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Abstract
Many massive sulfide deposits have been discovered in the Upper Paleozoic rift-related volcaniclastic sequence in South 
China, among which the Yushui copper deposit is the most important due to its high grade. The deposit has been variably 
attributed as SEDEX (sedimentary exhalative) or MVT (Mississippi valley type). The Yushui copper deposit in Guang-
dong (South China) contains stratiform bornite-chalcopyrite orebodies (102.1 kt Cu @ 3.5%, 186.6 kt Pb @ 4.29%, 117.6 
kt Zn @ 2.91%, and 339 t Ag @ 112 g/t) developed along the contact between Upper Carboniferous dolostone and Lower 
Carboniferous pebbly quartz sandstone, which indicates a shallow marine deposition environment. The Yushui deposit 
comprises an upper massive sulfide orebody and a lower stockwork orebody with intense alteration. In this study, we newly 
identified Carboniferous tuffs and syn-volcanic faults in the footwall, and exhalites in the hanging-wall. Hematite from the 
Cu ores yielded a U-Pb age of 320 ± 15 Ma (MSWD = 2.1, n = 57), and hydrothermal dolomite yielded a Sm-Nd isoch-
ron age of 308.1 ± 4.6 Ma (n = 7; MSWD = 0.94), which constrains the timing of mineralization at Yushui. These ages 
are coeval with the Carboniferous host rocks. Combining the evidence from the geological features (syn-volcanic faults, 
volcanic rocks, exhalites) and hematite trace element compositions, we suggest that the Yushui is a shallow marine VMS 
(volcanogenic massive sulfide) deposit. The Sr-Nd isotope composition of hydrothermal dolomite (εNd ~−12) indicates that 
the ore-forming materials were originated from the crustal basement. The Yushui copper deposit was likely formed during 
the Late Carboniferous continental back-arc extension in eastern South China. The regional extension may have caused 
enhanced heat flow, which promoted fluid convection in the basement rocks. In addition, we suggest that volcanic rocks 
and disseminated chalcopyrite-pyrite mineralization in the Lower Carboniferous quartz sandstone and exhalites are good 
indicators for regional VMS prospecting.

Keywords Hematite U-Pb dating · Dolomite Sm-Nd dating · Shallow marine VMS deposit · Carboniferous · Yushui copper 
deposit

Introduction

It has long been suggested that volcanogenic massive sulfide 
(VMS) deposits or modern seafloor massive sulfide depos-
its (SMS) are mainly formed in deep water environments 
(e.g., Franklin et al. 2005; Hannington et al. 2005, 2011; 
Cherkashov 2011; Schulz 2010; Shanks 2012; German et al. 
2016; Petersen et al. 2016). In contrast, it is commonly con-
sidered that the fluids vented in shallow marine environments 
would boil readily, and are thus non-conducive to sulfide dep-
osition and VMS/SMS formation (Cathles 2010; Monecke 
et al. 2014). However, the various ocean drilling programs 
(Deep Sea Drilling Program, DSDP; Ocean Drilling Pro-
gram, ODP; Integrated Ocean Drilling Program, IODP) have 
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observed hydrothermal activities in shallow marine settings 
(< 1000 m depth), with sulfide accumulation in the early-
stage mid-ocean ridge opening (e.g., East African Rift, Red 
Sea-Atlantis II Deep, Lake Baikal) (Bonatti et al. 1972; Crane 
et al. 1991; Tiercelin et al. 1993) or in the landward part of 
the ridge (e.g., northern Iceland, Salton Sea) (Mckibben and 
Elders 1985; Fricke et al. 1989; Olafsson et al. 1989; Botz 
et al. 1999; Canet et al. 2005; Camprubí et al. 2007). There-
fore, such shallow marine settings associated with early-stage 
basin expansion have the potential to produce metal sulfide 
deposits (Halley and Roberts 1997; Marani et al. 1997, 2002; 
Savelli et al. 1999; Dekov and Savelli 2004; Baker 2004; de 
Ronde et al. 2014). In shallow marine environments, vein-
type and stockwork (but usually not stratiform massive) ore-
bodies can be formed, which is different from typical VMS 
systems (Hannington et al. 1997; Hou et al. 2003; Lusty et al. 
2017). Although fluid boiling could cause metal loss, it could 
also contribute to metal precipitation at/near the seafloor 
in shallow-water hydrothermal systems (Hannington 2021; 
Falkenberg et al. 2021; Schaarschmidt et al. 2021). However, 
extensive lateral replacement could be widespread in highly 
permeable subseafloor rocks, contributing to massive ore for-
mation (Hannington et al. 1999a, b, c; Tornos 2006).

The Yushui copper deposit in eastern Guangdong prov-
ince, South China, is a high-grade copper-polymetallic 
deposit, with 3- to 7-m-thick massive bornite and chalco-
pyrite orebodies (Cu grade, 10–53%). Yushui contains a 
reserve of 102.1 kt Cu @ 3.5%, 186.6 kt Pb @ 4.29%, 117.6 
kt Zn @ 2.91%, and 339 t Ag @ 112 g/t (He 1990). The ore 
genesis has been variably interpreted as of syngenetic exha-
lative-sedimentary type (sediment-hosted massive sulfide 
deposit or SEDEX) (Gu and Xu 1986; He 1990; Gu et al. 
2007; Huang et al. 2015a, b) or of epigenetic hydrother-
mal type (MVT or late hydrothermal replacement) (Chen 
et al. 1994; Cai et al. 1996; Liu 1997; Cheng et al. 2014). 
Recently, we have identified geological evidence, such as 
volcanic rocks, fluid channels, syn-volcanic faults, and 
exhalites at Yushui, and proposed that the deposit may be 
classified as VMS-type (Chen et al. 2021). In this study, we 
present new hematite U–Pb and dolomite Sm–Nd dates to 
constrain the ore-formation age at Yushui. We also integrate 
geological, geochronological, and geochemical evidence to 
further discuss the genesis of the Yushui deposit as an exam-
ple for shallow marine massive sulfide mineralization.

Regional geology

The Yushui copper deposit is located in the middle section 
of the late Paleozoic Yong’an–Meizhou–Huizhou rift basin 
(Guangdong BGMR 1988; Ren 1990). The basin extends 
NNE-SSW for about 500 km (~150 km wide), and is 
bounded by the Zhenghe–Dapu and Shaowu–Heyuan faults 

to the east and west, respectively (Huang et al. 2015a, b) 
(Fig. 1).

The regional tectono-stratigraphy comprises three phases: 
(1) The Caledonian (Sinian and Cambrian) folded basement 
is composed of continental shelf-slope facies flysch clastic 
rocks, which were strongly folded and low-grade metamor-
phosed; (2) Hercynian–Indosinian (Devonian and Carbon-
iferous) coastal and shallow marine clastic, carbonate, and 
coal-bearing rocks with local volcanic interbeds. Over ten 
Fe-Mn deposits and Cu-Pb-Zn polymetallic deposits are dis-
tributed along the contact between the Lower Carboniferous 
sandstone and the overlying Upper Carboniferous carbon-
ate rocks (Xun et al. 1996; Gu et al. 2007); (3) Yanshanian 
(Jurassic–Cretaceous) thick continental volcanic rocks and 
terrestrial red beds.

From the Devonian to Triassic, South China may have 
continued to extend, forming a series of fault depressions 
with thick terrigenous clastic and carbonate deposits and 
minor volcanic interbeds, indicating the starting of conti-
nental margin rift basin sedimentation (Wang 2005; Wang 
and Jin 2000). The Indosinian (Triassic) movement in South 
China had ended marine sedimentation, while the Juras-
sic period saw the beginning of Paleo-Pacific subduction 
beneath Eastern China, forming a series of volcanic rift 
basins (Liu et al. 2018; Jia et al. 2018).

Deposit geology

Stratigraphy

The Yushui deposit, which was discovered in 1985, is a 
concealed copper-lead-zinc polymetallic deposit (116° 
10′ 50″E, 24° 25′ 15″N). The major exposed stratigraphy 
comprises the Upper Jurassic Gaojiping Group  (J3gj) and 
Lower Cretaceous Guancaohu Group  (K1gna). The former 
consists of basalt, andesite, rhyolite, and tuff with tuffaceous 
sandstone and argillaceous siltstone interlayers; the latter 
contains volcanic rocks, arkose, and silty shale with dacitic 
tuff interlayers. In addition, Middle and Upper Devonian 
 (D2-3, ~100 m thick) and Carboniferous sequences are also 
exposed locally. The Middle and Upper Devonian sequence 
comprises gray-white quartz sandstone that unconformably 
overlies the Cambrian basement.

Stratabound orebodies are located between the Zhongxin 
Formation  (C1z) purplish-red quartz sandstone and the Hutian 
Formation  (C2ht) dolostone (Figs. 2 and 3). The Zhongxin 
Formation becomes grayish white with decreasing hema-
tite content away from the orebodies. The sandstone of the 
Zhongxin Formation is overlain by littoral pebbly quartz sand-
stone (thickness, 5–30 cm) (ESM 1a), which contains 20–40 
vol% pebbles and randomly oriented quartz (ESM 1b).
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The Hutian Formation  (C2ht) is about 300 m thick 
and dominated by gray dolostone and calcareous dolos-
tone, with light-gray limestone and bioclastic limestone 
interbeds. Large fossils, such as corals and Chaetetida, 
have been reported in this formation, suggesting a shal-
low marine depositional environment (ESM 1e, f). The 
orebody footwall and hanging-wall was likely deposited 
in a littoral and shallow-water environment, respectively. 
This likely reflects a sudden seawater deepening, possibly 
via basin extension.

Structures

Both the Devonian and Carboniferous strata show NE-
dipping monoclinic structures. Local structures include 
mainly two sets of NNE- and EW-striking normal faults. 
Local normal/transtensional faults strike NNE to EW, 
which control the shape of the Yanshanian volcanic basin 
(Figs. 2 and 3). Fieldwork indicates that many orebodies 
are cut and displaced by a series of near EW- and NE-
trending faults.

Igneous rocks

Intrusions

Local magmatic rocks include mainly Yanshanian (Jurassic) 
dikes (outcrop size, 20–300 cm wide, up to 10 m long), with 
compositions including granite porphyry, quartz porphyry, 
and diabase. The magmatic rocks clearly cut the orebodies, 
indicating that they are post-ore. Li et al. (2019) reported 
LA-ICP-MS zircon U-Pb ages of 128.4 ± 1.0 Ma for the 
granite-porphyry and 59.3 ± 2.5 Ma for the diabase.

Volcanic rock

The presence of volcanic rocks and their compositions are 
key criteria for classifying VMS deposits. For example, 
Cyprus-type and Kuroko-type deposits are mainly related 
to mid-ocean ridge basalts (MORB) and island-arc bimodal 
suites, respectively (Hou et al. 2003; Franklin et al. 2005). 
At Yushui, our field work has found at least two volcanic 
layers in the quartz sandstone footwall, along with volcanic 
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Fig. 1  (a) Simplified geological map showing the location of the study area. (b) Regional geological map of the Yong‘an-Meizhou-Huizhou 
depression (modified after He 1990; Huang et al. 2015a, b; and Chen et al. 2021)
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ash mounds and volcanic channels (Figs. 4 and 5a) (Chen 
et al. 2021).

A volcanic ash bed is 0–20 cm thick which is grayish-
white in color. Two layers of volcanic rocks developed par-
allel to the stratiform orebody. The layer is 15–20 cm thick 

near the vent, and gradually thins out outward, forming a low 
gentle mound (Fig. 5a). A chalcopyrite lens is sandwiched in 
the tuff near the vent, about 5 × 10 cm in size. The volcanic 
channel is flared and filled with unconsolidated volcanic 
ash (Fig. 5b). The volcanic rocks (basaltic) have vitroclastic 
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Fig. 2  Geological map of the Yushui deposit (modified after No. 723 Geological Team of the Bereau of Geology and Mineral Resources of 
Guangdong Province 1988 and Chen et al. 2021)



819Mineralium Deposita (2024) 59:815–835 

1 3

texture, with the main metallic and non-metallic minerals 
being chalcopyrite and sericite, respectively (Fig. 7a). The 
volcanic rocks are quartz crystal fragment tuff (Fig. 7b).

The analysis of the major elements of six tuff samples 
shows that one sample has anomalous  SiO2 content of 76 
wt%, which may be due to mixing with quartz sandstone 
(Chen et al. 2021). After normalization, the  SiO2 content of 
the other five samples ranges from 44.2 to 62.0 wt% (ESM 
2A), which roughly belongs to the category of basalt to 
andesite.

Exhalites

The exhalites at Yushui are featured by a red chert-jasper-
ite suite in the upper part of the massive orebody (Fig. 4). 
Where the orebody gradually pinches out along strike, the 
sulfide (pyrite-chalcopyrite-bornite-sphalerite-galena) ores 
are lensoidal shaped and distributed in the red exhalites 
(Fig. 5c). The exhalites contain locally red jasper, which 
is in direct contact with the underlying orebody. In hand-
specimen or outcrop scale, jasperite and massive ore show 
a distinct stratiform vertical change: (lower part) pyrite-
chalcopyrite layer, (middle part) galena-sphalerite ore, and 
(upper part) red jasperite. The contact between jasperite and 
the underlying lead-zinc ore displays flame structure, sug-
gesting a sedimentary origin and zone refining (Fig. 5d), as 
supported by the oolitic hematite in the red jasper (Fig. 7c).

Exhalites at Yushui are similar to the mafic-siliciclastic 
formations of some VMS deposits, but are characterized by 
the widespread presence of hematite and siderite. The strati-
form ore contains volcanic rocks and exhalites, with clear 

contacts between them (Fig. 5e). Both jasperite and chert 
contain a large amount of fine-grained/dusty hematite, giv-
ing the rock its characteristic red color.

Microscopically, both siderite and hematite are euhedral, 
and they are closely intergrown with each other (Fig. 7d). 
Most hematite grains are coarse with needle or radial shape, 
and some are fine-grained or dusty. Jasperite is mostly com-
posed of 99 % quartz (Fig. 7e), but siderite and dolomite 
may reach 50 % (Fig. 7f). Jasperite is rich in  SiO2 (>90.6 
wt%) and Fe (FeO+Fe2O3>3.95 wt%). The trace-element 
composition corresponds to precipitates from hot springs 
(He 1990).

Syn‑volcanic faults

Syngenetic faults in VMS deposits are important in con-
trolling the distribution of sedimentation and volcanism 
in regional basins, and in providing channels for deep ore-
forming fluids, thus playing a key role in both diagenesis 
and mineralization (Herzig and Hannington 1995; Hou et al. 
2003; Franklin et al. 2005).

At Yushui, syn-volcanic faulting is observed in several 
outcrops, which show large thickness variation of the ore-
bodies and volcanic-sedimentary rocks on both sides of the 
faults (Fig. 5f). In addition, the Cu orebody is crosscut by 
syn-volcanic faults, forming drag folds (Fig. 5g). The syn-
volcanic faults strike SW and dip NE, (sub-)parallel to the 
main fluid channel (Fig. 6a). Syngenetic faults do not cut the 
overlying copper orebody or dolostone, and control the fluid/
volcanic conduits, consistent with a syn-volcanic origin.
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Mineralization zones

The ore types include massive ores along the dolomite-
quartz sandstone interface, stringer ores (in No. 1 ore-
body) in the quartz sandstone footwall, and minor vein 
ores that cut the stratigraphy (No. 2 and No. 3 orebody). 
No. 1 orebody is stratiform, striking NW-SE and dip-
ping gently with 10 to 25°. The orebody is 150–250 m 
along strike and 500 m along dip, with an average thick-
ness of 5.95m and average grade of 3.5% Cu, 4.29% Pb, 
2.91% Zn, and 112 g/t Ag. No. 1 orebody accounts for 
84.2% of the total ore reserve at Yushui. The No. 2 and 
No. 3 vein orebodies are smaller, and their disseminated 

ores occur in steep fractures and dikes, which cut No. 1 
orebody and are late mineralization products (out of the 
scope of this study, for detailed descriptions see Chen 
et al. 2023). It is noteworthy that HREE (Y) and U min-
eralization is commonly developed in the Yushui No. 1, 
2, and 3 orebodies (Liu et al. 2023a, 2023b), and that 
the HREE mineralization overprints on the stratiform 
ores (Chen et al. 2023).

Two main sulfide ore zones have been identified based 
on the host rocks, ore types, and mineral assemblages, i.e., 
a lower stringer zone in the Zhongxin Formation, and an 
upper massive zone with fluid channel-proximal copper 
ore and fluid channel-distal lead-zinc ore.
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Stringer orebody and fluid channel

At least six nearly parallel fluid channels (with surrounding 
fan-shaped quartz stockwork) were identified in underground 
workings. These fluid channels are NS-/NNE-oriented 
(95–115°) and dipping steeply (dip angle, 84–86°). The 
main fluid channel narrows down from the upper part (width, 
60–70 cm) to the lower part (width, 5–10 cm), extending 
vertically for over 10–20 m. The channel consists of sulfide 
(chalcopyrite, bornite, tetrahedrite) and hydrothermal quartz, 
with strong silicic, sericite, and chlorite alteration (Fig. 6a), 
clearly distinct from the purple quartz sandstone wallrocks. 
The sandstone at the top of the channel is also altered and 
bleached, creating an alteration cap of ~15 m wide. Quartz 
stockwork is developed and fanned out around the main 
body channel, forming a complete hydrothermal recharge 
system. The quartz stockwork does not cut the overlying 
massive copper ore lenses (Fig. 6a). The volcanic rocks 
near the fluid channels are the thickest and they contain the 
majority of copper ore lenses, suggesting that the fluid chan-
nels and volcanic channels may be contemporaneous.

The sandstone footwall is also silicified and sericitized 
with disseminated chalcopyrite. The stringer orebody and 
mineralized footwall are 1 to 10 m thick, with up to 5% cop-
per. The ore grade and vein density drop steadily away from 
the vent center, suggesting a typical funnel-shape profile.

Massive sulfide lenses

The stratiform copper sulfide (incl. chalcopyrite and bor-
nite) orebodies at Yushui are the thickest (up to 3–7 m) near 
the main fluid channel and thin out away from it, although 
the red exhalites are still present. The ores also transition 
gradually from Cu-dominated to Pb-Zn-dominated away 
from the vent center and with decreasing depths, showing 
metal zoning.

The copper lenses are the thickest (up to 3–7 m) above the 
main fluid channel, containing 2–3 rhythms (chalcopyrite → 
bornite → galena + sphalerite) (Fig. 4e), while the thin strati-
form orebody in the west has a single rhythm (Fig. 4c). From 
floor to roof, chalcopyrite content gradually decreases, while 
galena and sphalerite contents gradually increase (Fig. 4e), 
and the single rhythm has similar variation characteristics. 
Chalcopyrite is mainly located on the floor of the copper 
lenses and is dominated by massive chalcopyrite (Fig. 6c) and 
cemented by hematite (Fig. 7g). Breccia-like ores (40–80 cm 
thick) are generally located at the base of massive chalcopyrite. 
There is a clear boundary between chalcopyrite and bornite 
and funnel-shaped interpenetration, similar to a fluid channel 
(Fig. 6e). Bornite includes a small amount of pyrite, chalco-
pyrite, galena, chalcocite, and renierite (Fig. 7h). Ore grade 
of individual bornite lenses can be as high as 53%, making 
them the richest ores at Yushui. The copper-lead-zinc ores 

(10–250 cm thick) are generally located in the upper part of 
the copper ore lenses, and with clear banded texture (Fig. 6d). 
Under reflected light microscopy, the sulfide crystallization 
order is pyrite (siegenite) → chalcopyrite → bornite → galena 
+ sphalerite (Fig. 7i). Early-stage gypsum and barite are dis-
tributed around the pyrite-chalcopyrite, probably due to the 
retrograde dissolution in the later stage (Fig. 7i). This is simi-
lar to the early-stage gypsum-barite chimney shell formed by 
modern seafloor exhalative sedimentation.

The lead-zinc ore lenses are mainly distributed in the 
northeastern margin of Yushui, distal from the fluid channel. 
Footwall of the copper lenses comprises purplish-red quartz 
sandstone, while that of the lead-zinc ore lenses (1.5–6 m) 
comprises 1–9-m-thick bioclastic limestone. Exhalites are 
found above the lead-zinc ore lenses, and no alteration is 
present between the lead-zinc lenses and the hanging-wall 
(Fig. 6f). The lead-zinc lenses contain mainly pyrite, galena, 
sphalerite, and minor chalcopyrite (mainly in the base of 
lenses). The lead-zinc lenses contain mainly pyrite, galena, 
sphalerite, and minor chalcopyrite (mainly in the base of 
lenses). The lead-zinc ore lenses comprise stratiform ores 
(Fig. 7j), white coarse-grained hydrothermal dolomite, and 
exhalites in order from the footwall to the roof (Figs. 6g and 
7k).

Sampling and analytical methods

Sampling

The hematite samples for U-Pb dating were separated 
from the massive copper ores in the middle of the deposit, 
whereas the dolomite samples for Sm-Nd dating were sepa-
rated from the stratiform lead-zinc ores at the deposit margin 
(Fig. 4). The ore used for in situ U-Pb dating are hematite, 
chalcopyrite with minor pyrite in a brecciated structure. 
The hematite (size, 5 to 100 μm) is acicular or flaky, and is 
cemented by chalcopyrite, suggesting that the hematite was 
formed slightly before chalcopyrite, and its age can represent 
the early-stage mineralization age (Fig. 7g). The samples 
used for Sm-Nd dating are euhedral coarse-grained dolo-
mite, which intergrow with galena and sphalerite, suggesting 
that they were formed in the same stage (Figs. 6g and 7j, 
k). In addition, the hydrothermal dolomite cuts chalcopyrite 
(Fig. 7g), suggesting that its age can represent the late-stage 
mineralization age.

Analytical methods

fs‑LA‑(MC)‑ICP‑MS U‑Pb dating and trace element 
of hematite

The analyses were conducted at the State Key Laboratory 
of Ore Deposit Geochemistry, Institute of Geochemistry, 
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Chinese Academy of Sciences. Before the analysis, select 
the appropriate sample grinding restricted 0.1-mm-thick 
probe, combining with BSE hematite crystal characteristics 
and determination of main elements as a result, the crystal 
structure is good for delineating the hematite particles were 
analyzed. The analysis spots were chosen to avoid cracks, 
inclusions, or other impurities, to reduce the common Pb 
influence. Laser ablation used a NWR UP-213 Nd:YAG 
laser, and an Agilent 7700x ICP-MS instrument was used 
to acquire ion-signal intensities. Helium was used as the 
carrier gas, which was mixed with argon make-up gas via 
a T-connector before entering the ICP-MS. Each analysis 
includes a background acquisition of ~30 s (gas blank), fol-
lowed by 50 s of sample data acquisition. Element contents 
were calibrated against multiple reference materials (GSE-
1G, BCR-2G, BIR-1G, and BHVO-2G) with internal stand-
ardization (Dare et al. 2012). The recommended element 
concentrations for the USGS reference glasses are from the 
GeoReM database (http:// georem. mpch- mainz. gwdg. de/). 
Off-line selection and integration of background and analyte 
signals and time-drift correction and quantitative calibra-
tion were performed with ICPMSDataCal (Liu et al. 2008, 
2010). Thermo Element XR high-resolution magnetic mass 
spectrometry (HR-ICP-MS) and excimer laser ablation sys-
tem (GeoLasPro 193nm) were used for the analysis. The 
analytical conditions include 32 μm beam diameter, 3J/cm2 
laser energy density, and 5 Hz frequency. Helium and Ar 
were used as the carrier gas (0.45 L/S) and make-up gas, 
respectively. Each spot analysis comprises 80 s, including 
20 s background acquisition (laser-off), 25 s sample signal 
measurement (laser-on), and 35 s cleaning time. Analyses of 
the samples were bracketed by that of the standards (twice in 
the order of NIST SRM612, 91500, YGX, and WT). Stand-
ard zircon 91500 (1062 Ma) was used as the main correction 
sample. The U-Pb isochron ages were calculated using the 
Isoplot/Ex_V3 program (Ludwig 2003).

Dolomite geochemical and Sr and Sm‑Nd isotopic analyses

Hydrothermal dolomite samples were crushed to 200 mesh 
for geochemical analyses. For the isotope analyses, the Sm 
and Nd separation was done by conventional two-column 
chromatography (AG50W resin column + HEHEHP resin 

column). The Sm-Nd isotopic analysis was performed 
on a Thermo Fisher Scientific Triton thermal ionization 
mass spectrometer (TIMS), with the analytical errors for 
149Sm/147Sm and 146Nd/145Nd being lower than ±0.05%. The 
Sm and Nd contents and the 147Sm/144Nd value were calcu-
lated with the isotope dilution method (Rosenblum 1957). 
143Nd/144Nd was corrected against 146Nd/144Nd (0.7219) for 
the mass fractionation correction. The JNdi-1 Nd standard 
yielded l43Nd/144Nd = 0.512116 ± 0.000007 (2σ) (Tanaka 
et al. 2000), and the international rock standard BCR-2 
(143Nd/144Nd = 0.512643 ± 0.000011; 2σ) was used to evalu-
ate the separation and purification of Nd. Detailed instru-
mental parameters and separation process were described in 
Liu et al. (2019). The Sm-Nd isochron ages were calculated 
with the Isoplot/Ex_V3 program (Ludwig 2003). The Sr 
isotope analysis used 0.10g of the powdered sample, which 
was dissolved by 2.5 mol/L HCl, and the supernatant was 
centrifuged for resin separation. The separation and purifi-
cation of Sr were conducted using AG50W×12 strong acid 
cation exchange resin. The interference and inhibition of 
87Rb on 87Sr isotropy and matrix elements were minimized, 
ensuring high precision and accuracy of the obtained Sr 
isotope ratios. The international JDo-1 carbonate standard 
(dolomite, purchased from GSJ, Japan) was used to moni-
tor the separation process. Our analysis yielded 87Sr/86Sr 
= 0.707572 ± 0.000008(2SE), and the internal correction 
factor for Sr fractionation (88Sr/86Sr) is 8.375209. Isotope 
ratios were determined on a Triton TIMS using ion sources 
with parallel double filament components. The international 
BCR-2 Sr standard yielded 87Sr/86Sr = 0.705024 ± 0.000007 
(2SE). The use of laboratory resin and its separation process 
followed those described by Liu et al. (2019).

Results

Hematite U‑Pb age and trace element compositions

The LA-ICP-MS isotope signals for many elements, includ-
ing 238U, 206Pb, 207Pb, 202Hg, 204Pb, and 232Th, are generally 
stable across the 40-s signal acquisition area. Uranium of 
hematite is mainly hosted in the mineral lattice, and thus the 
U-Pb age can represent the hematite formation age.

A total of 65 U-Pb isotope spot analyses were conducted 
on sample YS3-10, and 55 sets of valid data were obtained 
(the rest likely contaminated by fine inclusions or impurities 
in fissures). The hematite has 0 to 0.06 ppm (average 0.01 
ppm) Th, 4.45 to 35.54 ppm (average 15.37 ppm) U, and 
2.56 to 369.61 ppm (average 70.30 ppm) Pb. The samples 
have 207Pb/206Pb = 0.86 to 0.32, 207Pb/235U = 3.35 to 282.57, 
and 206Pb/238U = 0.07 to 2.40 (ESM 2B). Due to the high 
common Pb content, the T-W inverse concordia plot was 

Fig. 5  Field photographs for typical features of the Yushui Cu ores. 
a  Volcanic ash and volcanic channels; b  volcanic ash–filled horn-
shaped volcanic channel; c lenticular bedding at the pinch of orebody, 
and the Cu-Pb-Zn ore is distributed in the red exhalites; d  jasperite 
ore underground workings with clear stratiform structure (from bot-
tom to top): pyrite-chalcopyrite layer, galena-sphalerite layer, and red 
jasperite. Flame structure appears at the bottom; e a complete verti-
cal section of the orebody; f  syn-volcanic faults; g drag fold in syn-
volcanic faults. Abbreviations: Bn, bornite; Ccp, chalcopyrite; Gn, 
galena; Hem, hematite; Sp, sphalerite; Sid, siderite

◂

http://georem.mpch-mainz.gwdg.de/
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used for common Pb correction, yielding a lower intercept 
age of 320 ± 15 Ma (MSWD = 2.1, n = 57) (Fig. 8).

Hematite geochemical compositions of sample YS3-10 
(20 spots) were measured, and the analysis results are listed 
in ESM 2E and illustrated in ESM 3-4 and Fig 10. The sam-
ple has total Fe content of 93.7 to 96.8 wt%, together with 
minor Si, Ti, Al, and V, as well as trace Co, Ni, Cu, Zn, Ga, 
Ge, As, Y, Mo, Ag, Cd, In, Sn, Sb, Te, Ho, W, Tl, Pb, Bi, 
Pb, and U. Meanwhile, concentrations of Au, Se, and Te are 
below the detection limit. The YS3-10 hematite grains are 
significantly metal rich, including V (1886.8–16495.4 ppm, 
average 9300 ppm), Ni (average 334 ppm), Ga (average 183 
ppm), and Pb (average 352.4 ppm). The Ag, Cd, Tl, and Bi 
contents are generally below 1 ppm (ESM 2E, 3).

Dolomite Sr and Sm‑Nd isotope compositions

The Sr-Sm-Nd elemental and isotopic compositions of the 
Yushui dolomite samples are shown in ESM 2C. The sam-
ples (n = 7) have 0.0950 to 10.2471 ppm Sm and 0.2542 
to 50.5161 ppm Nd, with 147Sm/144Nd = 0.1030 to 0.2962 
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and 143Nd/144Nd = 0.511825 to 0.512207, yielding a Sm-Nd 
isochrones (t = 308.1 ± 4.6 Ma; n = 7; MSWD = 0.94; 
initial 143Nd/144Nd = 0.5116186) (Fig. 9). The dolomite has 
εNd(0) = −15.86 to −8.41, εNd(t) = −12.64 to −11.97, 
and tDM2 = 2042 to 2134 Ma. The hydrothermal dolomite 
has 87Sr/86Sr = 0.711847 to 0.715072 (average 0.713745), 
representing the ore-fluid Sr isotopic compositions.

Discussion

Mineralization age

With ongoing advancements in LA-ICP-MS technology, 
hematite U-Pb dating has has demonstrated its reliability, 
much like monazite, apatite, and fluorocerium (Ciobanu 
et al. 2013; Courtney-Davies et al. 2016, 2019; Apukhtina 
et  al. 2017; Zhou et  al. 2017). Hematite and magnetite 
are widespread in various hydrothermal deposits, includ-
ing porphyry, skarn, iron oxide-copper-gold (IOCG), and 
VMS deposits (Zhou et  al. 2017; Meinert et  al. 2005; 
Chen et al. 2010; Franklin et al. 2005). Previously, hema-
tite U-Pb dating is mostly applied to IOCG and porphyry 
gold deposits (Ciobanu et al. 2013; Courtney-Davies et al. 
2016; Apukhtina et al. 2017; Zhou et al. 2017; Verdugo-
Ihl et al. 2022), and was considered only suitable for old 
hematite samples due to the lack of suitable hematite stand-
ard (Courtney-Davies et al. 2020). However, recent stud-
ies have confirmed its applicability for young samples as 
well (Zhou et al. 2017; Verdugo-Ihl et al. 2022), and have 
demonstrated that 91500 and GJ-1 zircon standard can help 
mitigate matrix effects (Courtney-Davies et al. 2016, 2020; 
Zhou et al. 2017).

Both samarium (Sm) and neodymium (Nd) are rare earth 
elements (REEs). The Sm-Nd isotope system is unaffected 
by magma fractionation or moderate alteration/weathering, 
and can be used for dating (Hamilton et al. 1977, 1979). 
Hydrothermal carbonate Sm-Nd dating has been successfully 
employed in various deposit types, including SEDEX, Carlin-
type, REE, and hydrothermal vein-type deposits, yielding reli-
able dates (Fryer and Taylor 1984; Nie et al. 1999; Jiang et al. 
1999, 2000; Kempe et al. 2001; Peng et al. 2003; Su et al. 
2009; Sánchez et al. 2010; Fan et al. 2014; Maas et al. 2022).

Our obtained hematite U-Pb (320 ± 15 Ma) and hydro-
thermal dolomite Sm-Nd (308.1 ± 4.6 Ma) dates are consist-
ent (within error) with the published Re-Os age (308 ± 15 
Ma) of chalcopyrite and bornite in the massive sulfide lenses 
(Huang et al. 2015a, b). Furthermore, the formation age (320 
to 308.1 Ma) of hematite in the early-stage mineralization 
and late-stage hydrothermal dolomite also conform to the 
established mineral paragenetic sequence. These hydrother-
mal mineralization ages are coeval with the formation ages 
of the Zhongxin and Hutian Formation host rocks (Fig. 3), 
indicating that the Yushui copper mineralization is synge-
netic and occurred in the Carboniferous. This supports the 
conclusion that Yushui is not an epigenetic deposit, as previ-
ously suggested, such as a MVT or late-stage hydrothermal 
replacement deposit (Chen et al. 1994; Cai and Liu 1996; 
Liu 1997; Cheng et al. 2014).

Deposit type

Similar massive sulfide deposits were developed in the late 
Paleozoic South China, and all the orebodies were hosted in 
the clastic-carbonate lithological contact (Gu et al. 2007). 
Our dating results (ESM 2D) support that the stratiform 
sulfide orebodies are of seafloor exhalative sedimentary 
origin. This indicates probable widespread exhalative sedi-
mentary mineralization in late Paleozoic (esp. Carbonifer-
ous) South China.

Syngenetic massive sulfide deposits are generally clas-
sified as SEDEX and VMS, the major difference between 
which is whether they are volcanic-related. In this study, 
we confirm that ore-related volcanic rocks are present at 
Yushui (Fig. 5a, b). The two volcanic layers at Yushui are 
mafic, which resemble mafic-siliciclastic-type VMS deposits 
in terms of their host-rock characteristics and Cu-rich nature 
(Barrie and Hannington 1999). Mafic-siliciclastic-type VMS 
deposits are generally associated with continental rifts (Pira-
jno and Cawood 2009; Pirajno et al. 2016), and the Yushui 
was likely formed in a rift basin (Fig. 1).

Huang (2015) classified the Yushui copper deposit as 
SEDEX, but the S isotope has both volcanic and seawater 
sources, and the Pb isotope also indicates that the ore-form-
ing material was originated from the mixing of crust and 
mantle, which is different to typical SEDEX deposits. The 
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geological features (incl. volcanic host rock, exhalites, lower 
string zone and upper massive zone, syn-volcanic faults), 
mineralization age of this study, and published geochemi-
cal data (S-Pb-Cu-Fe-C-H-O isotopes and fluid inclusions 
feature; Huang 2015; Wang et al. 1999) further support that 
the Yushui deposit belong to VMS type.

Hematite is a homogenous polymorph of magnetite, and 
inherits many properties of magnetite (Dupuis and Beaudoin 
2011; Huang et al. 2015a, b, 2019b). Hematite and magnet-
ite can be interconverted under various physical and chemi-
cal conditions. The trace elements of hematite can indicate 
the same physical and chemical conditions as magnetite 
(Matthews 1976; Ohmoto 2003; Otake et al. 2010). Geo-
chemical compositions of hematite can be used to constrain 
the physicochemical conditions of ore-forming fluids, and 
to distinguish deposit types, including IOCG, iron oxide-
apatite (IOA), band iron formation (BIF), porphyry, skarn, 

magmatic Fe-Ti oxide and Cu-Ni-PGE, and VMS (Boutroy 
et al. 2014; Dare et al. 2014; Sappin et al. 2014; Makvandi 
et al. 2016; Huang et al. 2019a).

Hematite samples from Yushui exhibit notably high vana-
dium (V) content, reaching up to 10,000 ppm (ESM 3). Such 
ultra-high V content is a rarity and has only been observed in 
a few VMS deposits globally, including the Red Sea (9860 
ppm), the Dahongshan copper deposit (11,459 ppm), and 
some iron deposits in Northwest China (8269 ppm) (Jedwab 
et al. 1989; Zhou et al. 2017; Wang et al. 2020). The ultra-
high V content indicates that the Yushui hematite share simi-
lar deposition environment with hematite from the Red Sea.

Because magmatic and hydrothermal magnetite have dif-
ferent iron contents, Wen et al. (2017) proposed the Fe vs. 
V/Ti plot to determine the magnetite origin. The Yushui 
hematite has high Fe and high V/Ti contents (ESM 2E), and 
fall into the hydrothermal field (Fig. 10a). In addition, in the 
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Fig. 10  (a) V/Ti vs. Fe discrimination plot (Wen et  al. 2017), and 
binary plots of b V vs. Mn, c V/Ca vs. Mn, and d V vs. Sn/Ga for the 
Yushui hematite. Data source: VMS deposits from Makvandi et  al. 

(2016); skarn deposits from Zhao and Zhou (2015), Hu et al. (2017), 
Ding et  al. (2018), Li et  al. (2018), Chen et  al. (2020, 2021), Dong 
et al. (2021), Peng et al. (2021), and Xing et al. (2022)
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Mn vs. V, Sn/Ga vs. V, and Mn vs. V/Ca plots (Fig. 10b–d), 
all our hematite samples fall into the VMS field. Hence, we 
argued that Yushui is of VMS type, instead of skarn type or 
other hydrothermal types (Makvandi et al. 2016). To further 
constrain the hematite origin from Yushui, we compared 
it with the hematite from typical skarn and VMS deposits 
worldwide. The Yushui hematite contains significantly lower 
Ca and Mn than VMS (ESM 4a-b), but higher Ga and V 
than VMS (ESM 4c-d). In particular, the content of V and 
Ca is highly comparable to the VMS-type magnetite. The 
concentration ranges and median values of Mn and V are 
also largely similar to those of the VMS-type magnetite, but 
distinctly from those of the skarn-type magnetite (ESM 4).

While Yushui copper deposit shares many characteristics 
with VMS deposits, one might still challenge the idea of the 
shallow water depositional environment represented by its 
host rock. In fact, there are many shallow marine SMS and 
VMS examples around the world, such as those that (1) show 
characteristics of carbonate host rock deposits, e.g., Kidd 
Creek, Southern orebody of the Iberian Pyrite Belt, and the 
Ambler district (NW Alaska) (Hitzman et al. 1986; Tay-
lor and Huston 1999; Tornos 2006); (2) formed in shallow 
marine volcanic depressions, e.g., Panarea, Aeolian Island 
Arc (Italy) (Marani et al. 1997; Dekov et al. 2013), the Lake 
Tanganyika (East African Rift) (Tiercelin et al. 1993), and 
the Afar Rift (eastern Ethiopia) (Bonatti et al. 1972), the 
hydrothermal activity found about 100 km north of Iceland 
(Fricke et al. 1989; Olafsson et al. 1989; Botz et al. 1999), 
and the Salton Sea (Southern California) (Arango-Galván 
et al. 2011).

Studies on the abovementioned deposits confirmed that 
in the early rifting stage of mid-ocean ridges, or at where 
the ocean ridges extend landward, hydrothermal activity and 
sulfide accumulation could occur in shallow marine environ-
ment (water depth: 0–1000 m) (Wilson and Rocha 1955; 
Elders 1979; Olafsson et al. 1989; Shanks and Callender 
1992). Thin tuff-dominated volcanic layers are the common 
features of these shallow marine sulfide deposits (Monecke 
et al. 2014). Therefore, modern seafloor hydrothermal min-
eralization can occur at different water depths (0–5200 m), 
and they are all closely related to seafloor spreading and rift-
ing activities (Franklin et al. 2005; Hannington et al. 2005).

We suggest that the Yushui is a VMS deposit formed in 
shallow marine environment, with different genesis com-
pared to the typical (deep water) VMS deposit. Goodfellow 
et al. (2003) identified a type of VMS with sedimentary-
hosted deposit, including the Bathurst district (Canada), Ibe-
rian Pyrite Belt (Spain), Wolverine (Yukon, Canada), and 
Xitieshan (China) (Fu et al. 2017).

Genesis of the Yushui deposit and its exploration 
implications

Calcite Sr-Nd isotopes have been widely used to determine the 
source of ore-forming fluids and minerals (Hecht et al. 1999; 
Barrat et al. 2000). Our samples exhibit 87Sr/86Sr values ranging 
from 0.715072 to 0.711847, with an average of 0.713737 (ESM 
2C). In contrast, the 87Sr/86Sr range for Carboniferous seawater 
in Southwestern Fujian falls between 0.7080 and 0.7084 (Chen 
et al. 2018). There is no obvious Sr isotope fractionation dur-
ing the marine carbonate diagenesis, and carbonate Sr isotope 
compositions are close to that of contemporaneous seawater 
(Veizer 1989, 1999). The 87Sr/86Sr value of the hydrothermal 
dolomite in this study differs significantly from that of the host 
rock sample (contemporaneous carbonate). Since Rb decays 
into 87Sr during rock weathering, this would lead to higher 
87Sr/86Sr value in more-matured crustal source material. The 
87Sr/86Sr of hydrothermal dolomite is significantly higher than 
that of seawater and global mantle source 87Sr/86Sr (0.7035), 
but lower than that of global crustal source 87Sr/86Sr (0.71190) 
(Palmer and Edmond 1989). Therefore, the Sr of hydrothermal 
dolomite in the Yushui ore-forming hydrothermal fluid is likely 
to be contaminated by highly matured crustal materials.

In the εNd(t) vs. 87Sr/86Sr diagram, all data fall within 
the early Paleozoic S-type granite field (Fig. 11). Combined 
with the previous studies on the ore element abundance of 
local pre-Devonian strata (which show high background con-
tents of Cu, Pb, Zn, and Ag) (Cai and Liu 1996), we propose 
that the metallogenic materials primarily originated from 
the crustal basement. This conclusion is consistent with that 
drawn from siliceous clastic-dominated VMS deposits in the 
Iberian Pyrite Belt (Tornos 2006).
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Many lithofacies paleogeographic studies suggested that 
the Late Carboniferous Yushui was in a terrestrial-marine 
transition (under extensional tectonics) with epicontinental 
sea sedimentation (Fig. 12a) (Zhao et al. 1996; Wang and 
Jin 2000; Cai and Zhang 2009; Wang et al. 2017), and that 
the Paleo-Japan Arc was related to South China. According 
to tectonic model, the eastern South China was positioned 
in a distal continental back-arc extension setting (Fig. 12b) 
(Cocks and Torsvik 2013; Domeier and Torsvik 2014; Iso-
zaki et al. 2010). This is supported by the presence of coe-
val extension-related (e.g., bimodal) magmatic units in the 
region (Wang 2005; Hu et al. 2012, 2015; Shen et al. 2018; 
Wang et al. 2017; Gao et al. 2022).

Hydrothermal fluids may have leached the ore metals 
from the metal-rich crustal basement at Yushui (Huang 
et al. 2015a, b). Previous studies suggest that the minerali-
zation temperature at Yushui is low (110–220 ℃) (Cheng 

et al. 2014), which is contradictory to the high precipita-
tion temperature required for copper sulfides. However, the 
hydrothermal leaching model demonstrated that basinal 
brine in the low-temperature phase is injected in batches 
that produced phase separation of high-temperature copper-
rich fluids, which accounts for the copper enrichment in the 
lower part of the Yushui deposit (Ohmoto 1996; Hannington 
et al. 1999b-c; Tornos and Spiro 1997, 1999; Tornos 2006). 
In essence, the Late Carboniferous regional extension may 
have caused enhanced heat flow and fluid convection in the 
crustal basement, which contributed to the Yushui copper 
mineralization in a shallow marine rift (Fig. 12c).

According to the mineralization control of the rift basin 
and the principle of fault equidistance (Sangster 1980), simi-
lar deposits could potentially form in the upper Paleozoic 
Yong’an-Meizhou-Huizhou depression. In fact, there are 
numerous examples of massive deposits within the other 
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depressional zone in the same period, e.g., the Wushan and 
Chengmenshan (Gu et al. 2007; Jiang et al. 2010; Kong 
et al. 2012), Yongping (Gu et al. 2007), and the Xinqiao 
and Dongguashan (Xie et al. 1995; Guo et al. 2011; Jiang 
et al. 2011) copper deposits. The stratigraphic age should 
be given priority in the exploration of VMS deposits (Gib-
son 2007; Galley et al. 2007), i.e., the interface between 
the upper Carboniferous carbonate rocks and the lower Car-
boniferous quartz sandstone is the predicted target horizon. 
The second priority is the near NS or NNE-trending fault 
due to the consideration of fluid channels and the produc-
tion of syn-volcanic faults are in this direction (Figs. 5f and 
6a). Ridler (1971) defined exhalites as chemical sedimen-
tary rocks formed by hydrothermal fluids venting. Based 
on lithological and geochemical data, exhalites are broadly 
considered as amorphous Fe ± Mn ± Si ± S ± Ba ± B 
phases precipitated from seafloor hydrothermal vents and 
plumes with a wide lateral spread (Kimberley 1989; Isley 
1995; Peter 2003; Grenne and Slack 2005). The large-scale 
red exhalites found at the roof of Yushui copper deposit 
can also serve as a valuable regional prospecting indica-
tor, following a precedent set in the world (Aggarwal and 
Nesbitt 1984; Spry and Peter 2000; Peter 2003; Galley et al. 
2007; Chen et al. 2015). Furthermore, the presence of dis-
seminated chalcopyrite and pyrite mineralization, along with 
volcanic rock interlayers in the sandstone at the base of the 
orebody, can serve as essential criteria for peripheral pros-
pecting and the delineation of regional massive sulfide ore 
prospecting targets.

Conclusions

In this study, we identify geological evidence of syn-vol-
canic faults, exhalites, and double-layered mineralization at 
the Yushui copper deposit. The hematite is V-rich and likely 
of submarine hydrothermal origin, similar to that from the 
Red Sea. The ore-forming materials were likely originated 
from the basement, and the mineralization age (308–320 
Ma) is coeval with the Upper Carboniferous wallrocks. 
Accordingly, we argued that the Yushui is a shallow marine 
VMS deposit.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00126- 023- 01232-5.
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