
Acta Oceanol. Sin., 2021, Vol. 40, No. 5, P. 105-113 

https://doi.org/10.1007/sl3131-020-1681-2 

http://www.hyxb.org.cn 

E-mail: ocean2@hyxb.org.cn

Distal axis sulfide mineralization on the ultraslow-spreading 
Southwest Indian Ridge: an LA-ICP-MS study of pyrite from 
the East Longjing-2 hydrothermal field
Shili Liao1-2, Chuanwei Zhu3, Jianping Zhou1-2, Weiyong Liu1-2, Junyu Yu1-2, Jin Liang^ 2,
Weifang Yang1-2, Wei Li1-2, Jia Liu4 *, Chunhui Tao1-2*
1 Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China

2 Key Laboratory of Submarine Geosciences, Ministry of Natural Resources, Hangzhou 310012, China

3 State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese A c a d e m y  of Sciences, 

Guiyang 550081, China

4 Key Laboratory of Geoscience Big Data and Deep Resource of Zhejiang Province, School of Earth Sciences, Zhejiang 

University, Hangzhou 310027, China

Received 14 March 2020; accepted 13 July 2020

©  Chinese Society for Oceanography and Springer-Verlag G m b H  Germany, part of Springer Nature 2021

Abstract

The newly discovered East Longjing-2 hydrothermal field (ELHF-2) is located on the Dragon H o r n  oceanic core 

complex of the ultraslow-spreading Southwest Indian Ridge, approximately 12 k m  from the ridge axis. This study 

measured the chemical compositions of pyrite from E LHF-2 using a laser ablation inductively coupled plasma 

mass spectrometry (LA-ICP-MS) to investigate the genesis of the field. Three generations of pyrite were classified, 

and found that: Pyl a n d  Py2, rich in V, M n ,  U, a nd Se, occur in altered basalt debris a nd the silica alteration 

matrix, respectively. Py3 was mainly intergrown with chalcopyrite in quartz veins and h a d  higher Cu, In, Ag, Sb, 

a nd A u  contents than Pyl a n d  Py2. S o m e  elements, such as Au, Se, a nd Pb, are likely presented as direct 

substitution with Fe2+ in pyrite, while Cu, Zn, Co, Ni, and A g  probably occur both as direct substitution with Fe 

and as distributed micro- to nanoparticle-sized sulfides. Meanwhile, the occurrence of V, M n ,  a nd U  is likely 

presented as oxide inclusions. Trace element geochemistry suggested that the pyrite w a s  formed under high- 

temperature conditions, and the ore forming elements were likely derived from ultramafic rocks. In addition, Pyl 

and Py2 were formed under higher water/rock ratio and higher temperature conditions, with m o r e  seawater 

involvement c o m p a r e d  with Py3. T h e  formation of ELHF-2 w a s  probably driven by exothermic serpentinization 

reactions with an additional magmatic heat. This study shows that high-temperature hydrothermal circulation 

driven by magmatic activity can be developed on distal rift flank areas of magma-starved ultraslow-spreading 

ridges.
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1 Introduction
Since hydrothermal activity w a s  first observed on the Galapa­

gos Rift (Corliss et al., 1979), h uge progress has been m a d e  in d e ­

termining the genesis a n d  ore-forming processes of sulfides on 

mid-ocean ridges ( M O R s )  by studying sulfide chimneys a n d  the

surface products of hydrothermal activities (Fouquet et al., 2010;

H a n n i n g t o n  et al., 2005; H a y m o n ,  1983; M a r q u e s  et al., 2011; 

M u r t o n  et al., 2019). N u m e r o u s  studies have demonstrated that 

there are mainly two types of hydrothermal activities on M O R s  

(Fouquet et al., 2010; G e r m a n  et al.; 2016): (1) magma-controlled 

hydro t h e r m a l  fields (HFs), w h i c h  dev e l o p e d  o n  all types of 

M O R s ,  a n d  (2) tectonically controlled HFs, that m a i n l y  d e ­

veloped o n  slow a n d  ultraslow spreading ridges a nd m a y  consti­

tute 5 0 %  of the total H F s  that occur o n  the slow-spreading Mid-

Atlantic Ridge ( G e r m a n  et al., 2016). Tectonically controlled H F s  

exhibit diverse features (e.g., high-temperature sulfide sites, low- 

temperature carbonate sites, a n d  diffuse flows; B e m i s  et al., 

2012), a n d  the heat source for these systems has often b e e n  dir­

ectly linked to either the exothermic reaction of serpentinization 

with or without a n  additional m a g m a t i c  heat ( G e r m a n  et al.,

2016).

T h e  ultraslow-spreading Southwest Indian Ridge (SWIR) was 

considered as a desert of hydrothermal activities. Since the first 

active H F  (Longqi-1) w a s  discovered (Tao et al” 2012), further 

a b u n d a n t  hydrothermal activities have b e e n  revealed, such as 

the Duanqiao-1, Yuhuang-1, Changbai-1, Tiancheng-1, Tianzuo- 

1, a n d  Suye fields (Tao et al” 2014). These H F s  are distributed 

across diverse geological settings a nd exhibit different mineraliz-
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ation features (Chen et al., 2018; Liao et al” 2018; T ao et al., 2011; 

Y a n g  et al” 2016; Y e  et al” 2012). T h e  n ewly discovered East 

Longjing-2 hydrothermal field (ELHF-2) is a m o n g  the currently 

discovered H F s  that are furthest a w a y  from the ridge axis (12 k m )  

on  ultraslow-spreading ridges. Hydrothermal systems cannot dir­

ectly m i n e  heat from a ridge axis at such a distance. Understand­

ing the genesis of this field is critical to understand the factors 

controlling hydro thermal activity d e v e l o p m e n t  o n  distal ul- 

traslow spreading ridge flanks.

Pyrite is a universal mineral that forms u nder w i d e  c ondi­

tions during the mineralization process (Keith et al.; 2016a). It 

contains a wide range of trace elements (e.g., Cu, Pb, Zn, Ag, As, 

Sb, Co, Ni, Se, Te, a n d  Hg), in the form of Fe/S substitution in 

crystal lattice or as micro- to nanoparticle-sized mineral inclu­

sions (Keith et al., 2016b; Reich et al., 2013). T h e  trace element 

enrichment features a n d  their occurrences in pyrite not only 

provide information about mineral/fluid partitioning of metals, 

but also constrain the evolution of physicochemical conditions 

during the mineralization process (Reich et al” 2013; Z h a n g  et al., 

2014; Z h a o  et al., 2011). Here, the mineralogy a n d  pyrite c h e m ­

istry of sulfide-rich samples collected from E L H F - 2  w e r e  a n a ­

lyzed to reveal its genesis a n d  improve the knowledge of hydro- 

thermal systems developed o n  ultraslow-spreading ridges.

2 Geological back g r o u n d

T h e  study area, located b e t w e e n  the I n d o m e d  a n d  Gallieni 

transform faults of the ultraslow-spreading S W I R  (Fig. la). This 

s e g m e n t  of the ridge has a semi-spreading rate of about 0.7- 

0.9 c m / a  (Dick et al., 2003). This section of the ridge is character­

ized by highly asymmetric topography cut by a series of large, 

long-term, active NS-striking transform faults. Because of the

M arion a n d  Crozet hotspots, the 49°-52°E ridge section s h o w s  

strong negative residual mantle Bouguer gravity anomalies, in­

dicating relatively active crust-mantle exchange, deep m a g m a t -  

ism, a nd sufficient m a g m a  supply (Georgen et al., 2001; Li et al” 

2015; Sauter et al” 2009). Previous investigations have reported 

intensive hydrothermal activity with a frequency of about 2.5 

sites per 100 k m  (Tao et al., 2012, 2014), the control of which has 

been attributed to e n h a n c e d  local m a g m a  supply a n d  suitable 

crustal permeability (Tao et al., 2012).

E L H F - 2  (37.85°S, 49.80°E), located about 12 k m  a way from the 

ridge axis on the southern rift flank of the segments 28 at a water 

depth of about 1 780 m. This field, discovered in 2016 during the 

40th cruise, is located o n  the D r a g o n  H orn oceanic core complex 

( O C C )  that c o m p o s e d  by a twin detachment fault system (Tao et 

al., 2020). E L H F - 2  is developed adjacent to the d o m e - s h a p e d  d e ­

tachment surface formed by the m o r e  mature first-stage detach­

m e n t  fault (DF1) (Fig. lb). In the north of this field, two addition- 

al HFs, the Longqi-1 a n d  Suye (so called Longqi-3) fields, form a 

possibly linear mineralized z one along the active second-stage 

detachment fault (DF2) (Tao et al., 2020). M o s t  of this field is ex­

p o s e d  as surface sediments. T h e  collected wall rocks w e r e  

strongly chloritized a n d  interpenetrated by m i n o r  sulfide-bear­

ing quartz veins. T h e  collected sulfide-rich samples were c o m ­

prised mainly of disseminated mineralized ores, a n d  no  evid- 

ence of fluid venting w a s  observed, suggesting that this field is in­

active.

3 Mineralogy

T h e  samples w ere collected during the 2015-2016 DY125-40 

cruise on R / V  Xiangyanghong 10. Only one station of sulfide-rich 

samples w a s  collected using a TV-grab, being intensively chlorit-
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Fig. 1. Location of East Longjing-2 hydrothermal field (ELHF-2). T h e  distribution of structures is according to T a o  et al. (2020). 

Topography data for b  were obtained by multibeam bathymetry survey. O C C :  oceanic core complex, DF1: first-stage detachment fault, 

DF2: second-stage detachment fault, SWIR: Southwest Indian Ridge, SEIR: Southeast Indian Ridge, CIR: Central Indian Ridge.
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ized a nd silicified basalt. T h e  sulfide occurred as veinlets cutting 

the basal. Microscopic observation suggested that the m a i n  m i n ­

erals are pyrite a n d  chalcopyrite with minor limonite (Fig. 2). T h e  

gangue minerals are mainly quartz.

Three generations of pyrite w ere observed. T h e  first genera­

tion, Pyl (euhedral to anhedral pyrite exhibiting residual corro­

sion features), w a s  distributed in the altered basalt debris that 

w a s  c e mented by a silicon matrix a n d  w a s  partially or totally ox­

idized to limonite (Figs 2a a n d  b). T h e  second generation, Py2 

(anhedral to euhedral), w a s  mainly developed in the silicified al­

teration matrix (Fig. 2c). T h e  third generation, Py3, w a s  mainly 

distributed and coexisting with chalcopyrite in quartz veins that 

cross-cutting both the silica alteration matrix a n d  the altered 

basalt debris (Figs 2d a nd e).

There were two generations of chalcopyrite. T h e  first genera­

tion, Ccpl, vdth covellite rims, w a s  distributed in the silica altera­

tion matrix (Fig. 2f). However, it w a s  not found to be in contact 

with Py2. T he second generation, Ccp2, w a s  mainly distributed in 

a late-stage quartz vein a n d  coexisted with Py3 (Figs 2d and e).

4 M e t h o d s

Trace element concentrations of pyrite f rom E L H F - 2  w e r e  

analyzed by a laser ablation inductively coupled plasma m a s s  

spectrometry (LA-ICP-MS) at the State K ey Laboratory of Ore D e ­

posit Geochemistry, Institute of Geochemistry, Chinese A c a d e m y  

of Sciences. A  193 n m  excimer laser system (RESOLution-LR- 

S155, Australian Scientific Instruments Pty Ltd., Australia) w a s  

emp l o y e d  as a laser sampler with an I C P - M S  instrument (7700x, 

Agilent Technologies Inc., American) for the acquisition of ion- 

signal intensities. Ar gas w a s  used as the transport gas, with a gas 

flow rate at 900 m L / m i n .  Data were collected for 60 s after the sig­

nal intensity stabilized (generally after 30 s). T h e  pit size, pulse 

frequency, a nd fluence w ere 26 |im, 5 Hz, a n d  3 J / c m 2, respect­

ively. Peru Py, an internal laboratory standard, w a s  used to calib­

rate the contents of the S a n d  Fe; G S E - 1 G  a n d  G S D - 1 G  were used 

to calibrate the contents of the lithophile elements; a n d  S T D G L 3  

w a s  used to calibrate the contents of the chalcophile a n d  sidero- 

phile elements (Danyushevsky et al., 2011). A  sulfide reference 

material (MASS-1) w a s  analyzed to monitor the data quality dur­

ing the M S  measurements.

5 Results

T h e  pyrite in the samples w a s  characterized by  high Co, Ni, 

Cu, Zn, As, a n d  P b  contents (Table 1). Pyl a n d  Py2 exhibited 

comparable trace element enrichment features, with higher c o n ­

tents of V, M n ,  U, a n d  Se c o m p a r e d  with Py3, ranging be t w e e n  

20.9xl0 6-98.8xl0-6 (average 57.5xl〇-6), 36.5x10-6-332.8xl〇-6 

(average 141.8 x l 〇-6), 0.2xl〇-6-0.6xlO-6 (average 0.3xl0 6 )， 

9.3xl〇-6-38.9xl〇-6 (average 22.4xl〇-6) a n d  4.2xl〇-6-119.2xl〇-6 

(average 43.4xl0-6), 13.7 x l〇-6-310.4xlO-6 (average 119.0xl〇-6); 

and 0.2xl〇-6-3.0xl〇-6 (average 0.7xl〇-6), 9.2xl〇-6-97.5xl〇-6 (av­

erage 28.2xl〇-6), respectively. Py3 contained higher a m o u n t s  of 

Cu, In, Ag, Sb, a n d  A u  c o m p a r e d  with the earlier stage pyrites, 

ranging between 446.3xl〇-6-6 541.7xl〇-6 (average 2 985.Ox l〇-6), 

0.4xlO_6-55.2xl〇-6 (average 11.6xl0-6), 1.3xl〇-6-18.8xlO~6 (aver­

age 6.1xl〇-6), 0 . 2 x l〇-6-5. 9 x l 0 ~ 6 (average 1.5xl〇-6), a n d  

0.1xl〇-6-1.5xl〇-6 (average 0.6xl〇-6), respectively.

6 Discussion

6.1 Trace metal speciation in pyrite

N u m e r o u s  studies have s h o w n  that the trace elements found 

in pyrite mainly occur in three forms: as the substitution of Fe in 

the pyrite crystal lattice, as micro- to nanoparticle-sized sulfides, 

a n d  as micro- to nano-sized oxide minerals or sulfates (Keith et 

al., 2016a; M e n g  et al., 2020). In the pyrite from ELHF-2, the e n ­

richment of V, Co, Ni, M n ,  Cu, Zn, As, Pb, a n d  Se w a s  apparent 

(Fig. 3). Because the pyrite crystals in this study were mostly eu-

Fig. 2. Microscope photos of sulfide from ELHF-2. a. Pyl in altered basalt debris c e m e n t e d  by Py2-bearing silica matrix; b. Pyl in 

altered basalt w ere partially oxidized a n d  exhibited residual corrosion features; c. Py2-bearing silica matrix cross-cut by later stage 

quartz veins; d. C c p 2  replacing Py3 in quartz vein, chalcopyrite w a s  partially oxidized to covellite; e. C c p 2  replacing Py3 in a quartz 

vein, the chalcopyrite has infilled the porosity between the quartz crystals; a n d  f. Ccpl in altered basalt. All the photos were captured 

under reflected light. Cep: chalcopyrite, Py: pyrite, Qtz: quartz, Cv: covellite, L m: limonite, a n d  the mineral abbreviations were 

according to Whitney a n d  Evans (2010).
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10~3
V M nCo Ni Cu Zn Ga Ge As Se MoAg In Sn Sb Te Au T1 Pb Bi U

Fig. 3. Trace element contents of the pyrite from ELHF-2. Pyl 

and Py2 exhibit comparable compositions, whereas the trace ele­

m e n t  composition of Py3 is significantly different.

hedral, w h i c h  w e r e  f o r m e d  during relatively slower processes 

c o m p a r e d  with anhedral pyrite, this allowed for the substitution 

of trace elements in the crystal lattice (Keith et al., 2016a). There­

fore, this study a s s u m e d  that most of the trace elements w ould be 

present in the pyrite crystal lattices as a result of Fe or S substitu­

tion, except for the V, M n ,  a n d  Cu, which w ould occur in the form 

of micro-inclusions. This w a s  consistent with the Pyl a n d  Py2 

that h a d  high M n  content a n d  exhibited spikes o n  L A - I C P - M S  

time-resolved depth profiles (Fig. 4a), indicating that M n  o c ­

curred in the f orm of Mn-bearing mineral inclusions that w ere 

probably M n  oxides a n d  hydroxides. T h e  V  profile w a s  c o m p a r ­

able with the M n  profile (Fig. 4a), w h i c h  is probably the result of 

the absorption of V  into the M n  oxide a n d  hydroxides.

C o  a n d  Ni c an substitute for Fe in the pyrite crystal lattice. 

However, in ELHF-2, the pyrite exhibited varied C o  and Ni c o n ­

tents, and the L A - I C P - M S  time-resolved depth profiles of C o  and 

Ni exhibited several spikes (Figs 4a a n d  b), indicating that they 

also occurred in sulfide-bearing inclusions. Pyl and Py2 s h o w e d  

relatively low C u  contents (average 46.6xl0 6 a n d  234.9xl〇-6, re­

spectively) a n d  Z n  contents (24.4xl0 6 a n d  21.3xl〇-6, respect­

ively) with generally flat (Cu) and even obscure profiles (Zn) (Fig. 4a), 

indicating that they m a i n l y  o c curred in the crystal lattice. 

However, because h o m o g e n e o u s l y  distributed nano-inclusions 

also produce flat concentration patterns, the L A - I C P - M S  w a s  not 

capable of distinguishing t h e m  f r o m  lattice-bound elements 

(Keith et al., 2016a). T h e  solubility of C u  in pyrite is generally lim­

ited to 1 OOOxl〇-6-2 OOOxlO-6 u nder natural conditions, a n d  the 

solid solution is very unstable (Reich et al., 2013). T h e  highest C u  

content in Py3 w a s  >6  O O O x l O -6, a n d  the L A - I C P - M S  time-re­

solved depth profiles s h o w e d  apparent spike features (Fig. 4b),
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Fig. 4. Representative time-resolved laser ablation inductively co 

in Pyl (a) and Py3 (b) from ELHF-2.

indicating Cu-bearing mineral inclusions in the pyrite.

Previous studies have illustrated that arsenic can be used to 

discriminate trace element distribution in pyrite: either incorpor­

ated as lattice-bound substitutions or as micro- or nano-particle 

inclusions (Keith et al.; 2016a; Martin et al., 2019). T h e  dom i n a n t  

chemical form a n d  the saturation state of A u  in pyrite can be d e ­

termined by a log (Au)-log (As) plot: above this limit, it is present 

as Au°, whereas below this limit, it is present as A u +1 (Reich et al., 

2005). Keith et al. (2016a), Z h a n g  (2019) further found similar as­

sociation of Au, Ag, Se, a n d  P b  with As. In E L H F - 2  samples, the 

Au, Ag, Se, a n d  P b  were mainly distributed in the lattice-bound 

substitution zone (Fig. 5), indicating that they were mainly h o s ­

ted within the pyrite structure. However, the L A - I C P - M S  time-re- 

solved depth profiles of A g  exhibited spikes features (Fig. 4b); in- 

dicating that Ag-bearing mineral inclusions were also present.

6.2 Evolution of the mineralization environment

In ELHF-2, differences in the trace element compositions of 

the pyrite generations w ere observed. Pyl a n d  Py2 s h o w e d  high 

V, M n ,  a n d  U  contents, whereas Py3 contained high Cu, In, Ag, 

Sn, Sb, Au, a nd M o  contents. Previous studies have indicated that 

the partitioning of trace elements b e tween the fluid p hase a n d  

the corresponding pyrite is controlled by not only the bulk m i n ­

eralogy but also physicochemical conditions, including t e m p e r ­

ature, pH, redox conditions, salinity, a nd ligand availability (But- 

ler a nd Nesbitt, 1999; Keith et al., 2016a). Because of hydrotherm­

al circulation through y o u n g  oceanic crust, V  a n d  U  are r e m o v e d  

from the infiltrated seawater, causing hydrothermal fluid venting 

at the seafloor a n d  the precipitation of sulfides depleted in V  a nd 

U  (Butler a n d  Nesbitt, 1999; Mills et al., 1994). In the outer parts 

of chalcopyrite black s m o k e r  chimneys a n d  later stage pyrite in 

the R a i n b o w  vent field, the enrichment of U  a n d  V  have b een at­

tributed to the interaction of seawater with the sulfide surfaces 

(Butler a n d  Nesbitt, 1999; Maslennikov et al” 2009). Thus, the 

high V  a n d  U  contents of Pyl a n d  Py2 indicate relatively o p e n  

conditions a n d  high contents of seawater w e r e  involved in the 

mineralization process. This is also consistent with the higher M n  

contents in Pyl a n d  Py2 c o m p a r e d  with Py3. Pyrite f ormed from 

high-temperature reduced fluids is characterized by low M n  c o n ­

tents, caused by high M n  solubility and, thus, little M n  precipita­

tion (Maslennikov et al., 2009). This suggests that Py3 formed un- 

der m o r e  reduced conditions with a lower v o l u m e  of seawater in­

volvement, w h i c h  is consistent with Py3 occurring in veinlets, 

w h e r e a s  Pyl a n d  Py2 occurred in disseminated forms in the 

altered wall rocks.
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High contents of C o  a n d  Se in pyrite are typical of high-tem­

perature Cu-rich ores in volcanic-hosted massive sulfide d e p o s ­

its ( W a n g  et al., 2017). T h e  pyrite in the study area exhibited high 

C o  a n d  Ni contents (Fig. 6). T hese values are c o mparable with 

pyrite f rom a d e e p  part of the D e e p  Sea Drilling Project Hole 

5 04B a n d  the stockwork mineralization of the volcanic massive 

sulfide deposit at Skouriotissa, Cyprus (Keith et al” 2016b a n d

104
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l〇-' 10° 10' 102 103 104

Ni/10 6

Fig. 6. Variations in C o  vs. Ni content in pyrite from stockwork 

and massive sulfides. T h e  dark grey area representing pyrite from 

D S D P  Hole 504B a n d  stockwork mineralization of Skouriotissa, 

while the light-grey d o m a i n  representing massive sulfide and 

sulfide chimneys (according to Keith et al., 2016b).

references therein), but significantly higher than those of massive 

sulfides a nd sulfide chimneys. This m e a n s  that the samples prob­

ably represent stockwork mineralization from a high-temperat­

ure a nd deep part of a hydrothermal system. In addition, the in- 

corporation of C o  a nd Ni into pyrite is a function of temperature

(7) a nd sulfur fugacity (/S2), w h e r e b y  C o  preferentially enters the 

pyrite crystal lattice at high temperatures, a nd Ni is enriched in 

pyrite at relatively low temperatures (Keith et al., 2016b). Increas­

ing/S2 is responsible for increased Ni substitution and relatively 

decreased C o / N i  ratios ( M e n g  et al., 2020). Thus, the higher 

Co/Ni ratios observed in Pyl a n d  Py2 c o m p a r e d  with Py3 (Fig. 6) 

also probably indicates that they formed under higher temperat­

ures a nd lower/S2 than that of Py3. This conclusion is consistent 

with the observation that Pyl a n d  Py2 have high Se content, but 

T1 content is lower than the detection limit. Because Se is e n ­

riched with sulfides at high temperatures, whereas T1 is preferen­

tially partitioned into sulfides under low-temperature conditions 

(about 100-250°C) (Hannington et al., 1995). Further, Py3 had a 

higher M o  content than the earlier stage pyrites (Fig. 3), p rob­

ably indicating decreasing temperature during ore formation. B e ­

cause the solubility of M o  in high-temperature fluids decreases 

sharply, causing pyrite precipitated at high temperatures to c o n ­

tain low a m o u n t s  of M o  (Metz a n d  Trefry, 2000). This conclusion 

is consistent with observations in several mid-ocean-ridge H F s  

and ancient H F s  on land (Martin et al., 2019). Therefore, it can be 

concluded that Pyl a n d  Py2 f o r m e d  under relatively o p e n  and 

high-temperature conditions with greater seawater involvement, 

whereas Py3 w a s  f o r m e d  u n d e r  higher/S2 conditions than the 

earlier stages of pyrite deposition.

Fig. 5. Variations in A u  (a), A g  (b), Pb (c), and Se (d) vs. As in pyrite from ELHF-2. T h e  gray dashed lines define a wedge-shaped zone 

indicating where the Au, Ag, Pb, a n d  Se in the pyrite crystal lattice plot within this zone (Keith et al., 2016a; Zhang, 2019).
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Fig. 7. Variations in A u / A s  vs. Ni/As (a), Co/Ni vs. Ni/As (b), As vs. A u / A s  (c), a n d  As  vs. A g/As (d) in pyrite from ultramafic- a n d  

mafic-related hydrothermal systems at M O R s .  T h e  dot line, short dash line a n d  dash-dot line indicates ultramafic, hybrid a n d  mafic 

area, respectively. Database: Longqi-1 (Yuan et al., 2018); Kairei (Keith et al., 2016a; W a n g  et al., 2018); Logatchev, T AG, M e s o  zone, 

a n d  5°S East Pacific Rise (Keith et al.; 2016a); and W o c a n  ( W a n g  et al.; 2017).

6.3 The origin of the ore-forming elements

Pyrite from E L H F - 2  w a s  enriched in Co, Ni, M n ,  Cu, Zn, As, 

a nd Pb. Previous studies have pointed out that the composition 

of the host rock is a critical factor for differences in trace element 

enrichment in seafloor hydrothermal systems (Wohlgemuth-Ue- 

berwasser et al., 2015). It has b e e n  observed that ultramafic-re- 

lated hydrothermal systems are characterized by higher A u  c o n ­

tents in sulfides (>3xl0 6 average Au) than mafic-related hydro- 

thermal systems ( G e r m a n  et al., 2016). As  for pyrite, Keith et al. 

(2016a) found that pyrite in ultramafic-related H F s  exhibit appar­

ent A u  e n r i c h m e n t  a n d  As depletion c o m p a r e d  with that of 

mafic-related hydrothermal systems, a n d  proposed that serpent- 

inization plays a n  important role in A u  enrichment. Therefore, 

the c o m b i n e d  As contents a n d  A u / A s  a n d  A g/As ratios of pyrite 

c an b e  u sed to discriminate b e t w e e n  mafic-related a n d  ul­

tramafic-related H F s  (Keith et al.; 2016a). In addition, sulfide 

minerals in several ultramafic-related H F s  have been observed to 

have high Ni content, probably resulted from the interaction of 

hydrothermal fluids with an ultramafic b a s e m e n t  containing 

higher Ni concentrations than mafic rocks (Marques et al.; 2007; 

W a n g  et al., 2017). Melekestseva et al. (2013) concluded that 

Ni/Co ratios <1 in seafloor deposits indicate a dom i n a n t  contri­

bution of metals from a mafic rather than an ultramafic source.

In E LHF-2 samples, the pyrite w a s  distributed in both dissem­

inated (Pyl a nd Py2) a n d  veinlet (Py3) forms in the altered basalt 

(Fig. 2), which strongly suggests that basalt played an important 

role in the mineralization. However, the pyrite exhibited high Ni 

contents, high A u / A s  a n d  Ni/As ratios that were comparable with

the Logatchev field but significantly different from those of the 

hybrid Kairei a n d  Longqi-1 fields, the mafic-related M e s o  zone 

and W o c a n  field, a n d  the H F s  at the 5°S East Pacific Rise (Fig. 7a). 

This strongly indicates that this field is ultramafic related. In a d ­

dition, Py3 s h o w e d  e ven higher Ni/As a n d  A u / A s  ratios than 

those of Pyl a n d  Py2, indicating that the ore-forming elements 

derived from ultramafic rock increased during the ore-forming 

process. This is also consistent with Py3 exhibited higher Ni c o n ­

tent a nd lower Co/Ni ratios than Pyl and Py2 (Figs 6 a nd 7b), and 

also s h o w e d  consistency with As content a n d  A u / A s  a n d  A g/As 

ratios of the Py3 plotted in areas closer to the ultramafic-related 

Logatchev field than those of Pyl a nd Py2 (Figs 7a a n d  b). There­

fore, this study suggest that the ore-forming elements of E L H F - 2  

were derived from ultramafic rocks.

6.4 Indications of ore genesis

E L H F - 2  developed o n  the surface of the D r a g o n  H o r n  O C C  

a n d  the pyrite geochemistry suggests that the ore-forming ele­

ments are of ultramafic origin, indicating that it belongs to the ul­

tramafic-related HFs. O n  ultraslow-spreading ridges, H F s  con- 

trolled by O C C s  c omprise about half the H F s  ( G e r m a n  et al.; 

2016), including the Petersburg, Saldanha, Rainbow, Logatchev, 

Lost City, Semyenov, Irinovskoe, Lilliput, Ashadze, Nibelungen, 

V o n  D a m m ,  a n d  Tianzuo fields (Beaulieu et al.; 2015 a n d  refer­

ences therein). T h e s e  fields are exclusively located o n  ridge 

flanks that are up to 16 k m  from the ridge axis. T h e  proposed heat 

source for s o m e  of these systems (e.g., the Lost City a n d  Saldanha 

fields) are exothermic serpentinization reactions between seawa-
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ter a n d  underlying peridotite (Dias a n d  Barriga, 2006; Kelley et 

al., 2001), wh e r e a s  high-temperature hydrothermal systems, 

such as the R a i n b o w  a nd Logatchev fields, s e e m  to d e p e n d  o n  an 

additional magmatic heat source (Andersen et al., 2015; Ma r q u e s  

et al” 2007).

ELHF-2, located about 12 k m  a w a y  f r o m  the ridge axis, is 

a m o n g  the fields that are furthest from the ridge axis. Hydro- 

thermal systems cannot directly m i n e  heat from a ridge axis at 

such a large distance (Fontaine et al” 2017; Lowell et al., 2007), 

whichsuggeststhatitisprobablydrivenbyexothermicserpent- 

inization reactions. However, the pyrite geochemistry suggests 

high formation temperatures of this field. T h e  appearance of 

chalcopyrite also indicates that the temperature of the hydro- 

thermal mineralization w a s  greater than 250oC, a n d  the appear- 

ance of euhedral quartz crystals in a sulfide-bearing quartz vein 

also indicates a high-temperature ore-forming fluid, excluding 

the possibility that the associated hydrothermal circulation of 

this field belongs to low-temperature diffuse flow. Heat balance 

models have suggested that the serpentinization of peridotites is 

m o s t  likely to result in hydrothermal venting at temperatures 

ranging from a few degrees to a few tens of degrees (Lowell and 

Rona, 2002). Allen a nd Seyfried (2004) further suggested that exo­

thermic serpentinization reactions are ineffective for creating h y ­

drothermal circulation, especially at relatively low and high tem- 

peratures d u e  to kinetic constraints. Therefore, this study p ro­

pose that E L H F - 2  w a s  formed by exothermic serpentinization re­

actions with an additional m a g m a t i c  heat that probably supplied 

by a sill or dike.

7 Conclusions
This study investigated pyrite a n d  its chemical compositions 

from E L H F - 2  at Southwest Indian Ridge. Based u p o n  the f o r m a ­

tion sequence of sulfide a nd gangue minerals, three stages of pyr­

ite mineralization could be classified: Pyl and Py2, distributed in 

the altered basalt debris a n d  the silica altered matrix, respect­

ively, exhibiting V, M n ,  U, a n d  Se enrichment features; while, 

Py3, mainly occurs in quartz veins, w a s  intergrown with chal­

copyrite, with high Cu, In, Ag, Sb, a n d  A u  contents. C o m b i n g  with 

previous studies, the data s h o w  that the trace elements, such as 

Au, Se, and Pb, mainly substitute Fe in the pyrite crystal lattice; in 

contrast, Cu, Zn, Co, Ni, a n d  A g  are likely present both as Fe sub­

stitution a nd as micro- to nanoparticle-sized mineral inclusions. 

In addition, V, M n ,  a nd U  are probably in the form of oxide inclu­

sions. Furthermore, pyrite in the studied hydrothermal system 

w a s  formed at high-temperature conditions, but fluid temperat­

ure w a s  decreased from early to late stage during the ore-form­

ing process. C o m p a r i n g  with Py3, Pyl a n d  Py2 were formed un- 

der higher water/rock ratio a n d  higher temperature conditions 

a nd involved greater volumes of seawater during mineralization. 

In conclusion, the E L H F - 2  field is probably ultramafic related 

a nd formed by exothermic serpentinization reactions with an a d ­

ditional m a g m a t i c  heat source, a n d  chemical compositions of 

pyrite could provide detailed information on  sulfide mineraliza­

tion in hydrothermal systems.
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