/144Nd and 143Nd/144Nd ratios
of 0.4695–0.5992 and 0.512394–0.512555, respectively, yielding an Sm–Nd isochron age of
188 ± 14 Ma (Figure 5b), with an MSWD value of 0.34 and initial 143Nd/144Nd ratio of
0.511818 ± 0.000047.

Table 1. Sm/Nd isotope data for type-I and type-II calcites from the Lannigou gold deposit.

Sample No. Description Sm (ppm) Nd (ppm) 147Sm/144Nd ±2σ 143Nd/144Nd ±2σ

LNG19-1 Type-I 0.9303 1.0812 0.519853 0.003088 0.512381 0.000009
LNG19-6-2 Type-I 5.3762 7.2388 0.448713 0.003656 0.512276 0.000004
LNG19-7-2 Type-I 4.8090 8.7972 0.330270 0.002674 0.512115 0.000003
LNG20-13 Type-I 0.9622 1.1732 0.495510 0.006161 0.512347 0.000006
LNG19-2 Type-II 0.4169 0.4735 0.531897 0.008338 0.512469 0.000015

LNG19-3-8 Type-II 2.0803 2.0978 0.599153 0.006612 0.512555 0.000006
LNG19-10 Type-II 2.3352 3.0049 0.469517 0.004504 0.512394 0.000006
LNG20-12 Type-II 1.8248 2.3074 0.477800 0.006522 0.512409 0.000005

http://georem.mpch-mainz.gwdg.de/
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5.3. C-O-Sr Isotope

The C, O, and Sr isotopic composition of the three calcite types are presented in Table 2.
Cal-1 and Cal-2 have similar δ13CVPDB and δ18OVSMOW values ranging from −2.3 to −0.9‰
(mean = −1.8‰, n = 14) and 6.3 to 19.9‰ (mean = 12.7‰, n = 14), respectively. These
largely overlap with previous reported C-O isotopic data for the calcites from the Carlin-
type gold deposits in the Nanpanjiang basin (Figure 6). Compared to Cal-1 and Cal-2,
Cal-3 exhibits lower δ13CVPDB values of −4.4 to −2.2‰ (mean = −3.1‰, n = 6) but higher
δ18OVSMOW values of 14.8 to 23.5‰ (mean = 20.5‰, n = 6) (Figure 6). The Sr isotopes
of three types of calcite have a relatively small variation range, with 87Sr/86Sr values of
0.710155–0.710892 for Cal-1, 0.709183–0.709856 for Cal-2, and 0.708613–0.709547 for Cal-3.
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Table 2. Carbon, oxygen, and strontium isotope data for the three types of calcites from the Lannigou
gold deposit.

Sample No. Description δ13CV-PDB
(‰)

δ18OV-SMOW
(‰)

δ18Ofluid
(‰)

87Sr/86Sr ±2σ

LNG19-1 Type-I calcite −2.0 12.6 2.83 0.710155 0.000010
LNG19-6-2 Type-I calcite −1.6 10.7 0.93 0.710456 0.000010
LNG19-7-2 Type-I calcite −1.3 9.5 −0.27 0.710892 0.000009
LNG20-13 Type-I calcite −1.6 16.5 6.73
LNG20-7 Type-I calcite −1.2 7.2 −2.57
LNG20-8 Type-I calcite −2.3 6.3 −3.47
LNG20-5 Type-I calcite −1.8 13.1 3.33
LNG19-2 Type-II calcite −2.2 17.4 4.31 0.709856 0.000010

LNG19-3-8 Type-II calcite −1.8 19.9 6.81 0.709183 0.000010
LNG19-10 Type-II calcite −1.7 18.2 5.11 0.709787 0.000010
LNG20-12 Type-II calcite −2.3 15.3 2.21
LNG20-6 Type-II calcite −1.6 9.9 −3.19
LNG20-2 Type-II calcite −2.3 11.9 −1.19
LNG20-4 Type-II calcite −0.9 8.7 −4.39
LNG19-8 Type-III calcite −3.1 22.0 8.91 0.709547 0.000011

LNG19-9-1a Type-III calcite −4.4 23.5 10.41 0.708613 0.000011
LNG19-9-1b Type-III calcite −4.0 22.7 9.61 0.708636 0.000009
LNG19-11 Type-III calcite −3.0 20.0 6.91 0.709286 0.000011
LNG19-4 Type-III calcite −2.2 20.4 7.31 0.709345 0.000010
LNG20-9 Type-III calcite −2.2 14.8 1.71

Note: δ18Ofluid(‰) = δ18OV-SMOW-calcite (‰)−1000Inαcalcite-water, 1000Inαcalcite-water = 4.01 × 106/T2 − 4.66
× 103/T + 1.71 [43], where the temperature (T) of 200 ◦C was assumed to the type-I calcite [26], and 150 ◦C was
assumed to the type-II and type-III calcite [26,44].

Minerals 2023, 13, x FOR PEER REVIEW 10 of 17 
 

 

 
Figure 6. Carbon and oxygen isotopic compositions of calcite from the Carlin-type gold deposits in 
the Nanpanjiang basin. The base map is modified from [45], and the calcite data from the Carlin-
type gold deposits in the literature were extracted from previous studies [15,25,26,46,47,48,49]. 

6. Discussion 
6.1. Calcite Sm–Nd Ages Reveal Multiphase Hydrothermal Events in the Nanpanjiang Basin 

The type-I and type-II calcites studied exhibit MREE-enriched patterns and high 
Sm/Nd ratios (0.55 to 0.99, Table 1) suitable for Sm–Nd dating [23,24,50]. Field and 
microscopic observations show that the type-I calcites are intergrown with Au-bearing 
arsenian pyrite (Figure 3a, b), indicating that the formation of Cal-1 is synchronous with 
gold deposition. Hence, the Sm–Nd isochron age of Cal-1 can represent the timing of gold 
mineralization at the Lannigou gold deposit. Here, the Cal-1 yields an isochron age of 213 
± 7 Ma, consistent with the previously reported arsenopyrite Re–Os ages (204 ± 19 Ma) 
[36], demonstrating the reliability of our obtained Sm–Nd age. The formation of ore-stage 
calcite is closely related to decarbonation and sulfidation processes during gold 
mineralization [3,5,16]. Recting metal-bearing hydrothermal fluid with Fe-riched 
calcareous host rocks will release sufficient iron and calcium from the wallrock into the 
ore-forming fluid, resulting in the precipitation of Au-bearing pyrite and calcite. 

The type-II calcites are texturally associated with bitumens that cut through the gold 
orebody of the Lannigou gold deposit. Therefore, the Sm–Nd isochron age (188 ± 14 Ma, 
Figure 5b) of Cal-2 represents a post-ore hydrothermal event. Within uncertainty, this age 
is accordant with the Re–Os age (173 ± 6 Ma; [27]) of associated bitumens at the Lannigou, 
the Sm–Nd age (182 ± 21 Ma; [44]) of calcites from the Shitouzhai paleo-oil reservoir, and 
the U-Pb age (191.9 ± 2.2 Ma; [5]) of calcites (associated with bitumen) from the 
Shuiyindong gold deposit. Given the close temporal and paragenic relationship between 
Cal-2 and bitumen, we posit that the Sm–Nd age of Cal-2 represents a hydrocarbon 
accumulation event in the Nanpanjiang basin. Previous studies revealed two phases of 
hydrocarbon accumulation events in the Nanpanjiang basin [17,44]. Paleo-oil reservoirs 
derived from Devonian source rocks entered the oil window at the Late Paleozoic and 
cracked into bitumen in the Early-Middle Triassic [17], earlier than the ore-forming age of 
the Lannigou gold deposit. The Permian source rocks reached the oil window at the 
Middle-Late Triassic and cracked into high-maturity pyrobitumen and dry gas during the 
Early Jurassic (~173 Ma) [27]. This is consistent with our Cal-2 Sm–Nd age. Thus, we 
suggest that the Sm–Nd age of Cal-2 represents the thermal cracking age of crude oil 
derived from Permian source rocks. 

Figure 6. Carbon and oxygen isotopic compositions of calcite from the Carlin-type gold deposits in
the Nanpanjiang basin. The base map is modified from [45], and the calcite data from the Carlin-type
gold deposits in the literature were extracted from previous studies [15,25,26,46–49].



Minerals 2023, 13, 1420 10 of 16

6. Discussion
6.1. Calcite Sm–Nd Ages Reveal Multiphase Hydrothermal Events in the Nanpanjiang Basin

The type-I and type-II calcites studied exhibit MREE-enriched patterns and high
Sm/Nd ratios (0.55 to 0.99, Table 1) suitable for Sm–Nd dating [23,24,50]. Field and
microscopic observations show that the type-I calcites are intergrown with Au-bearing
arsenian pyrite (Figure 3a,b), indicating that the formation of Cal-1 is synchronous with
gold deposition. Hence, the Sm–Nd isochron age of Cal-1 can represent the timing of
gold mineralization at the Lannigou gold deposit. Here, the Cal-1 yields an isochron
age of 213 ± 7 Ma, consistent with the previously reported arsenopyrite Re–Os ages
(204 ± 19 Ma) [36], demonstrating the reliability of our obtained Sm–Nd age. The formation
of ore-stage calcite is closely related to decarbonation and sulfidation processes during
gold mineralization [3,5,16]. Recting metal-bearing hydrothermal fluid with Fe-riched
calcareous host rocks will release sufficient iron and calcium from the wallrock into the
ore-forming fluid, resulting in the precipitation of Au-bearing pyrite and calcite.

The type-II calcites are texturally associated with bitumens that cut through the gold
orebody of the Lannigou gold deposit. Therefore, the Sm–Nd isochron age (188 ± 14 Ma,
Figure 5b) of Cal-2 represents a post-ore hydrothermal event. Within uncertainty, this age is
accordant with the Re–Os age (173 ± 6 Ma; [27]) of associated bitumens at the Lannigou, the
Sm–Nd age (182 ± 21 Ma; [44]) of calcites from the Shitouzhai paleo-oil reservoir, and the U-
Pb age (191.9 ± 2.2 Ma; [5]) of calcites (associated with bitumen) from the Shuiyindong gold
deposit. Given the close temporal and paragenic relationship between Cal-2 and bitumen,
we posit that the Sm–Nd age of Cal-2 represents a hydrocarbon accumulation event in the
Nanpanjiang basin. Previous studies revealed two phases of hydrocarbon accumulation
events in the Nanpanjiang basin [17,44]. Paleo-oil reservoirs derived from Devonian source
rocks entered the oil window at the Late Paleozoic and cracked into bitumen in the Early-
Middle Triassic [17], earlier than the ore-forming age of the Lannigou gold deposit. The
Permian source rocks reached the oil window at the Middle-Late Triassic and cracked
into high-maturity pyrobitumen and dry gas during the Early Jurassic (~173 Ma) [27]. This
is consistent with our Cal-2 Sm–Nd age. Thus, we suggest that the Sm–Nd age of Cal-2
represents the thermal cracking age of crude oil derived from Permian source rocks.

As previously mentioned, the type-III calcites typically coexist with orpiment or realgar.
Such a paragenetic association has been widely reported from the CTDs in the Nanpanjiang
basin [5,24]. Early studies suggest that this mineral assemblage was precipitated in the
late stage of Carlin-type gold mineralization. However, increasing evidence indicates that
this hydrothermal event occurred ~150–130 Ma [5,22,24], approximately 60–80 Ma younger
than the timing of gold mineralization. Huang [51] reported the U-Pb age of calcite from
the orpiment–realgar–calcite veins at the Lannigou gold deposits, yielding a lower intercept
age of 128.1 ± 4.6 Ma. This is consistent with the timing of hydrothermal activities recorded
in other CTDs (e.g., Shuiyinding, Nibao, Zimudang, etc.) in the Nanpanjiang basin [52].
We interpret that this hydrothermal event may reflect the timing of arsenic remobilization
from preexisting arsenian pyrite or arsenopyrite in the Early Cretaceous. High As contents
in Cal-3 support this interpretation.

Based on our and previous results, three phases of hydrothermal fluid occurred in the
Lannigou gold deposit: gold mineralization in the Late Triassic, oil cracking in the Early
Jurassic, and arsenic remobilization in the Early Cretaceous. The existence of multiphase
hydrothermal activities was not solely recorded in the Lannigou but also in other gold
deposits in the Nanpanjiang basin, e.g., the Shuiyindong gold deposit [5,22], indicating that
the Nanpanjiang basin may undergo multi-phase hydrothermal events in the Mesozoic.

6.2. Fluid Nature and Sources Responsible for the Precipitation of Calcites

REEs have similar geochemical behavior and are a useful proxy to trace fluid sources
and paleohydrologic conditions of mineral precipitation [18]. REE3+ generally enters a
calcite lattice via Ca2+ substitution. As the LREE has a closer ion radius to Ca2+ than HREE,
most calcites in nature typically exhibit LREE-enriched and HREE-depleted patterns [53].
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However, all three types of calcites studied were depleted in LREE and enriched in MREE
(Figure 4), consistent with the REE patterns of ore-stage calcites from other CTDs (e.g.,
Shuiyindong, Zhesang, Zimudang) in the Nanpanjiang basin [24,25]. The REE pattern of
calcite is influenced by co-precipitated minerals, Fe-Mn contents, and the hydrothermal
fluid composition [19,54]. The co-precipitated minerals with calcites at the Lannigou mainly
include quartz, arsenian pyrite, arsenopyrite, realgar, and orpiment (Figure 3), none of
which are major REE carriers. Although previous studies found minor apatites in the
CTDs, this mineral exhibits MREE-enriched and LREE-/HREE-depleted patterns [55,56].
Precipitation of apatite from hydrothermal fluid could not have accounted for the MREE-
enriched patterns for our studied calcites. Meanwhile, incorporating Fe- and Mn-bearing
micro-particles during calcite growth would lead to MREE- and HREE-enriched patterns
due to the preferential absorption of MREE and HREE Fe-/Mn-bearing micro-particles [54].
However, Fe+Mn contents did not correlate with MREE/LREE or HREE/LREE ratios
(Figure 7), indicating that the incorporation of Fe-/Mn-bearing micro-particles did not cause
the presence of MREE-enriched patterns. Thus, we infer that the MREE-enriched feature of
calcites was inherited from a hydrothermal fluid with an MREE-enriched composition or
reacted with an MREE-enriched geological body before calcite precipitation.
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The REE patterns of calcite can indicate fluid sources [57,58]. The three types of
calcites from the Lannigou gold deposit exhibited MREE-enriched patterns (Figure 4),
inconsistent with the calcites formed in magmatic-hydrothermal environments (e.g.,
skarn and carbonatite deposits), which are typically enriched in LREE [19,20]. How-
ever, the three calcite sample types were comparable to the LREE-depleted patterns in
orogenic-style gold deposits [59], implying that our studied calcites may precipitate
from metamorphic-related fluid. H-O isotopes support this inference that the CTD hy-
drothermal fluid primarily comprised metamorphic fluids mixed with meteoric water [3].
Thermodynamic modeling and theoretical calculations suggest that temperature is the
most important parameter controlling the Eu3+/Eu2+ redox potential in the hydrother-
mal fluid [60,61]. When the fluid temperature is >250 ◦C, Eu2+ dominates over Eu3+ in
hydrothermal fluid and may be readily substituted for Ca2+, leading to a positive Eu
anomaly in precipitated minerals [58,59]. However, fluid inclusion microthermometry
indicates that the homogenization temperature of the hydrothermal fluid in the Lannigou
gold deposit is typically <250 ◦C [3,34], precluding temperature as a significant factor
causing the positive Eu normally in our studied calcites. The Lannigou gold deposit is
hosted in Triassic siliciclastic rocks; hydrothermal fluid inevitably reacted with those
country rocks. The breakdown of plagioclase in clastic country rocks in response to the
interaction with hydrothermal fluid could represent a dominant mechanism underlying
our observed positive Eu normally in Cal-1 and Cal-2 [19]. In contrast, Cal-3 exhibits
slightly negative Eu anomalies, which may reflect limited fluid–rock interactions.

Carbon, oxygen, and strontium isotopes can provide important constraints on fluid
sources and calcite precipitation mechanisms [20]. The three types of calcites had narrow
δ13C variations of −4.4 to 0.9‰, well within the range of marine carbonates (Figure 6).
Hence, the carbon in calcites primarily originated from regional Paleozoic marine carbon-
ate. Using the method proposed by Zheng [43], the δ18O of water (δ18OH2O) in equilib-
rium with type-I and type-II calcites yielded similar δ18OH2O values of −3.47 to 6.73‰
(mean = 1.07‰) and −4.39 to 6.81‰ (mean = 1.38‰), respectively. These values primarily
overlap with the metamorphic fluid (3 to 25‰) [60], with fewer values within the range
of meteoric water (−7 to −14‰) [3] in the Nanpanjiang basin. This suggests that the
hydrothermal fluid related to the formation of these two types of calcites is derived from
a mixed fluid source of metamorphic fluid and meteoric water. Compared to the type-I
and type-II calcites, the fluid equilibrium of type-III calcites exhibited high δ18OH2O values
of 1.71 to 10.41‰ (mean = 7.47‰). This may indicate a metamorphic fluid source with a
limited contribution of meteoric water. The three types of calcites all had high Sr content
and low Rb content and Rb/Sr ratio (Table S1). Thus, the radiogenic 87Sr accumulation by
87Rb decay is limited in the present-day calcite Sr isotope composition [57]. That is, the
measured 87Sr/88Sr values of calcite can approximately represent the Sr isotopic composi-
tion of hydrothermal fluid. Calcites from the Lannigou gold deposit have 87Sr/86Sr values
of 0.708613–0.710892, higher than the 87Sr/86Sr values of the Paleozoic–Triassic country
rock and Permian mafic rocks. In this case, a higher 87Sr/86Sr reservoir may have con-
tributed to the hydrothermal fluid. Previous studies have shown that the Neoproterozoic
basement rocks in the margin of the Nanpanjiang basin have a high 87Sr/86Sr composition
(0.757851–0.766069) [61]. Therefore, we infer that the higher 87Sr/86Sr source may originate
from concealed basement rocks in the Nanpanjiang basin.

6.3. Implication for Fluid Evolution, Metal Mineralization, and Hydrocarbon Accumulation

The Nanpanjiang basin is located in the hinge area of the Paleo-Tethys and Paleo-
Pacific tectonic domains. Its formation and evolution are closely related to the subduction
and closure of the Paleo-Tethys and Paleo-Pacific oceans. In response to the opening
and development of the Ailaoshan-Song Ma Paleo-Tethys ocean in the Late Paleozoic,
the Nanpanjiang basin deposited thick (>3000 m) marine carbonate and organic-bearing
shale and mudstone in a passive continental margin environment [62,63]. These organic-
bearing sedimentary rocks typically have high organic carbon abundances (TOCs) of
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0.37%–3.63% [64]. They are enriched in metals (e.g., Au, As, Hg, Sb) that act as source
rocks for the latter gold mineralization and hydrocarbon accumulation [44,65,66]. Due
to the subduction and closure of the Paleo-Tethys Ocean, the South China Block col-
lided with the Indochina Block in the Early to Middle Triassic. This collision event
(i.e., Indosinian orogeny) may trigger large-scale circulation of basin fluid that leached
ore-forming metals from source rocks. The Au-bearing ore-forming fluid migrated
along pre-existing faults and reacted with Fe-rich minerals (e.g., Fe-dolomite) in wall
rocks [3,24], resulting in metal precipitation via sulfidation and forming the type-I cal-
cites in the Late Triassic. Meanwhile, the Indosinian orogeny resulted in rapid subsidence
of the Nanpanjiang basin and deposited ~6000 clastic rocks in the Triassic [63]. This
caused the Paleozoic hydrocarbon source rocks to reach the oil windows and gener-
ate liquid oil [63,64,67]. In the Early Jurassic, these accumulated oil reservoirs began
thermal cracking to form high-maturity bitumen as recorded in the bitumen Re–Os
(173 ± 6 Ma) [27] and Sm–Nd age (188 ± 14 Ma in this study) of the type-II calcites. In
the Late Jurassic-Early Cretaceous, the low-angle subduction of the Paleo-Pacific Ocean
again drove fluid circulation in the Nanpanjiang basin, forming significant arsenic and
antimony mineralization [5]. This is accordant with the development of 145 Ma Sb
deposits (e.g., Qinglong) in the Nanpanjiang basin [21]. The type-III calcites, which coex-
isted with realgar and orpiment, have Sm–Nd and U–Pb ages of ~130–150 Ma [5,24], also
consistent with this interpretation. Due to the lack of direct evidence of Cal-3- and Au-
bearing minerals, the genetic links between Late Jurassic-Early Cretaceous hydrothermal
events and gold mineralization are unclear and warrant further investigation.

7. Conclusions

(1) The Nanpanjiang basin experienced multi-phase hydrothermal fluid events in
the Mesozoic. The first event was genetically related to gold mineralization in the Late
Triassic, the second was associated with the hydrocarbon thermal cracking in the Early
Jurassic, and the third occurred in the Early Cretaceous and was related to arsenic and
antimony mineralization.

(2) The REE patterns and C-O isotopes of calcites suggest that the type-I and type-II
calcites were derived from a mixed fluid source of metamorphic fluid and meteoric water.
In contrast, the type-III calcite was mainly precipitated from metamorphic fluid with no or
little contribution from meteoric water.

(3) Calcite C-O-Sr isotopes indicate that the carbon in the hydrothermal fluid was
mainly sourced from marine carbonate, and strontium was primarily from the regional
metamorphic basement.

(4) Basin fluid evolution, gold mineralization, and hydrocarbon accumulation in the
Nanpanjiang basin are closely related to the Indosinian and Yanshanian orogenies due to
the collision of the South China Block with the Indochina Block and the flat subduction of
Paleo-Pacific Ocean.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/min13111420/s1, Table S1: In-situ trace element composition of
three types of calcites from the Lannigou gold deposit.
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