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Abstract

Mercury (Hg) pollution of soil and water environments is a major global threat to

human health, agri-food systems and ecosystems and industrial activities mainly coal

combustion augmented their content in different environmental media. Bioremedia-

tion is a nature-based solution involving microbial- and plant-based (phytoremedia-

tion) technologies that clean-up Hg contaminated sites. Here, we review Hg-resistant

bacteria and how latest insights in our understanding of the cellular and biochemical

mechanisms of the mer operon genes responsible for Hg resistance and transforma-

tion have facilitated developments in microbial Hg-bioremediation. We also review

the phytoremediation mechanisms, including those of bacterial- and fungi-assisted

phytoremediation processes, which have shown promising results in reducing Hg2+

to Hg0. This review provides a detailed knowledge of novel Hg bioremediation mech-

anisms and methods. Consequently, microbial- and phyto-based bioremediation tech-

nologies have a critical role in the reclamation of Hg-contaminated environments and

the protection of human health and ecosystems.
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1 | INTRODUCTION

Mercury (Hg) is a pervasive environmental pollutant that poses an

imperative peril to human health and ecosystems (J. Chen

et al., 2018). Hg is emitted to the natural environment through innu-

merable anthropogenic activities, including Hg mining and proces-

sing, artisanal gold mining, fossil fuel burning, waste burning or

various other polluting activities, as well as natural processes, such

as forest fires and volcanic eruptions (Beckers & Rinklebe, 2017;

Joy & Qureshi, 2023; O'Connor et al., 2019; Q. Yang et al., 2021).

The emitted inorganic Hg (IHg) species, including Hg2+ and Hg0,

neutral Hg sulphides and Hg thiols, can be converted to the more

toxic and bioavailable form of methylmercury (MeHg) by anaerobic

microorganisms (Lyu et al., 2020; Xiang et al., 2022; J. Zhang, Li,

et al., 2023; C. J. Zhang, Liu, et al., 2023; Z. Zhang, Zhao,

et al., 2023).
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Since the study of the Minamata disease in the 1950s, there has

been growing concern about the accrual of Hg, mainly MeHg, in food

and its potential influence on human health and the milieu. For exam-

ple, studies have shown that MeHg can accrue in fish and other

marine organisms, posing a risk to seafood consumers (Barst

et al., 2022; Issifu et al., 2022; McKinney et al., 2022; Motta

et al., 2022; Riesgo et al., 2023; Zampetti & Brandt, 2023), and MeHg

is also found in elevated concentrations in rice, which threaten food

security (Aslam et al., 2022; Hu et al., 2023; Y. Huang et al., 2023; Xie

et al., 2023). Application of nano activated carbon and rice hull bio-

char decreases the uptake of Hg in rice plants (L. Wang, Hou,

et al., 2020; J. Wang, Shaheen, et al., 2020; Xing et al., 2020).

Various remediation technologies have been developed for the

removal of Hg from the environment (Inobeme et al., 2023; Teng

et al., 2020). The goal of these methods is to either separate Hg from

the environment or convert it to less harmful forms (Lewis

et al., 2016; A. D. Singh et al., 2023). Among these methods, phytore-

mediation and microbial bioremediation are particularly promising

with the characteristics of being environmentally friendly, easy to

operate, cost-effective and favourable for maintaining soil health

(Y. Guo, Sommer, et al., 2023; K. Guo, Yan, et al., 2023; Wani

et al., 2023). The Hg toxicity is menacing diverse life forms, applica-

tion of chemical agents for their remediation leading to more load on

the environment is not an efficient solution. To conquer the limita-

tions of conventional approaches, numerous eco-friendly methods are

used. The application of microbe- and plant-dependent methods has

got more consideration (Rahman & Singh, 2020). Large-scale applica-

tion of Hg-volatilising bacteria is employed to clean Hg-polluted water

and soils. There are several examples in which these are employed for

removal of Hg from contaminated media (Mahbub et al., 2017; Velás-

quez-Riaño & Benavides-Otaya, 2016; Wagner-Döbler, 2013). In this

review, we focus on bioremediation approaches for Hg remediation.

Microbial bioremediation involves the use of living microorganisms to

degrade or eliminate pollutants or unwanted substances from soil or

water (El Moukhtari et al., 2023), whereas phytoremediation is a form

of bioremediation that uses plants to degrade or uptake heavy metals

in soil. Both approaches have been shown to be effective in removing

Hg from the environment. The objective of this review was to provide

latest information on promising materials and innovative methods in

Hg removal from soil and water. This review provides comprehensive

overview of phytoremediation approaches, and different bioremedia-

tion techniques and their mechanisms in Hg removal from the envi-

ronment, and highlights their potential for application in sustainable

Hg remediation.

2 | MICROBIAL BIOREMEDIATION

The use of microbial bioremediation for the cleanup of mercury con-

taminated water was first demonstrated by Williams and Silver

(1984), who assessed bacterial resistance and detoxification of heavy

metals (Ustiatik et al., 2022). Since then, the application of this pro-

cess has been made easier by the transgenic approach (Saravanan

et al., 2022). For example, Hg-declining bacterial strains of Escherichia

coli have been modified by mer operon clone establishment and other

recombinant DNA methods for bioremediation (Maqsood et al., 2022;

Rafeeq et al., 2023; Sone et al., 2017).

Microbial bioremediation is an effective alternative to traditional

remediation processes because it is sustainable, eco-friendly, cost-

effective, reduces the chances of producing secondary pollutants and

requires less energy than chemical methods (Hou et al., 2023). More-

over, it can be useful to the polluted area itself and has great potential

for pollutant removal (Ustiatik et al., 2022). Table 1 lists microbes used

in bioremediation of Hg.

2.1 | Microbial bioremediation

The removal of Hg(II) from aqueous environments can be difficult due

its properties like high reactivity and low vapour pressure

(Mukherjee & Bordoloi, 2011). Solar-driven reduction of Hg(II) to

Hg(0) further complicates its removal (Qiu et al., 2022). Natural micro-

bial communities frequently include innate Hg resistance mechanisms

that help them survive in Hg(II) contaminated aquatic environments

(Y. Chen et al., 2023; Choudhury & Chatterjee, 2022). MeHg repre-

sents 2% of total concentration of Hg in soils, and this form is pre-

ferred in biomagnifications (Xu et al., 2015). As human beings existed

at the top of the food chain, and highly represented to biomagnifica-

tion of Hg in consecutive tropic levels, and food is the major source of

Hg intake by humans (Priyadarshanee et al., 2022). Likewise,

sulphate-reducing bacteria species have been exploited for the

removal of Hg from wetlands via adsorption mechanisms, however,

the reported removal efficiency is relatively low (Diao et al., 2023).

Transgenic bacteria with modified genetic mechanisms for Hg resis-

tance and efflux processes have been developed, resulting in greater

resistance to Hg in the transgenic strains (J. Zhang, Li, et al., 2023;

C. J. Zhang, Liu, et al., 2023; Z. Zhang, Zhao, et al., 2023). Table 2 sum-

marises the transgenic microbes used in Hg remediation processes

described in the literature.

2.2 | Intrinsic and engineered microbial
bioremediation

The process of in situ bioremediation refers to the treatment of con-

taminants without extraction by stimulating microorganisms in the

ground to detoxify Hg/contaminant ions (Cameselle & Reddy, 2022;

Koul et al., 2022). However, the effectiveness of the process is

affected by temperature, electron acceptor availability and nutrient

content (Bwapwa, 2022). Intrinsic bioremediation processes harness

naturally occurring microbes, which have inherent potential to detox-

ify contaminants without external assistance but require a sufficient

supply of nutrients and aerobic conditions to stimulate metabolic pro-

cess. However, engineered in situ bioremediation involves the intro-

duction of specific microorganisms, including genetically engineered

microbes, to enhance the bioremediation process (S. Hussain, Jianjun,
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TABLE 1 Microbes used in bioremediation of Hg.

Organism type Organism Efficiency of Hg removal References

Gram-negative

bacteria

Vibrio parahaemolyticus (PG02) 90 mg g�1 of Hg Jafari et al. (2015)

Vibriofluvialis 63 mg g�1 of Hg Saranya et al. (2017)

Escherichia coli �95 mg g�1 of Hg X. Wang et al. (2018)

Alcanivorax xenomutans (NIOT-EQR_J7) Can reduce up to 70% of Hg(II) Joshi et al. (2022)

Halomonas sp. (NIOT-EQR_J248 and

NIOT-EQR_J251)

Marinobacter hydrocarbonoclasticus

(NIOT-EQR_J258)

Herbispirillum huttiense TL36, Klebsiella

oxytoca TL49 and Rhizobium radiobacter

TL52

Tolerated high levels of HgCl2
concentrations

Rojas-Solis et al. (2023)

Brevundimonas (MH885484) 96.31% and 99.72% at 24 and 48 h M. M. Zhao et al. (2021)

Pseudomonas (MH885475)

Pseudomonas (MH885482)

Purple nonsulfur bacteria (Rhodovulum

sulfidophilum SRW1–5, and Afifella

marina strains SSS2-1 and SSW15-1)

87%–95%

Burkholderia contaminans TR100 Tolerated up to 60 mg L�1 HgCl2 Cardona et al. (2022)

Pseudomonas sp. TP30 Tolerated up to 60 mg L�1 HgCl2

Stenotrophomonas maltophilia ADW10 99.9% Naguib et al. (2019)

Klebsiellapneumoniae strain FY2,

Klebsiellapneumoniae isolate 23

Can grow in 700 ppm mercury and could

also tolerate a high salinity of 35 ppt of

NaCl

Pushkar et al. (2019)

Enterobacter sp. strain Amic_7, Enterobacter

sp. strain 08

Acinetobacterseohaensis strain S34

Acinetobacter sp. 815B5_12ER2A

Mercury-resistant bacteria KX832953.1 90%

Pseudomonas aeruginosa K. Yin et al. (2016)

Cupriavidus metallidurans MSR33 Removed 82% mercury Bravo et al. (2020)

Algae Phormidium ambiguum 97% Shanab et al. (2012)

Algae Ulva lactuca 99 mg g�1 of Hg Henriques et al. (2017)

Chlorella vulgaris 94.6 mg g�1 of Hg Y. Peng et al. (2017), Solisio et al.

(2019)

Scenedesmus obtusus R. Huang et al. (2019)

Skeletonema costatum �80% Soedarti et al. (2017)

Pseudochlorococcum typicum 97% Shanab et al. (2012)

Gram-negative Pseudomonas putida 100% mercury and reduce Hg(II) to Hg0

vapour

W. Zhang et al. (2012)

Gram-positive Bacillus cereus (AZ-1, AZ-2, AZ-3) 83, 76, 76 mg g�1 of Hg Amin and Latif (2017)

Fictibacillus nanhainensis (SKT-B) 82.25% Nurfitriani et al. (2020)

Bacillus toyonensis (PJM-F1) 81.21% Nurfitriani et al. (2020)

Bacillus thuringiensis PW-05 90% Dash and Das (2016b)

Sulphate-reducing bacteria H1, H8, and

H10

- M. Ma et al. (2017), M. M. Zhao

et al. (2021)

Bacillus megaterium LBA119 62%–97.36% H. Wang et al. (2022)

Bacillus sp. strain CSB_B078 Can grow in 700 ppm mercury and could

also tolerate a high salinity of 35 ppt of

NaCl

Pushkar et al. (2019)

Bacillus cereus AA-18 (OK562834) Remediate 86% Hg of industrial

wastewater up to 72 h at large scale

Amin et al. (2022)

(Continues)

KUMAR ET AL. 1263

 1099145x, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ldr.4989 by C

A
S - C

hengdu L
ibrary, W

iley O
nline L

ibrary on [25/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



et al., 2022; A. Hussain, Rehman, et al., 2022). Bacteria, macrophytes,

algae and fungi have all been used for remediating Hg polluted sites

by alteration via bioaccumulation and biosorption processes (Arunraja

et al., 2023; Chugh et al., 2022; Kristanti & Hadibarata, 2023; Rani

et al., 2021; Saha et al., 2022; Tan et al., 2023).

Mercury-resistant bacteria can be used to either remove Hg or

transform toxic forms of Hg into less toxic ones depending on the

level of Hg pollution at the affected site (N. Gupta et al., 2022). Sev-

eral mechanisms have been identified for Hg resistant bacteria to

eliminate Hg from the surroundings, which include (a) thiol group

binding with different oxidative states of Hg, (b) formation of a per-

meability barrier that prevents Hg from entering the cell and thus low-

ering its toxicity and (c) the mer operon (He et al., 2023; Nivetha

et al., 2022; A. Pal et al., 2022).

In recent years, bioremediation has become increasingly favoured

for cleaning up of Hg polluted environments (Ghosh et al., 2023).

Mercury-resistant bacteria harbouring mer genes have been used for

the detoxification of mercuric compounds via reduction and adsorp-

tion processes (Krout et al., 2022). These microorganisms possess the

mer operon, which consist of merA, merR, merP, merD, merC, merT,

merG, merE and merF genes. Among these genes, merA, merR, merC,

merP, merE and merT are involved in the reduction of Hg (Kumari

et al., 2020).

The promoter gene (merR) of the mer operon is activated by

Hg(II) and induces the production of downstream genes (Hui

et al., 2022). Organomercury lyase, encoded by merB, catalyses proto-

nolytic breakdown of C-Hg bonds in organo Hg compounds. Encoded

by periplasmic protein (merP), merA and merB, as well as several inner

TABLE 1 (Continued)

Organism type Organism Efficiency of Hg removal References

Yeast Yarrowia spp. (Idd1 and Idd2) - Oyetibo et al. (2016)

Symbiotic fungi Metarhizium robertsii - Wu et al. (2022)

Fungi Penicillium spp. DC-F11 -

TABLE 2 Transgenic microbes used in Hg remediation.

Organism Transgenic and genes involved Hg concentration References

Transgenic strain in

bioremediation of

mercury

Escherichia coli (ppk

gene)

Recombinant E. coli/pBSK-

P16S-mt1-rpsT and pBSK-

P16S-g10-ppk-rpsT, and mt-1

gene (metallothionein) and

ppk gene (polyphosphate

kinase)

120 and 80 μmol Ruiz-Díez et al. (2012)

Mouse (mt-1 gene)

Bacillus thuringiensis

PW-05

Bacillus cereus BW-03 (pPW-

05), and merA gene

5–50 ppm Dash and Das (2015)

Rice metallothionein

(MT) isoforms

Recombinant E. coli GST–
OsMTs, and Glutathione-

S-transferase (GST), OsMT1,

OsMT2, OsMT3 and OsMT4

20, 13.7, 10 and 7 nmol Hg2+/

mg (dry weight of culture)

Shahpiri and

Mohammadzadeh

(2018)

Pseudomonas

pseudoalcaligenes S1

merT, merP and merA 60, 40, and 20 mg L�1 J. Zhang et al. (2020)

Deinococcus radiodurans MerH; Produce resistance

against mercury and degrades

marinum strain

- Meruvu (2021)

Acidithiobacillus

ferrooxidans

MerC via mercury degradation - Arshadi et al. (2020)

Rhodopseudomonas

palustris

Mercury transporting system

expression

Pseudomonas putida

KT2440

98% Hg2+ adsorbed Xue et al. (2022)

Pseudomonas K-62 Exhibit expression of

organomercurial lyase and Hg

degradation

- Sharma and Kumar

(2020)

Escherichia coli (DH5α
J23106)

Overexpressing merB gene Degrade MeHg to more than

81.6% in a culture medium

under anoxic and oxic

conditions

Q. Yang et al. (2023)

1264 KUMAR ET AL.

 1099145x, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ldr.4989 by C

A
S - C

hengdu L
ibrary, W

iley O
nline L

ibrary on [25/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



membrane proteins such as merT, merC, merE, merF and merG, aid in

transporting Hg(II) into or out of the cytoplasmic membrane (Amin

et al., 2022; Amin & Latif, 2017). The mercury transporter proteins

(merC, merP, merE and merT) are responsible for the transportation of

Hg(II), whereas the cytoplasmic reductase encoded by the merA gene

is accountable for the conversion of Hg(II) into Hg(0) (Giri et al., 2014).

Consequently, the presence of the merA gene is an essential factor in

defining the presence of the Hg reduction route in bacteria (D. Li, Li,

et al., 2022; X. Li, Yang, et al., 2022).

Mercury-resistant bacteria possessing mer-induced resistance

have been isolated (Joshi et al., 2021). The mer operon genes, which

are typically found on genomic DNA (R. Zheng et al., 2018), plasmids

(D. Li, Li, et al., 2022; X. Li, Yang, et al., 2022), the components of the

Tn21 transposon in plastids (Dhir, 2019) and integrons (Dunon

et al., 2022) are all variable in their number and characters. The mer

genes are not limited to bacteria, having also been discovered in

archaebacteria including Sulfolobus solfataricus, Halobacterium, Halo-

coccs strain, and Asgard archaea (Artz et al., 2015; J. Zhang, Li,

et al., 2023; C. J. Zhang, Liu, et al., 2023; Z. Zhang, Zhao, et al., 2023).

They function as promoters, regulators or operators as well as

functional genes. There are two subcategories of the mer factors:

broad-spectrum mer and narrow-spectrum mer types. Only

the broad-spectrum type exhibits resistance to both the

organomercurials (i.e., methylmercury) and inorganic Hg salts

(Cardona et al., 2022).

Microbial bioremediation of inorganic Hg polluted environments

is an energy dependent process that involves the donation of

electrons during NADPH conversion to NADP+ that causes Hg(II) to

convert Hg(0), which is then released out of the bacterial cell, thus

conferring resistance. The mer operon is a conserved positive operon

(Boyd & Barkay, 2012) consisting of operator, promoter and regula-

tory genes (merR) along with functional genes comprising merT, merP,

merD, merF, merC, merA (Figure 1). MerA encodes flavin-dependent

disulfide oxidoreductase mercuric reductase, merB encodes organo-

mercury lyase, merP is a periplasmic Hg(II) scavenger protein and

merE, merT, merG, merC, merF are membrane spanning proteins,

which can transport Hg(II) in the cytoplasm, which is abridged by

merA, merG and merD (regulatory proteins). Alternatively, merB is

specific to broad range operons (Dash & Das, 2012). The biochemical

method of inorganic Hg resistance is similar across a diverse group of

bacteria. In narrow range mer-dependent resistant bacteria, the bio-

chemical route for inorganic Hg resistance involves the conversion of

Hg(II) to Hg(0) via enzyme mercuric reductase, which is produced by

gene merA. Since Hg(0) is characterised by high vapour pressure, it is

easily volatised and released.

Bacteria that are resistant to broad range kinds employ different

resistance mechanisms. Organomercurial complexes are carried into

the cytoplasm and the bond between carbon and Hg is broken by

organomercurial lyase encoded by merB to generate Hg(II) ions. The

Hg(II) ions are later transformed to Hg(0) by mercuric ion reductase,

encoded by merA, utilising the NADPH-based mechanism described

above (Sharma et al., 2021). Inorganic Hg acts as an inducer and

amplifies the activity of the functional genes (Mishra et al., 2021). Fol-

lowing external Hg depletion, the secondary regulator merD switches

Outer Membrane

Inner Membrane

Periplasmic Space

MerE MerFMerT

merR merT merP merE merC merA merG

MerP
MerG

merB merD

R-Hg Hg2+ Hg0

NADP+
R

R-Hg Hg2+

MerA

NADPH 
+ H+

merOP

MerR

Cytoplasm

MerB

Hg0

Transcrip�onal 
Ac�va�on

merD

Transcrip�onal 
Repression

Outer Membrane

Inner Membrane

Periplasmic Space

MerC MerFMerT

merR merT merP merE merC merA merG

MerP

merB merD

Hg2+ Hg0

NADP+

Hg2+

MerA

NADPH 
+ H+

merOP

MerR

Cytoplasm

Hg0

Transcrip�onal 
Ac�va�on

merD

Transcrip�onal 
Repression

Bioaccumula�on

Vola�liza�on

Biotransforma�on
Biotransforma�on

Vola�liza�on

F IGURE 1 (A and B) Diagrammatic representation of mer operon and associated genes in broad and narrow range Gram-negative mercury-
resistant bacteria, respectively. MerG and merP along with merT and merE facilitate the entry of organic R-Hg, and merP through merF and merT
aids in the transportation of inorganic Hg in the cell. AndmerF (merF). Both organic and inorganic Hg undergo subsequent enzymatic
transformation by merB and merA, respectively for conversion into volatile Hg, which escapes out of the cell. The accumulated
organomercurialsare digested by MerBlyase enzyme to convert into mercuric ions, which are then reduced to free form by merA, reductase. The
mechanisms conferring resistance are named in green boxes. The specific function of genes involved in the functioning of mer operon are: merA
(Mercuric ion reducatse; Conversion of Hg2+ to Hg0). merB (Organomercuriallyase; Lysis of C-Hg bond). merP (Perplasmic mercuric ion binding
protein; Transfer of Hg2+ to integral membrane proteins). merT (Mercuric ion transport protein; Transport of mercuric ion). merD and merR
(Regulator proteins; negative and positive operon regulators, respectively). [Colour figure can be viewed at wileyonlinelibrary.com]
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off in many Proteobacteria, which inhibits the mer operon (A. D. Singh

et al., 2023). Table 3 presents an overview of the various Hg resis-

tance mechanisms of microbes.

In addition to the mer operon, bioremediation can involve alterna-

tive mechanisms. For example, iron oxidising acidophilic Hg-sensitive

bacteria, such as Shewanella oneidensis MR-1 and Geobacter metallire-

ducens GS-15, have been found to reduce Hg(II) when augmented fer-

rous ions involving the action of cytochrome c oxidase to produce

volatile Hg(0) without mercuric reductase (Wiatrowski et al., 2006).

Bacterial strain RS3 (Marinomonas sp.), which was isolated from the

Red Sea, was observed to remove most Hg(II) ions (78% removed)

from a contaminated water (50 mg L�1 HgCl2) within 3 days (Al-

Ansari, 2022). In both nutrient poor and rich environments,

Pseudomonas sp. strain AN-B15 has been observed to efficiently

remove Hg(II) by converting it to Hg(0) and by converting Hg(II) to Hg

sulfide and Hg-sulfhydryl (Chang et al., 2022). These bacteria can

function efficiently in anoxic conditions where levels of Hg(II) are low

(Ali et al., 2022). Moreover, these bacteria have developed mecha-

nisms for sequestering heavy metals ligands that are toxic to other

organisms (Sharma et al., 2022; Thathapudi et al., 2023). Beckers et al.

(2019) discovered that, regardless of soil treatment, Hg mobilisation

was greater at low redox potentials (EH) and declined with increasing

EH. In addition, the use of biochar and sugar beet factory lime

decreased the Hg outflow, but not their ethylation and methylation.

Figure 1 indicates the representation of mer operon and allied genes

in broad and narrow range Gram-negative mercury-resistant bacteria.

2.3 | Cellular and genetic mechanisms of mercury
removal by mercury-resistant bacteria

The mechanisms responsible for the survival of bacteria species at Hg

contaminated sites, making those efficient candidates for bioremedia-

tion, are discussed below. Figure 2 illustrates the bacterial characteris-

tics associated with Hg bioremediation processes and mechanisms

involved.

2.3.1 | Biosorption (extracellular)

Biosorption is a process by which Hg ions are captured on the cell

wall, whether the biomass is living or not (Ugya et al., 2021). With liv-

ing cells, microbial secretion of negatively charged extracellular poly-

meric substances (EPS) fix Hg ions in a nonspecific manner. Volatile

organosulfur by-products can aid Hg tolerance through extracellular

sequestration (Demarco et al., 2023; Zeng et al., 2020). It is well

acknowledged that EPS is secreted by different microbes under heavy

metal stress (Mukkata et al., 2019). Bacterial species Bacillus thurin-

giensis PW-05 (Dash & Das, 2016a) and Bacillus cereus BW-201B

(Dash, Basu, & Das, 2017) have been shown to use EPS as mode of

Hg tolerance. It is vital to note that the pH of the system influences

the binding of metals to the EPS matrix, with adsorption capacity

increasing at lower pH levels owing to greater Hg chelating

(P. Gupta & Diwan, 2017). Microbial adsorption processes involve EPS

binding and immobilizing Hg, which have been observed for B. cereus

MM8, Bacillus sp. CM111, Kocuria rosea EP1, Ochrobactrum sp. HG16

and Lysinibacillus sp. HG17 (François et al., 2012) and Bacillus sp. S3

(Zeng et al., 2020). An assessment of the biosorption of Hg by purple

non-sulfur bacteria (PNSB) showed that dead PNSB cells were more

effective for removing Hg(II) than living cells, with the Afifella marina

strain SSS2-1 being the most effective PNSB strain. It was shown that

for dead cells the sorption process fitted the Langmuir model whereas

live cells fitted the Freundlich model (Mukkata et al., 2019). While var-

ious bacterial species have shown potential for bioremediation

through Hg sequestration, further research is needed to optimise the

process.

TABLE 3 Resistance mechanisms of microbes towards
mercury ions.

Microorganism Resistance mechanisms Reference

Ochrobactrum sp.

HG16, Klebsiella rosea

EP1 and Lysinibacillus

sp., Serratia

marcescens HG19 and

Bacillus sp. CM111

Extracellular sequestration François

et al.

(2012)

Ulva lactuca Biosorption and

bioaccumulation

Shanab

et al.

(2012)

Bacillus cereus BW-03 Bioaccumulation De et al.

(2014)

Escherichia coli Active export (ABC

transporters)

Lerebours

et al.

(2016)

Bacillusthuringiensis

PW-05

Extracellular sequestration

(thermodynamically

favourable interaction)

Dash and

Das

(2016a)

Yarrowia spp. (Idd1 and

Idd2)

Passive adsorption Oyetibo

et al.

(2016)

Pseudomonas sp. Enzymatic detoxification

(mercuric reductase)

Giovanella

et al.

(2016)

Bacillus firmus Enzymatic detoxification

(mercuric reductase)

Noroozi

et al.

(2017)

Phormidium ambiguum Biosorption and

bioaccumulation

Henriques

et al.

(2017)

Bacillus cereus BW-

201B

Extracellular sequestration

(trapped by bacterial EPS

and subsequently

released by mer operon)

Dash,

Basu,

and Das

(2017)

Pseudomonas

pseudoalcaligenes S1

Bioaccumulation J. Zhang

et al.

(2020)

Fictibacillus nanhainensis

(SKT-B) and Bacillus

toyonensis (PJM-F1)

Bioaccumulation Nurfitriani

et al.

(2020)

1266 KUMAR ET AL.

 1099145x, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ldr.4989 by C

A
S - C

hengdu L
ibrary, W

iley O
nline L

ibrary on [25/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



2.3.2 | Bioaccumulation (intracellular)

Bioaccumulation is a process by which microbes uptake and sequester

metal ions within their intracellular space. Certain metal-binding peptides,

such as metallothioneins and phytochelatins, play an imperative role in

microbial bioaccumulation of Hg contaminants in bacterial cells (Balzano

et al., 2020; K. Yin et al., 2019). Microbial intracellular absorption of Hg

can involve the use of enzymes that directly absorb Hg, with one known

example being Bacillus sp. (Alotaibi et al., 2021). Many marine bacterial

strains that exhibit Hg resistance (31.5%) will involve a bioaccumulation

process (Dash & Das, 2016b). For example, Pseudomonas pseudoalcali-

genes S1 was observed to bioaccumulate as much as 133 mg g�1 of Hg

(J. Zhang et al., 2020) and Bacillus toyonensis (PJM-F1) removed 81% of

Hg from a contaminated water by bio accretion (Nurfitriani et al., 2020).

The competence of bacteria to tolerate Hg and operate at low concen-

trations makes them promising candidates for Hg bioremediation.

2.3.3 | Reduction of Hg(II) to Hg(0)

Some microbes bring about the reduction of Hg(II) to Hg(0) by enzy-

matic reduction, which is facilitated by cytoplasmic flavoenzyme mer-

curic reductase (Rani et al., 2021). Narrow-spectrum Hg resistance

microbes have been observed to reduce inorganic Hg(II) salts as well

as some organomercurial derivatives. The process involves passive dif-

fusion of Hg(0) from the cell under common functional conditions

(S. Singh & Kumar, 2020) and the transportation of Hg(II) inside the

cytoplasm via MerT along with MerC and MerF transporters, where

Hg(II) is volatilised by reduction to Hg(0) (He et al., 2023).

2.3.4 | Reduced uptake

Various processes can reduce the uptake of different types of

heavy metals including efflux-mediated mechanisms, the associa-

tion of certain proteins involved in metal resistance or by mer

operon regulating uptake in the cell. This often serves as the first

line of defence for prokaryotic cells to survive under contami-

nated conditions (Benmalek & Fardeau, 2016; Capdevila

et al., 2016). Although efflux-induced processes have not yet

been found to cause microbial resistance to Hg, it cannot be

completely considered off given that it is widely acknowledged

that numerous microbial species are still unknown. Research has

shown analogous efflux-induced resistance to numerous poten-

tially toxic elements in microbes secluded from the aquatic envi-

ronment (Chenia & Jacobs, 2017). It is quite likely that the

resistance mechanism for other potentially toxic elements in

microbes would result in the co-occurrence of genetic apparatus

for Hg resistance and efflux processes, leading to Hg-resistant

strains (Bombaywala et al., 2021; Fang et al., 2016; C. Pal

et al., 2015; Saravanakumar et al., 2023). Pushkar et al. (2019) in

their studies reported several Hg-resistant bacteria (Enterobacter,

Klebsiella and Acinetobacter) in Mithi River, which are used for

bioremediation of Hg, and they have the ability to endure high

content of Hg. Bacteria existed everywhere and can bioremediate

Hg employing their integral processes (Mahbub et al., 2016). Bac-

teria also work in coordination with other microbes for efficient

Hg removal (Santos-Gandelman et al., 2014). Figure 3 depicts dif-

ferent bioremediation strategies applied for remediation of Hg in

soil and water.

Reduction

Volatilization

Rhizofilteration

Adsorption

Absorption

Accumulation

Microbial

Features

Bioremediation

Mechanism

Complexation

Release of 

complexing agents

Mobilization

Immobilization

Precipitation

Uptake and reflex

Bioabsorption

Biosorption to 

membranes

Intracellular

assimilation

Metabolism Dependent

Metabolism Independent

F IGURE 2 List of the bacterial features utilised in mercury bioremediation processes and mechanism that take place for conversion into
nonlethal form. [Colour figure can be viewed at wileyonlinelibrary.com]
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2.4 | Horizontal gene transfer (in situ molecular
breeding)

Horizontal gene transfer (HGT) is a recent development in bioremedia-

tion, where a donor vector carrying Hg resistance genes exchanges

genetic material with a recipient bacteria. The process relies on trans-

formation, transduction and conjugation processes, with the latter

being most important (Ali et al., 2022). Nutrient supply is essential for

the transfer process, and works best by targeting receiver bacteria in

their indigenous environment that are prevalent and robust (Matsui &

Endo, 2018). The necessary factors for successful HGT include genes

with the required transposons, plasmids with conjugable properties,

exclusion of transposons from the plasmid and further amalgamation

with the genomic DNA in the recipient with the possibility of conjuga-

tion between donor and recipient (Kohler et al., 2019). However, this

approach requires more research and a more comprehensive under-

standing of the soil microbes involved before it is fully commercialised.

2.5 | Alternative microorganisms used for
bioremediation

2.5.1 | Yeast

Recent research has revealed the ability of yeast species, such as Sac-

charomyces cerevisiae, Schizosaccharomyces pombe and Candida sp., to

acclimate to Hg contaminated environments and remediate Hg con-

taminants (Anaemene, 2012; Leong & Chang, 2020). This offers a

novel route for rapid Hg bioremediation by acting, with greater

growth rates and superior cell wall organisation for biosorption than

bacterial strains (Bahafid et al., 2017). The presence of negative sur-

face functional groups (e.g., carboxyl and phosphates) on yeast can aid

binding with metal cations (S. Singh et al., 2020) and the net-

structured floc facilitates oxygen diffusion and decreases energy con-

sumption (Kumar et al., 2020).

2.5.2 | Fungi

A promising solution to remediate Hg-polluted environments is to use

Hg-resistant fungi to break down toxic forms of Hg into less toxic

forms. Fungi isolated from the rhizosphere of plants grown at contam-

inated sites are often of interest for bioremediation purposes

(Vaksmaa et al., 2023). Biochemical assays have shown that plant

symbiotic fungus, Metarhizium robertsii, can degrade methylmercury

and decrease Hg(II) in soil and water. In one study, Wu et al. (2022)

described the process, which involves demethylation of organomer-

cury by methylmercury demethylase (MMD) and subsequent reduc-

tion to Hg+ by mercury ion reductase. This bioremediation process

was revealed to improve plant growth under mercury stress, and over

expressing the enzymes involved by genetic manipulation further

improved plant growth. This finding suggests the prospective to

develop sustainable fungi-based bioremediation technologies to clean

up Hg pollution, though further research is needed before it can be

fully commercialised.

2.5.3 | Algae

Algae-based bioremediation (phycoremediation) is the use of algae

(e.g., cyanobacteria, microalgae and macroalgae) for Hg removal,

which offers several advantages such as low odour and toxicity, reme-

diation of co-contaminants and producing a biomass product that can

be harvested as a valuable product (Dubey et al., 2022), thus making it

a sustainable bioremediation approach (Chugh et al., 2022). The appli-

cation of marine macroalgae, such as Phaeophyta, Rhodophyta and

Chlorophyta, is beneficial due to their specific binding preferences to

different metals, which is attributed to differences in their cell wall

(Ashokkumar et al., 2022; Z. Peng et al., 2022). The green alga, Ulva

lactuca, which is characterised by several surface functional groups

including hydroxyl, amino, sulphate and carbonyl groups, has shown

good promise for Hg removal (Henriques et al., 2017). Moreover,
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F IGURE 3 Depicts the bioremediation mechanism of Hg removal from soil and water. [Colour figure can be viewed at wileyonlinelibrary.com]
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TABLE 4 Hg phytoremediation potential and toxicity of Hg promising species.

Plant species Growth parameters (phytotoxic conc.) Hg accumulation References

Boehmeria nivea Poly-γ-glutamic acid Leaf increased by 4.4-fold, and the

translocation factor increase;

root > stem > leaf

J. Xu et al. (2023)

Cardamine violifolia - Roots and above parts 6000 μg g�1;

Bioaccumulation factor high; TF � 1.5

Cui et al. (2023)

Clidemia sericea Biomass reduction Root > Leaves > Stem; Bioconcentration

factor > 1; Translocation > 1

Durante-Yánez et al.

(2022)

Medicago sativa nZVI and organic fertilisers; Increase Biomass Decrease of Oxidative stress; H2O2 and MDA

reduction; Higher proline content.

Baragaño et al. (2022)

Lupinus albus - Nodules 600 μg Hg g�1 dw

Roots 1400 μg Hg g�1 dw

Cluster roots 2550 μg Hg g�1 dw

Bioaccumulation factor high

Quiñones et al. (2021)

Brassica juncea Plant showed better efficiency Hg content values ranging from 0.11 to

0.80 mg kg�1.

Root > Shoot > Leaves.

Raj and Maiti (2021)

Vigna unguiculata Negligible biomass decrease with Hg Root > leaf > stem; Bioconcentration

Factor < 1 (all genotypes); TF < 1 for native

genotype 2. translocation factor �1.5 (for

0.2 mg Hg kg�1 dw) for both commercial

lines

Marrugo-Negrete et al.

(2020)

Brassica juncea Plant showed better efficiency up to the

concentration level of 500 mg Hg kg�1 soil

Metal Concentration: 10, 50, 100, 500 and

1000 mg Hg kg�1 soil root > leaf > stem

Raj et al. (2020)

Phragmites australis - Root (Hg)—806 μg kg�1 dw

stem (Hg)—495 μg kg�1 dw

leaves (Hg)—833 μg kg�1 dw

translocation factor—0.57/1.99

Mbanga et al. (2019)

Jatropha curcas Accumulator Concentration: 1, 5 and 10 μg Hg g�1 Álvarez-Mateos et al.

(2019)

Lathyrus pratensis - Shoot (Hg)—0.108 mg kg�1 dw Umlaufová et al. (2018)

Epipactis sp. - Shoot (Hg)—0.152 mg kg�1 dw

Cyrtomium

macrophyllum

20.6% biomass reduction Shoot (Hg)—36.44 mg kg�1 dw

root (Hg)—13.90 mg kg�1 dw

Bioconcentration Factor—0.061;

translocation factor—2.62

Xun et al. (2017)

Manihot esculenta Significant root biomass decrease Hg is not determined in plants; root (Hg—
6.836 and 12.13 g kg�1 dw) (50 and

100 μM Hg)

Alcantara et al. (2017)

Sesbania grandiflora 56% growth decrease 19% biomass reduction

(60 mg Hg L�1)

Mostly in roots Malar et al. (2015)

Jatropha curcas - Plant (Hg—max. 7.25 mg kg�1 dw) (for

10 mg Hg kg�1 soil) Bioconcentration

factor—good, with increased exposure (4th

month); translocation factor �1 (after

2 months, then decreased)

Marrugo-Negrete et al.

(2015)

Lepidium sativum 27% decrease in shoot length; 53% decrease

in the root (10 mg Hg kg�1)

Mostly in roots; add compost accumulation;

Bioconcentration factor—high for 10 mg Hg

kg�1 dw in 2/1 compost

Smolinska and Rowe

(2015)

Atriplex conodocarpa Biomass, leaf area and the number remained

unchanged (in regard to unspiked soil)

Shoot (Hg)—1.09 mg kg�1 dw translocation

%—19%

Lomonte et al. (2010)

Chilopsis linearis 49% decrease in root length Root (Hg) with Hg concentration;

translocation factor—low

E. Rodríguez et al. (2009)

Brassica juncea 5.1-fold reduced transpiration rates Shoots (Hg)/root (Hg)—0.3–0.76 Moreno et al. (2008)

(Continues)
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transgenic Chlorella has been developed that expresses merA gene

from Bacillus megaterium strain MB1, resulting in higher Hg removal

rates, higher Hg tolerance (40 μM HgCl2) and faster growth rates than

wild-type chlorella (C. C. Huang et al., 2010). By the mechanism of

bioaccumulation, Hg strongly binds in macroalgae tissues without

being converted to more toxic methylmercury (Henriques

et al., 2017). Hg is transported within the algal cell, and in detoxifica-

tion, phycochelators produced by algae aid the conversion of harmful

Hg into less harmful forms (Chugh et al., 2022).

3 | PHYTOREMEDIATION

Phytoremediation involves the use of plants to clean up soil by taking

up, adsorbing or decomposing pollutants (Bhat et al., 2022) without

the need for excavation. Phytoremediation is considered a sustainable

remediation technique (Cristaldi et al., 2017; Derakhshan Nejad

et al., 2018; L. Wang, Hou, et al., 2020; J. Wang, Shaheen,

et al., 2020). The mobility of Hg is imperative for their providence in

the environment and appraised the accomplishment of this method.

These are complex and leads to unforeseen mechanism. There are

diverse inferences of soils with greater Hg content, and plants grow-

ing on these are moderately to hardly control (Antoniadis et al., 2017).

Remediation of soils contaminated with Hg can be accomplished with

Artemisia vulgaris, Galium mollugo and Stellaria holostea hyperaccumu-

lator plants (Antoniadis et al., 2021). The alteration of gene expression

may enhance the sustainability of plants in altering climatic conditions.

The enhanced phytoremediation of Hg employing CRISPR-Cas9

method in genome editing might be a prospective and suitable

response with respect to climatic variations. The competence of

hyperaccumulators can be enhanced through this technique (Sarma

et al., 2021). Phytoremediation processes comprise of phytoextrac-

tion, phytostabilisation, rhizofiltration and rhizodegradation mecha-

nisms through different plant species (see Table 4).

3.1 | Hg phytoremediation plant species

There has been relatively limited literature published regarding Hg

hyperaccumulation by phytoremediation plants, and a widely

accepted definition of an ‘Hg hyperaccumulator’ species is not yet

established (Qian et al., 2018). However, this is a growing area of

research interest with more than 200 plants having been studied to

determine their ability to remediate Hg pollution. Some plants have

shown good potential as candidates for Hg bioremediation. The fern

Eremochloa ciliaris was determined to be an ‘Hg hyperaccumulator’ by
Qian et al. (2018). Erato polymnioides found in Ecuadorian rainforest

acid soils with prospective of microbe-allied phytoremediation also

shows promise as an Hg hyperaccumulator species (Chamba

et al., 2017). Further research is needed on limitations to this

approach, particularly its suitability to severely polluted soils and the

Hg removal rate (Lin et al., 2012; L. Wang, Hou, et al., 2020; J. Wang,

Shaheen, et al., 2020). Alternative plant species for Hg phytoremedia-

tion are those that grow well in severely Hg-contaminated environ-

ments. The phytoavailability of Hg in floodplain soils was small owing

to great mean pH values (6.2–6.8) (Overesch et al., 2007). Corre-

spondingly, the Hg uptake by floodplain grassland herbage was rela-

tively small too in comparison to the corresponding stocks in soil, and

augmenting soil acidity increases phytoavailability and appears to con-

siderably stimulate soil–plant mobility of Hg. Grave accumulation in

green fodder and plants cultivated on wet soils accurse more Hg.

3.2 | Phytoremediation mechanisms

3.2.1 | Phytoextraction

Phytoextraction is the process of contaminants being taken up

through plant roots into their biomass (Karalija et al., 2022). Chemi-

cally enhanced phytoextraction increases the bioavailability of target

contaminants, leading to greater extraction rates (M. Kumar, Bolan,

et al., 2022; K. Kumar, Shinde, et al., 2022). For instance, amino poly-

carboxylic acid increases the bioavailability of Hg in the soils and

enhances transport to aerial parts of plant (Makarova et al., 2022).

Makarova et al. (2021) used S-containing chelate and P-containing

chelate to enhance the phytoextraction of Hg by Trifolium repens L.,

with both constituents increasing Hg absorption by the plant. A

study by Amir et al. (2020) on Typha latifolia L. showed that the

application of citric acid (CA) with different concentrations of Hg

(1, 2.5, 5 mM) decreased the plant's agronomic characters, but the

application of CA improved the plant physiology and increased the

activity of antioxidant enzymes, mitigating Hg-mediated oxidative

damage and electrolyte leakage after 4 weeks. Y. Guo, Sommer,

et al. (2023) and K. Guo, Yan, et al. (2023) performed study on Medi-

cago truncatula, finding that Rhizophagus irregularis played a vital

function in Hg tolerance of this plant, indicating its potential use in

the phytoremediation of Hg pollution. Additionally, the addition of

thiosulphate to soil can increase the quantity of Hg bound to the

TABLE 4 (Continued)

Plant species Growth parameters (phytotoxic conc.) Hg accumulation References

Cucumis sativus 96% root length reduction (10 days old

seedlings) 98% root length reduction

(15 days old seedlings)

Root (Hg)—sevenfold and

5.6-fold > cotyledons (after 10 and 15 days)

Cargnelutti et al. (2006)

Oryza sativa 50% shoot biomass reduction Root (Hg) > shoot (Hg) Du et al. (2005)
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Fe/Mn oxide fraction, which enhances Hg bioavailability (Ranieri

et al., 2020).

3.2.2 | Phytostabilisation

Phytostabilisation decreases the bioavailability of Hg by immobilising

it in the rhizosphere, reducing uptake by plant roots and avoiding

accumulation in the aboveground parts of plants (Farooqi et al., 2022).

However, while reducing the amount of bioavailable Hg, the contami-

nation remains in the ground, requiring long-term monitoring. A study

of Hg species in soil treated by phytostabilisation showed that only

0.1% of Hg was water soluble (i.e., highly bioavailable), 1.1% Hg was

associated with humic and fulvic acids, while the remaining Hg

was associated with stable complexes. The Salix species used proved

effective for the immobilisation of Hg in contaminated soil (Tiodar

et al., 2021).

3.2.3 | Rhizoremediation

Rhyizoremediation entails the removal of contaminants by filtration of

polluted groundwater or surface water by plant roots. During this pro-

cess, the contaminants are both absorbed and adsorbed onto the

roots. The selection of suitable plants is based on several traits such

as tolerance to Hg and a large surface area for absorption (Cristaldi

et al., 2017). Terrestrial plants are preferred for Rhyizoremediation as

they possess well-developed roots with a fibrous structure that pro-

vides a large surface area for absorption. It should be noted that,

when the root adsorption efficiency exceeds its maximum, the plants

employed for rhizofiltration must be harvested and discarded (Pérez-

Palacios et al., 2017). Phaseolus vulgaris and Helianthus annuus have

been identified as suitable used extract Hg from contaminated

groundwater, with Hg accumulating in the root (Malik et al., 2023).

Bidens pilosa and Heliocarpus americanus have also been identified as

potential candidates by Kalinhoff and Calder�on (2022). They reported

that Bidens pilosa functioned well at Hg levels below 2 mg L�1,

whereas Heliocarpus americanus can endure higher levels (<4 mg L�1)

and is also a good candidate plant due to its fast growth.

3.2.4 | Phytovolatilisation

Phytovolatilisation is feasible for the small group of volatile metals,

including Hg. In this process, Hg is absorbed by plant roots, trans-

ported via the xylem and discharged to the atmospherevia cellular tis-

sues (Tiodar et al., 2021). Insertion of genes from other organisms into

phytovolatilisation plants by genetic engineering can improve their Hg

removal capabilities. The direction of the Hg transporter, encoded by

the mer determinant, distinguishes it from other known bacterial Hg

resistance mechanisms (Pathak et al., 2020). The merA gene encodes

a protein called mercuric reductase, which converts Hg(II) to elemental

Hg(0) (M. Ma et al., 2019). The merA gene has been modified in plants

using genetic engineering to remove Hg (Krout et al., 2022; K. Kumar,

Shinde, et al., 2022). For organomercury, the enzyme organomercurial

lyase (MerB) catalyses the protonolysis of the carbon-mercury bond,

producing an inorganic species (Barkay & Gu, 2021). Cells must have

both the merA and merB genes to remediate organomercury (Sharma

et al., 2021). Phytovolatilisation raises some concern due to secondary

pollution of the atmosphere by volatised elemental Hg (L. Wang

et al., 2021). Therefore, the expression of additional mer genes has

been conducted to create plants that accumulate Hg without dischar-

ging Hg(0) to the atmosphere (S. Singh & Kumar, 2020). MerC, merF

and merT are known as membrane transporter genes that function in

translocating Hg(II) into the cell, in addition to the genes merA and

merB (Guha et al., 2022). These genes provide plants with the ability

to gather more Hg in their tissues than wild type. The merP encodes a

periplasmic protein that facilitates the absorption of Hg2+ and is phys-

ically linked to merT (Hwang et al., 2020).

Natural plants have limited phytovolatilisation potential for Hg

and thus the research in this topic is mainly focused on transgenic

approaches by inducing merA/merB genes in plants like tobacco, rice

and Arabidopsis (R. Li et al., 2020). Phytoremediation approaches

depend on various gene combinations to improve absorption, translo-

cation or detoxification as well as regulate the emission of Hg into the

air through plants (D. Yin et al., 2022). A possible weakness of

the method is the ability of the gene-modified plant to adapt to the

surroundings (Yaashikaa et al., 2022). Figure 4 represents the different

phytoremediation mechanisms involved in remediation of

Hg. Tables 5 and 6 differentiates literature of Hg phytoremediation in

water and soil.

3.3 | Enhanced phytoremediation

3.3.1 | Applying exogenous chemicals or
substances

Phytoremediation processes can be improved by applying exogenous

chemicals or substances. For example, ammonium sulphate can be

applied to the roots of Brassica juncea in low pH soil (J. Wang

et al., 2017). Ammonium chloride, sodium nitrate and ethylenediami-

netetraacetic acid can mitigate Hg stress in B. juncea, while ammonium

thiosulphate and sodium sulphite considerably increase Hg uptake

(J. Wang et al., 2017). Furthermore, results exhibited that organic mat-

ter (OM) can play an imperative role in phytoremediation by influenc-

ing Hg in the rhizosphere, which helps limit the transport of Hg

cations to plant roots (C. L. Guo et al., 2019; S. Hussain, Jianjun,

et al., 2022; A. Hussain, Rehman, et al., 2022).

3.3.2 | Bacteria-assisted phytoremediation

Plant growth-promoting bacteria (PGPB) comprise a varied collection

of prokaryotes found in the rhizosphere (known as rhizobacteria),

occupying root nodules (known as rhizobia), or residing inside the
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tissues of plants (known as endophytes) (Y. Ma et al., 2016;

Narayanan & Glick, 2022). These bacterial systems are numerous and

often inadequately characterised, but they have been shown to

enhance plant growth and provide protection against phytopatho-

gens. PGPB typically supply beneficial nutrients, such as fixed N, Fe

and P, as well as signals that initiate systemic resistance, hormones,

enzymes, antibiotics or siderophores (K. Naik et al., 2019). The Hg-

plants-bacteria triad has been the focus of many studies related to the

removal of Hg from polluted environments and symbiotic bacteria.

For example, exploiting natural legume–rhizobia relationships for Hg

phytoremediation. These relationships are well-established, and as rhi-

zobia enhance plant growth, they can lower Hg stress in plants (Tiodar

et al., 2021).

In addition, the application of Hg-resistant endophytic bacteria to

maize plants has revealed increased growth on Hg-polluted sub-

strates, enhanced total uptake of Hg and mitigated its phytotoxicity

by mediating its bioaccumulation (Mello et al., 2020). While many bac-

terial isolates display significant phenotypic variability in respect to

tolerance (to Hg, pH and salt) and phosphate solubilisation, none have

been observed to synthesise siderophores. These studies highlight the

taxonomic precision that plants use to establish microbial interactions,

but also highlight the absence of strains that are Hg-tolerant (Tiodar

et al., 2021).

In comparison to an untreated control, roots of Vigna unguiculata

ssp. sesquipedalis growing in soil contaminated with Hg (27 mg kg�1)

grew longer (11%), absorbed more Hg (25%) and had lower Hg con-

centrations in aerial portions (�55%) (Mathew et al., 2015). In another

study, Brevundimonas diminuta SF-S1-5 and Alcaligenes faecalis SF-

S1-60, two heavy metal-resistant rhizobacteria, significantly assisted

Scirpus mucronatus growth in sand soil contamined by a mixture of Pb

(100 mg kg�1) and Hg (1 mg kg�1). Hamzah et al. (2015) found that

the presence of bacteria increased phytoaccumulation of Hg in shoots

(by up to 7.5 mg kg�1) in comparison to uninoculated plants. Sitarska

et al. (2016) reported on enhanced growth and Hg2+ absorption capa-

bilities of Salvinia natans and Lemna minor cultivated in a water

solution comprising 0.3 mg L�1 Hg(NO3) by three strains of epiphytic

bacteria. Franchi et al. (2017) examined a group of five Hg/As-

resistant bacteria in conjunction with thiosulphate, a fertiliser that acts

as a metal mobilising agent. The bacteria species were selected based

on their ability to produce IAA, ammonia, exopolysaccharide, biofilm

or fix N2. It was reported that the combined treatment of thiosulphate

and bacteria synergistically increased the Hg phytoaccumulation level

by 36% and 45% in Lupinus albus and B. juncea plants, respectively.

3.3.3 | Fungi-assisted phytoremediation

Mycorrhizal fungi (MF) can colonise the plant root cortex, on their sur-

face, or nearby the epidermal root cells. These fungi provide plants

with phosphates, nitrates or other inaccessible nutrients; they also

facilitate the exchange of carbohydrates (Genre et al., 2020) and the

formation of relationships through the hyphal network, enabling

the transmission of resources and chemical signals between plants

(Boyno & Demir, 2022). Cozzolino et al. (2016) reported that a com-

mercial (arbuscular mycorrhizal fungi) AMF formula of humic acid with

R. irregularis and Funneliformis mosseae propagules decreased Hg

uptake and translocation while promoting plant growth and phospho-

rus uptake in Lactuca sativa at Hg pollution levels below 10 mg kg�1.

Similarly, Wu et al. (2022) found that Metarhizium robertsii fungus

helped break down methylmercury, thereby reducing its accumulation

in plants and significantly enhancing their growth in polluted soils.

According to this study, fungi utilise MMD to demethylate methyl-

mercury and Hg reductase to convert Hg to volatile elemental Hg,

demonstrating the mechanism for Hg tolerance in fungi. These find-

ings imply that environmentally benign techniques to Hg pollution

remediation can be developed based on these mechanisms.

According to Aguirre et al. (2018), commercial AMF formula with

Glomus, Entrophospora and Scutellospora genera increased L. sativa

seedling growth and stimulated root elongation in comparison to non-

inoculated control seedlings, even at 100 mg kg�1 Hg. In soil

F IGURE 4 Phytoremediation
mechanisms of Hg removal in soil and
water. [Colour figure can be viewed at
wileyonlinelibrary.com]
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TABLE 5 Phytoremediation studies of Hg on soil.

Plant species Results References

Clidemia sericea The results obtained for the tissues differed in order of metal

accumulation, with the root showing the highest concentration

of metals. The highest values of bioconcentration (BCF > 1)

were presented for Hg at T3 and of translocation (TF > 1) for

Hg. Thus, C. sericea demonstrated its potential as a

phytostabiliser of Hg in mining soils, strengthening as a wild

species with results of resistance to the stress of the PTEs

evaluated, presenting similar behaviour and little phytotoxic

affectation on the growth and development of each of the

plants in the different treatments.

Durante-Yánez et al. (2022)

Miscanthus sinensis The soil mercury concentration from 1.48 to 706 mg kg�1. The

changes in biomass yield in dry mass, chlorophyll content and

SOD activity indicated M. sinensis was tolerant to higher levels

of soil mercury exposure, and could grow even if at soil mercury

up to 706 mg kg�1. Mercury bioconcentration and translocation

factors were close to or greater than 1 when exposed to soil

mercury up to 183 mg kg�1.

A. Zhao et al. (2019)

Triticum aestivum, Hordeum vulgare,

Lupinus luteus

The decrease Hg concentration from 29.17 μg g�1 at 0–10 cm

horizon to 20.32 μg g�1 at 10–40 cm horizon demonstrated the

anthropogenic origin of the mercury in the soil. The mercury

concentration in the plants accounted for less than 3% of

mercury concentration in the soil. The Hg concentrations in the

plants were similar or even higher than that of the bioavailable

Hg in the soils. Mercury extraction yields reached up to

719 mg ha�1 for barley.

Tangahu et al. (2011)

Poa annua The increase in the Hg accumulation in shoots and roots 2.66 and

236.39 mg kg�1

Pedron et al. (2013)

Chenopodium glaucum Higher Hg accumulation in roots, stems and leaves 1100%, 600%

and 200%

J. Wang, Feng, Anderson, Qiu, et al.

(2011), J. Wang, Feng, Anderson,

Zhu, et al. (2011)

Lupinus albus Higher the Hg accumulation in plants 1.94–2.47 μg plant�1 L. Rodríguez et al. (2016)

Cyrtomium macrophyllum exhibited high levels of biomass production in contaminated soils

with 5, 10, 20, 50, 100, 200 and 500 mg kg�1 Hg, however,

slight toxic effects such as chlorosis and necrosis were observed

in contaminated soils with 1000 mg kg�1 Hg

Xun et al. (2017)

Jatropha curcas Study reported that reduction existed in the development of plant

planted in 5, 10, 20, 40 and 80 μg mL�1 Hg(NO3)2-containing

solution, and the leaf area decreased as the dosage of Hg

increased

Marrugo-Negrete et al. (2016)

Oryza sativa The result exhibited that the increase in the MeHg accumulation in

grains 3.59–31.43 μg kg�1, and also rise in IHg accumulation in

grains, straw and roots, that is, 4–15 μg kg�1; 0.3–1 mg kg�1

about 10–28 μg kg�1

Y. Li et al. (2019)

Festuc arubra, Poa pratensis, Armoracia

lapathifolia, Helianthus tuberosus,

Salix viminalis

The highest concentrations of mercury were found at the roots,

but translocation to the aerial part also occurred. Most of the

plant species tested displayed good growth on mercury

contaminated soil and sustained a rich microbial population in

the rhizosphere. These results indicate the potential for using

some species of plants to treat mercury-contaminated soil

through stabilisation rather than extraction.

Sas-Nowosielska et al. (2008)

Opuntia stricta, Aloe vera, Setcreasea

purpurea, Chlorophytum comosum

and Oxalis corniculata

The results demonstrated that the effect of different

concentrations of mercury on the accumulation condition of

roots was greater than that of shoots. There was an ideal Hg

concentration for transfer by each plant species. Oxalis

corniculata was the most suitable for transferring Hg and was

more suitable for repairing soils with Hg at concentrations of

less than 500 μg L�1.

Z. Liu et al. (2017)
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containing 1 mg kg�1 of Hg, commercial AMF formulas combined

with Lolium perenne led to greater root uptake (0.49 vs. 0.12 mg kg�1

of Hg), less translocation (0.28 vs. 0.75 mg kg�1 of Hg) in contrast

with the non-inoculated control (Leudo et al., 2020). It should be

noted that although non-native AMF inocula promote plant growth

and protect against Hg toxicity by reducing its bioavailability, they do

not eliminate Hg from the contaminated site, thus requiring long-term

monitoring. Hg-tolerant arbuscular mycorrhizal strains may be useful

for phytostabilisation. Kodre et al. (2017) found that Zea mays inocu-

lated with Glomus sp. isolated from a Hg contaminated site accumu-

lated significantly more Hg (reaching 439 mg kg�1) than plants treated

with a commercial inoculum. Hg tetra-thiolate complexes were

detected in arbuscular mycorrhizal roots, showing AMF's ability to

modify Hg soil-to-root mobility. Debeljak et al. (2018) reported AMF's

potential role in Hg cycling. Putative Hg-hyperaccumulator plants may

be colonised with AMF for phytoremediation purposes.

E. polymnioides showed the highest Hg accumulation in roots among

plant species collected from gold mine soils, attributed to high AMF

colonisation (Chamba et al., 2017). Chrysopogon zizanioides inoculated

with commercial AMF had enhanced growth and Hg accumulation,

but only in highly contaminated soil (6 mg kg�1) (Bretaña et al., 2019).

Hg-tolerant fungal root endophytes Aspergillus sp., Curvularia genicu-

lata P1, Lindgomycetaceae P87 and Westerdykella sp. P71 increased

dry weight and Hg(II) deposition in Aeschynomene fluminensis and

Z. mays by reducing Hg(II) translocation (Aguirre et al., 2018). The

addition of mycorrhizae to L. perenne L. improved Hg absorption and

distribution in roots and shoots and increased Hg elimination from

soil, enhancing the diversity of soil microbe families (Saldarriaga

et al., 2023).

4 | CONCLUSIONS AND
RECOMMENDATIONS

Mercury is a highly toxic metal whose production sources are both

natural and human based. Hg contaminating feats on soil and its capa-

bility to extend marine ecosystem represents peril to human and envi-

ronmental health, owing to its bio accrual and biomagnification ability

in the food chain. Because of this reason there is increasing scientific

concern for decreasing the Hg content in the soil and water environ-

ments. Bioremediation based on application of various microbial and

phytoremediation approaches can be employed to remove or trans-

form mercury into a less harmful form. Mercury-resistant bacteria

TABLE 6 Phytoremediation studies of Hg on water.

Plant species Results References

Brassica juncea Roots-concentrated Hg

100–270 times (on a

dry weight basis). The

plants translocated

little Hg to the shoots,

which accounted for

just 0.7%–2% of the

total Hg in the plants.

Moreno et al.

(2008)

Chilopsis linearis The concentration of Hg

in shoots indicated

that C. linearis

absorbed and

translocated Hg at

higher concentrations,

compared to reported

data. At the highest

concentration, Hg

produced a breakdown

of the spongy

parenchyma

E. Rodríguez

et al. (2009)

Eichornia crassipes,

Pistia stratiotes,

Scirpus

tabernaemontani,

Colocasi aesculenta

The higher the Hg

concentration, the

greater the amount of

mercury removed by

the plants. The largest

uptake and

accumulation

capability is for water

lettuce, followed by

water hyacinth, taro

and rush, respectively.

Tangahu et al.

(2011)

Azolla pinnata Metal content decreased

to 70%–94%
Delgado-

González

et al. (2021)

Eichhornia crassipes Acummulation from 26

to 327 mg kg�1 in dry

weight

Odjegba and

Fasidi

(2007)

Oenanthe javanica More than 1 mg kg�1

remediated and 807 of

BCF value

Furong et al.

(2021)

Pistia stratiotes Accumulation of Hg

concentrations from 1

to 15 mg kg�1 DW

V. Kumar et al.

(2019)

Typhadomin-gensis Reduces 99.6 ± 0.4% of

the mercury in

contaminated water

Gomes et al.

(2014)

Lemna minor and

Salvinia natans

The efficiency of mercury

removal from the

substrate in the

phytoremediation

process was 96%. The

total protein was

increased for L. minor

by 34%, S. natans by

84%, and in mixed

culture by up to 99%.

Also, the total

chlorophyll increased

Sitarska et al.

(2023)

(Continues)

TABLE 6 (Continued)

Plant species Results References

for L. minor by 14%

and for the mixed

culture by up to 60%.

For S. natans, the total

chlorophyll decreased

by 53%.
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with the mer operon in their genome survive in the presence of Hg

(Hg resistance) and can convert harmful forms of Hg to less toxic

forms. Bacteria containing the merB gene and genetically modified

organisms with the mer operon, including merB and other useful

genes that provide resistance to other metals, tolerance to changes in

pH and endurance in extreme environments, are considered appropri-

ate for use in bioremediation. In phytoremediation, plants with high

biomass are commonly used, however, the disposal of harvested

plants containing Hg must be carefully considered. In addition, the

emission of Hg(0) to the atmosphere from various phytoremediation

plant species, particularly transgenic plants, needs to be evaluated fur-

ther. In conclusion, contaminated soil health can be improved through

phytoremediation and bioremediation approaches, offering an envi-

ronmentally friendly, long-lasting and cost-effective remediation

method with great efficiency.
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