
applied  
sciences

Article

lp Norm Smooth Inversion of Magnetic Anomaly Based on
Improved Adaptive Differential Evolution

Wei Du 1,* , Lianzheng Cheng 1,2,* and Yuanfang Li 1,2

����������
�������

Citation: Du, W.; Cheng, L.; Li, Y. lp

Norm Smooth Inversion of Magnetic

Anomaly Based on Improved

Adaptive Differential Evolution. Appl.

Sci. 2021, 11, 1072. https://doi.org/

10.3390/app11031072

Received: 24 December 2020

Accepted: 22 January 2021

Published: 25 January 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences,
Guiyang 550081, China; liyuanfang@mail.gyig.ac.cn

2 College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
* Correspondence: du-wei@mail.gyig.ac.cn (W.D.); chenglianzheng@mail.gyig.ac.cn (L.C.)

Abstract: Due to the approved applicability of differential evolution (DE) in geophysical problems,
the algorithm has been widely concerned. The DE algorithms are mostly applied to solve the
geophysical parametric estimation based on specific models, but they are rarely used in solving
the physical property inverse problem of geophysical data. In this paper, an improved adaptive
differential evolution is proposed to solve the lp norm magnetic inversion of 2D data, in which the
perturbation direction in the mutation strategy is smoothed by using the moving average technique.
Besides, a new way of updating the regularization coefficient is introduced to balance the effect of
the model constraint adaptively. The inversion results of synthetic models demonstrate that the
presented method can obtain a smoother solution and delineate the distributions of abnormal bodies
better. In the field example of Zaohuoxi iron ore deposits in China, the reconstructed magnetic source
distribution is in good agreement with the one inferred from drilling information. The result shows
that the proposed method offers a valuable tool for magnetic anomaly inversion.

Keywords: magnetic inversion; lp norm; adaptive differential evolution; regularization coefficient

1. Introduction

The magnetic method is widely used in mineral resource exploration and structure
investigation. To determine the depth, position, and shape of the magnetic anomaly
body, the magnetic data inversion is usually needed, which mainly includes parameter
inversion [1,2], imaging inversion [3–5], and physical property inversion [6]. Physical
property inversion can recover the shape and depth of complex sources without depending
on a specific model. Therefore, the inversion of physical properties has become one of
the most important and commonly used methods. Linear iterative methods, such as the
steepest descent method, Newton’s method, and conjugate gradient method, are usually
used in physical property inversion [7–9]. However, the gradient-based algorithms are
independent of the initial guess to start the optimization process and are easy to trap into
local minima for nonlinear problems [10]. Contrary to the conventional approaches, the
metaheuristic methods like differential evolution (DE) do not require good initial solutions
when searching the global minimum.

DE [11] is a population-based metaheuristic global optimization algorithm. Because
of its fast convergence and easy implementation, it has been widely used to solve the
optimization of practical problems, such as electromagnetic optimization [12,13], pattern
recognition [14], signal processing [15–20], engineering application [21–23], and other
inversion problems [24–27]. Considering the dependency of control parameters [28], some
scholars tried to adjust them by using adaptive or self-adaptive manners.

Liu and Lampinen proposed an adaptive DE based on fuzzy logic (FADE) [29]. Brest
optimized the scaling factor (F) and crossover rate (CR) by encoding them into individ-
uals as parameters [30]. Zhang and Sanderson automatically adjust F and CR based on
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historical experience information, then proposed an adaptive DE with an optional external
archive (JADE) [31]. In JADE, F, and CR are generated based on Cauchy distribution and
Gaussian distribution, respectively. Besides, JADE introduces a new mutation strategy
named “current-to-pbest”, which can balance the global exploration and local exploita-
tion capability of the algorithm better than the traditional ones. Then, researchers have
proposed success-history based DE (SHADE) by improving the technique of the param-
eter adjustment in JADE [32]. In recent years, a series of DE algorithms with superior
performance have been presented based on SHADE, such as using linear population size re-
duction to improve the search performance of SHADE (LSHADE) [33], improved LSHADE
algorithm (iLSHADE) [34], ensemble sinusoidal differential covariance matrix adapta-
tion with Euclidean neighborhood (LSHADE-EpSin) [35], LSHADE with semi-parameter
adaptation hybrid with CMA-ES (LSHADESPACMA) [36], single objective real-parameter
optimization algorithm (jSO) [37], etc.

DE has few applications in magnetic data inversion. For example, some scholars first
applied DE into 3D inversion of the magnetic anomaly to estimate the source parameters
such as the horizontal extension, the depth of top and bottom interface, the magnetic
dip, and declination [38]. Other scholars have applied DE to analytic signal amplitude
(ASA) inversion of two-dimensional (2D) magnetic data [39]. As far as magnetic inversion
is concerned, there is a huge difference between the observed data and the inverted
parameters, which means that one needs to recover a large number of model parameters
by using a small amount of physical field information. Hence, the magnetic inversion
is ill-conditioned and exists in multiple solutions. To address the mentioned issues, it is
necessary to add the prior information as a constraint to reduce non-uniqueness and make
the calculated model as close to the real one as possible. In addition, since the forward
modeling calculation in this paper is based on the finite volume method, the relation of
magnetic source parameters and magnetic data is nonlinear. The lp norm based objective
function aggravates the non-linearity further.

This article has systematically studied the lp(1 ≤ p ≤ 2) norm inversion of the
magnetic data based on the proposed adaptive DE. The proposed algorithm can improve
the global search ability and solution precision. Besides, considering that the original DE
failed to obtain a smooth model, we designed a new mutation strategy to solve this problem.
Although the inversion regularized with lp norm has been widely solved by applying the
gradient-based methods [40–44], the application of adaptive DE in the physical property of
magnetic data is studied for the first time.

2. Method
2.1. Conventional Differential Evolution Algorithm

(1) Initialization

Like other evolution algorithms (EAs), DE initializes the population within a given
search range in a certain way, such as uniform random initialization, chaos initialization,
opposition learning initialization, clustering initialization, etc. [45–49]. In the conventional
DE algorithm, the population size (NP) with D dimension is initialized as follows:

mG
ij = Lj + rand(0, 1) ·

(
Uj − Lj

)
, G = 0, i ∈ [1, NP], j ∈ [1, D] , (1)

where Uj and Lj are the upper and lower bounds of the j-th variable, respectively, rand(0, 1)
generates a random number between [0, 1] according to a uniform distribution, and G
represents the generation number of the evolutionary search.

(2) Mutation

After the initialization, a mutant vector vG
i will be created for each target vector mG

i
according to the mutation strategy. The most widely used mutation strategies are listed as
follows [50,51],
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“DE/rand/1”:
vG

i = mG
r1 + F

(
mG

r2 −mG
r3

)
, (2)

“DE/rand/2”:

vG
i = mG

r1 + F
(

mG
r2 −mG

r3

)
+ F

(
mG

r4 −mG
r5

)
, (3)

“DE/best/1”:
vG

i = mG
best + F

(
mG

r1 −mG
r2

)
, (4)

“DE/best/2”:

vG
i = mG

best + F
(

mG
r1 −mG

r2

)
+ F

(
mG

r3 −mG
r4

)
, (5)

“DE/current-to-best/1”:

vG
i = mG

i + F
(

mG
best −mG

i

)
+ F

(
mG

r1 −mG
r2

)
, (6)

“DE/current-to-pbest/1”:

vG
i = mG

r1 + F
(

mG
pbest −mG

r1

)
+ F

(
mG

r2 −mG
r3

)
, (7)

where mG
best is the individual vector, which has the best fitness value at the current

generation. r1, r2, r3, r4, r5 were mutually different random integers between 1 and
NP. F is a scale factor within the range of (0, 1].

(3) Crossover

In DE, to obtain the trial vector uG
i by replacing certain variables of the target vector

mG
i with corresponding mutant vector vG

i , a crossover operation was needed. There were
two types of crossover schemes: Exponential crossover and binominal crossover [33]. In
the binominal crossover, the following formula is used to generate the trial vector,

uG
ij =

{
vG

ij , if rand(0, 1) ≤ CR or j = jrand
mG

ij , otherwise
, (8)

where CR ∈ [0, 1] is the crossover rate that controls which or how many components were
inherited from the mutant vector. jrand was a randomly selected integer in the range [1, D]
to ensure that one of the variables in the trial vector must come from the mutant vector.

(4) Selection

DE adopts a one-to-one selection method. The fitness value of the target and the trial
vectors determine which one will be selected into the population of the next generation.
The selection scheme is given by:

mG+1
i =

{
uG

i , if f
(
uG

i
)
≤ f

(
xG

i
)

mG
i , otherwise

, (9)

where f (·) is the fitness value of the target and the trial vectors.

2.2. Adaptive Adjustment of Control Parameters

In the conventional DE algorithm, F and CR are fixed values. Different problems
usually need to set different parameters to obtain optimal performance of the algorithm. To
avoid manually adjusting these parameters, it was an ideal strategy to adopt an adaptive
method to update F and CR based on successful experience continuously. Considering that
the improved DE algorithm shared the same architecture with JADE [31], in this part, a
detailed description of parameters adjustment will be instructed.
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Firstly, Fi ∈ (0, 1] is defined as,

Fi = randci(µF, 0.1), (10)

where randci(µF, 0.1) denotes the Cauchy distribution with location parameter µF and
scale parameter 0.1. If Fi ≤ 0, it was regenerated by the execution of Equation (11) until an
effective value was obtained; if Fi > 1, it was truncated to 1.0. The initial value of µF was
0.5. In the subsequent evolution process, it was updated according to the scale factor Fi fed
back from the successful individuals. At the end of each iteration, these successful Fi are
stored in the set SF, and µF is updated as follows,

µF = (1− c)µF + c ·meanL(SF), (11)

where the learning rate c is a positive constant in the range (0, 1); meanL(·) is the Lehmer
mean and calculated as follows,

meanL(SF) =
∑F∈SF

F2

∑F∈SF
F

. (12)

In addition, each individual in JADE has an independent crossover rate CRi in the
range (0, 1). Unlike Fi, the generation of CRi is controlled by the normal distribution,

CRi = randni(µCR, 0.1), (13)

where randni(µCR, 0.1) returns a random value with a normal distribution (µCR, 0.1). If
CRi < 0 or CRi > 1, it is truncated to 0 or 1. µCR is updated as follows [31],

µCR = (1− c)µCR + c ·meanA(SCR), (14)

where meanA(·) is the arithmetic mean; SCR is the set of successful CR values in the current
generation.

2.3. Improved Adaptive Differential Evolution Algorithm

The evolution algorithm has its advantages in solving non-smooth and non-differentiable
problems. However, the inversion of magnetic data requires that the restored model is
smooth and continuous in space. Therefore, it was necessary to improve the DE algorithm
suitable for the optimization of magnetic inversion.

2.3.1. Initialization

Generally, the global search algorithm does not depend on the population initializa-
tion. Unfortunately, if the random initialization was carried out according to Equation
(1), it will bring difficulties in determining the regularization coefficient. Therefore, the
population in this paper was initialized randomly in a small range according to Algorithm 1.

Algorithm 1 Population Initialization

01: For i = 1 to NP Do
02: For j = 1 to nele
03: m(i, j) = 1−3 · rand(0, 1)
04: End For
05: End For

2.3.2. Construction of the Smooth Matrix

There were many ways to establish smooth matrix S, such as moving average, Gaus-
sian smoothing, k-nearest smoothing, median smoothing, etc. [52–55]. In this paper, the
moving average method was adopted. For the model parameters mi,j, the adjacent ele-



Appl. Sci. 2021, 11, 1072 5 of 22

ments in space are shown in Figure 1. Set the weight of each adjacent point Ws,i,j, then the
smoothed ms, i,j is

ms, i,j =
∑1

l=−1 ∑1
m=−1 Ws,i−l,j−mmi−l,j−m

∑1
l=−1 ∑1

m=−1 Ws,i−l,j−m
. (15)
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In order to reuse the above formula, the coefficients corresponding to all elements
can be converted into sparse matrix S. The k-th row of matrix S is used to store the weight
information of neighborhood elements of k-th cell. Finally, the smooth matrix is,

S = Sp f , (16)

where p f is the time of smoothness, and the specific value should be determined by
trial-and-error. In general, p f = 1 or 2.

2.3.3. Mutation Strategy Based on the Smooth Search Direction

Due to the randomness of the nonlinear global search algorithm, the parameters
obtained by inversion are usually discontinuous. Šešum and Tošić assumed that combin-
ing the smoothing filters with a genetic algorithm can improve the quality of obtained
results [56]. However, Wu et al. believed that smoothing the individuals will reduce the
population diversity [57]. Then, another smoothing strategy was proposed, which only
smooths the model before the forward modeling calculation, and the smooth model did
not replace the parameters in the original population. In addition, some scholars used the
particle swarm optimization method to make the obtained solution closer to the designed
model by smoothing the velocity direction of the particle [10]. In DE, we smoothed the
individuals, which produced the differential direction. Let the smoothing matrix be S, then
the smooth vector ms,i of individual mi can be defined as,

ms,i = S ·mi. (17)

Obviously, smooth difference vectors can be constructed by selecting different smooth
vectors for all differential evolution mutation strategies. For simplicity, we only considered
the “current-to-pbest/1” mutation strategy of Equation (12). When the smooth vector of an
individual is used, it evolves into:

vG
i = mG

i + Fi

(
mG

pbest −mG
i

)
+ Fi

(
mG

s, r1 −mG
s, r2

)
, (18)

In the above formula, the difference vector formed by the pbest individual and the
target vector i does not use the smooth vector of the related individual because the convex
combination property of mG

pbest and mG
i will be destroyed by the smooth process. At the
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same time, the mutant vector formed entirely based on the smooth vector will reduce the
diversity of the population.

2.3.4. Improvement of the Selection Strategy

The disturbance direction of DE was generated by the smooth individual vector. When
the target vector mi was replaced by its trial vector ui, the smooth vector also needs to be
recalculated and stored, and Equation (14) is changed as,

mG+1
i =

{
uG

i , if f
(
uG

i
)
≤ f

(
mG

i
)

mG
i , otherwise

mG+1
s,i =

{
SuG

i , if f
(
uG

i
)
≤ f

(
mG

i
)

mG
s,i, otherwise . (19)

From Equation (19), the selection operation of the improved DE algorithm should
keep the trial vectors and store their corresponding smooth vectors.

2.3.5. Sorting Crossover Rate

The main function of sorting crossover rate was to prevent the rapid loss of excellent
individuals. It also plays a role in preventing the average value of the crossover rate from
rapidly decreasing. For more details, please refer to [58].

2.3.6. Other Related Adjustments

In this paper, NP = 100, µCR = 0.9, µF = 0.9, the maximum number of estimates
maxNFES = 1000× D, D was the number of the elements. Note that the µCR and µF
were inconsistent with those of the JADE algorithm. The existing study shows that the
separable problems required a small crossover probability [59], while the inseparable
problem required a larger crossover probability. Considering that the magnetic anomaly
field was the comprehensive reflection of the subspace magnetic sources, it indicated
that the objective function of magnetic data was inseparable. Therefore, it was more
appropriate to maintain a larger crossover probability. In addition, maintaining a larger µF
was helpful to improve the exploration of DE when using smooth vectors to generate the
differential vector.

2.4. Magnetic Anomaly Inversion
2.4.1. Forward modeling of Magnetic Anomaly

In this paper, the finite volume method (FVM) was used to synthesize the magnetic
anomaly data [60]. Let the forward modeling operator be F , then the relationship between
the observed data d and the model parameter m is defined as follows:

d = F (m). (20)

In the forward modeling process, the demagnetization effect was considered, although
this effect was negligible for the sources of weak susceptibility.

2.4.2. The Construction of the Inverse Problem

The objective function of lp norm magnetic anomaly inversion can be expressed as
follows,

min Φ(m) = Φd(m) + λΦm(m)
s.t. ma ≤ m ≤ mb,

(21)

λ is the regularization coefficient; Φd(m) is the data fitting objective function, which
is generally l2 norm; Φm(m) is the model objective function. In most inversion problems,
Φm(m) is generally l2 norm. Here, we consider the more general lp(1 ≤ p ≤ 2) norm.
ma and mb are the range of the model parameters. If there are D optimized parameters, the



Appl. Sci. 2021, 11, 1072 7 of 22

upper and lower bounds of the model parameters are set as ma = (ma,1, ma,2, · · · , ma,D)
T ,

mb = (mb,1, mb,2, · · · , mb,D)
T . The data fitting objective function can be defined as,

Φd(m) =

∣∣∣∣∣∣σd (dobs −F (m))||22∣∣∣∣∣∣σddobs||22
, (22)

where σd is the weighted matrix formed by the reciprocals of the noise in the observation
data. In the above formula, the data fitting objective function used normalization processing
to weaken the data errors’ influence on data fitting objective function [61]. Correspondingly,
we define the model objective function as,

Φm(m) = ∑ Wm,i|mi −m0,i|p, (23)

where Wm,i is the weight coefficient of element i, and used to store the prior information of
the model, such as depth weighting [6]; m0 is an initial model (the reference model or 0).
Combining Equations (22) and (23), the objective function of magnetic inversion can be
written as follows,

min Φ(m) =
||σd (dobs−F (m))||22∣∣∣∣∣∣σddobs ||22

+ λ ∑ Wm,i|mi −m0,i|p

s.t. ma ≤ m ≤ mb.
(24)

2.4.3. Adaptive Regularization Coefficient

The regularization coefficient λ controls the weight of the model objective function.
Since the model objective function was all non-negative, its value range was λ ∈ [0,+∞).
When λ = 0, the objective function only contains the data fitting term; when λ→ +∞ ,
the influence of the data fitting term can be ignored. Scholars proposed an adaptive
regularization method based on the average fitness of the population [62]. Some scholars
set the initial value of the regularization coefficient in a certain way at the beginning of the
iteration [63] and then decreased the initial value continuously until λ less than a certain
threshold. DE was a population-based search algorithm, which needs to combine the above
two methods to constrain the inversion process effectively. Therefore, a new adaptive
regularization coefficient scheme is proposed:

λG+1 =


q1λG i f ΦG

d, mean > ΦG−1
d, mean

q2λG elsei f ΦG
d, mean = ΦG−1

d, mean
λG otherwise

, (25)

where ΦG
d, mean is the average value of the data objective function of the Gth-generation in

the population; q1, q2 ∈ (0, 1); when ΦG
d, mean increases or does not change, it is necessary

to reduce the regularization coefficient λ to weaken the influence of the model constraint
term. The reason is that the EAs cannot ensure each model is updated. At the first iteration,
the regularization coefficient is defined as,

λ0 = 10
Φ0

d,mean

Φ0
m,mean

, (26)

where Φ0
m,mean is the average value of the model constraint term.

2.4.4. Construction of the Model Weight Vector Wm

(1) The depth weighting function
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There are many depth weighting methods, and the method proposed in [6] is more
commonly used. The depth weighting function can be expressed as,

Wz = (z + z0)
−β, (27)

where β is the attenuation index, for 2D magnetic inversion, β = 2 [10]; z0 is a constant,
which is related to the observation height of the measuring point; z is the depth of the
element’s center. When p-norm is considered, the weighting coefficient of element i can be
obtained by applying Equation (27):

Wz,i = (zi + z0)
− β

p , (28)

(2) Weighting of element area

The area weighting matrix is a diagonal sparse matrix formed by the area of the
element. For any element i, if the size of it is known to be ∆yi, ∆zi, then,

WV,i = ∆yi · ∆zi (29)

When the element size of the inversion space is uniform, the area of each element is
the same, which makes no sense to employ area weighting. However, when the inversion
element was non-uniform, an area weighting matrix was necessary.

In summary, we have considered two kinds of model weight information, the weight
coefficient of element i is,

Wm,i =
WV,iWz,i

∑ WV,iWz,i

Wm = [Wm,1, Wm,2, · · · , Wm,D]
T (30)

where Wm is the weight vector of the model. For example, the effect of depth weighting
was to suppress the shallow elements and avoid model concentration near the surface.

2.4.5. Implementation of the Inversion Algorithm

In the above, we have discussed the objective function, adaptive regularization coeffi-
cient, mutation strategy based on a smooth vector of individual, and control parameters of
adaptive DE. In this section, the adaptive DE algorithm for 2-D lp norm magnetic anomaly
inversion was systematically presented. The flowchart of the DE algorithm is shown in
Figure 2. Its main content includes the following parts:

(1) Load the observation data, and generate the inversion grid according to the inver-
sion area. Store the coefficient sparse matrix related to the control equation for the
forward modeling calculation. Create model weighted vectors and store them. The
geomagnetic parameters related to magnetic anomaly are known.

(2) Population initialization of DE: Given the population size and the initial µCR and µF,
and the population vector is initialized by Algorithm 1. Smooth the vectors of the
population and store them, and initialize the Regularization coefficient by Equation
(26).

(3) Mutation and crossover: The variation vector v is generated by Equation (18), and the
trial vector u is generated by Equation (8).

(4) Selection and update of DE control parameters: The smooth trial vector us is evaluated.
According to Equation (19), to determine whether to update the population m and the
individual vector in the population ms. Update µCR and µF according to Equations
(14) and (11).

(5) Termination condition: Judge whether the termination condition is satisfied. If it is
true, the current inversion result will be output; otherwise, turn to step (6).
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(6) Update the regularization coefficient. If the regularization coefficient changes, it is
necessary to update the objective function value of the population under the new
regularization coefficient and turn to step (3).
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Figure 2. Flowchart of the differential evolution (DE) algorithm for the inversion of magnetic data.

The pseudo-code of the inversion Algorithm 2 is as follows:

Algorithm 2 lp Norm Inversion Algorithm of Magnetic Anomaly Based on Improved DE

01: Data preprocessing. Read in the observation data, and generate the inversion grid and
forward modeling sparse matrix, and then generate the weight vector Wm of the model

02: G = 1; NFES = 0
03: Set NP = 100, µCR = 0.9, µF = 0.9, c = 0.1. The population initialization based on Algorithm 1:

m = (m0,1, · · · , m0,NP). Generate smooth population ms. Initialize the regularization
coefficient λ0, NFES = NFES + NP

04: While termination conditions are not satisfied do
05: G = G + 1
06: For i = 1 to NP do
07: CRG

i = randni(µCR, 0.1)
08: FG

i = randci(µF, 0.1)
09: End For
10: For i = 1 to NP do
11: Using the difference vector of smooth individuals, the mutation vector is generated according

to the mutation strategy in Equation (18)
12: According to Equation (8), the trial vector uG+1

i is generated
13: End For
14: Evaluate the trial vector uG+1

i
15: According to Equation (19), the new populations mG+1 and mG+1

s are formed.
16: Update µCR and µF by Equations (14) and (11)
17: The maximum number of estimates NFES = NFES + NP
18. End While
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3. Model Inversion and Discussion

This section focuses on the influence of the mutation strategy, norm value, and the
upper and lower bounds of magnetic parameters on the inversion results. For all theoretical
models, without specified explanation, the magnetic inclination I0 = 60

◦
, line direction

A0 = 0
◦
, geomagnetic field amplitude |B0| = 5× 104nT.

3.1. The Influence of Smoothness on Inversion Results

Two simple models were used to test the influence of smooth individual vectors on
the inversion results. Figure 3a is the cross-section through the x-axis of a 2-D magnetic
dyke model. The dyke was buried at a depth of 50 m and extended to 150 m. Figure 3b is
the cross-section through the x-axis of a 2-D magnetic dyke model at a dip angle of 135◦.
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Figure 3. The cross-section through the x-axis of the 2D models. (a) Model 1, (b) Model 2.

The norm p of the model objective function is 2, and only the positive constraint
(m ≥ 0 SI) is imposed on the model, without the upper limit of magnetic susceptibility.
The magnetic anomaly distribution of the model is shown in Figure 4.
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Figure 5 is the magnetic anomaly curve when the magnetic susceptibility χ was 0.01
SI. In order to ensure the accuracy of the simulation, the size of the forward model element
was 5 × 5 m. During inversion, too many mesh sections will aggravate the ill-posedness of
inversion. Therefore, the horizontal grid spacing was set as 10 m, and the grid spacing in
the depth direction was a sparse grid that increased proportionally, and Algorithm 2 was
used for inversion.

In order to compare the conventional adaptive differential evolution and the improved
one, the smooth and non-smooth inversion results are shown in Figure 6. It is not difficult
to observe that the proposed algorithm was capable of obtaining better results than the



Appl. Sci. 2021, 11, 1072 11 of 22

original algorithm. Figure 6 shows that the continuity of the model was poor, the inversion
results were divergent, and the background noise was strong without considering the
smoothness. When p f = 2, the recovery of the model was better than p f = 1. It can also be
found from the above two figures that the magnetic parameters recovered by the inversion
were 0.01 SI lower than the theoretical values without adding upper bound constraint. The
main reason for this phenomenon is that l2 norm inversion tends to obtain the smoothest
model. For the abnormal body with a simple shape, the result can roughly reflect the dip
information of the geologies. However, when the shape of the abnormal body tends to be
complex, it can seldom depict the edge information of the model. In the following study,
we set p f = 2 to smooth the individuals in the population by default.
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Figure 6. The smooth and non-smooth inversion results of Model 1 and Model 2. (a) The smooth inversion of Model 1
(p f = 1), (b) the smooth inversion of Model 1 (p f = 2), (c) the non-smooth inversion of Model 1, (d) the smooth inversion of
Model 2 (p f = 1), (e) the smooth inversion of Model 2 (p f = 2), (f) the non-smooth inversion of Model 2.
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3.2. The Influence of P in Model Objective Function on Inversion Results

Figure 7 is the cross-section through the x-axis composed of two 2-D magnetic
dyke models.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 21 
 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 6. The smooth and non-smooth inversion results of Model 1 and Model 2. (a) The smooth 
inversion of Model 1 ( = 1), (b) the smooth inversion of Model 1 ( = 2), (c) the non-smooth 
inversion of Model 1, (d) the smooth inversion of Model 2 ( = 1), (e) the smooth inversion of 
Model 2 ( = 2), (f) the non-smooth inversion of Model 2. 

3.2. The Influence of P in Model Objective Function on Inversion Results 
Figure 7 is the cross-section through the x-axis composed of two 2-D magnetic dyke 

models. 

 
Figure 7. The cross-section through the x-axis of the model. 

0 100 200

y/m

0

100

200

300

z/
m

Figure 7. The cross-section through the x-axis of the model.

Set the magnetic susceptibility χ = 0.01 SI and 0.02 SI. When p = 1.0, 1.1, 1.3, 1.5, 1.7, 2,
we used Algorithm 2 to perform smooth inversion for Model 3 (Figure 8). The inversion
results are shown in Figure 9. From the inversion results, we can observe that when p was
large, the restored magnetic susceptibility was lower than the real value. The smaller p
was, the closer the inversion result was to the real value. However, on the other hand,
the larger p was, the larger the range of abnormal bodies distribution will be compared
with the real model. Moreover, there will be interference between different anomalies to
produce false anomalies. Generally speaking, p ∈ [1, 1.5] was a suitable choice without the
constraint of the upper bound of magnetic susceptibility. In Figure 10, due to the setting of
the termination conditions, the field values obtained by inversion with each p-norm can fit
the observed data. In summary, to balance the smoothness of the model and maintain the
edge of the restored model, we set p = 1.2 in the subsequent work.
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Figure 10. The data reconstruction results of different p values. (a) p = 1, (b) p = 1.1, (c) p = 1.3, (d) p = 1.5, (e) p = 1.7, (f)
p = 2.

3.3. Influence of Noise on the Inversion Results

In the objective function, noise suppression was realized by the data misfit term. In
most cases, the norm value of the data objective function q equals 2. We add Gaussian
white noise with the mean value of 0 and the standard deviation of the percentage of
the abnormal amplitude. The forward modeling data of Model 3 are superimposed with
different degrees of noise, and the data after adding noise is shown in Figure 11. The set
maximum number of iterations is 100D. The inversion results are shown in Figure 12. With
the increase of noise, the abnormal shape deviates from the real model, and false anomalies
appear in the deep. In Figure 13, the observed data and predicted inversion results with
different noises are compared. The inversion results can reflect the original shape of the
observed data.
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4. The Inversion of Real Data

The synthetic data constructed in Section 3 refers to the actual geological data and
previous results, which are in line with the actual situation. From the synthetic data
tests, the inversion results of synthetic models show that this method can obtain smooth
solutions and describe the distribution of anomalous bodies well. The previous sections
have discussed the influence of p and smoothness on the inversion results. It is concluded
that q = 2 and p = 1.2 are suitable for the lp norm smooth inversion of real data. However,
the influence of the upper and lower bound constraints on the inversion results lacks
discussion. Because some scholars have discussed in detail the influence of the parameters
range on the results [43]. The inversion based on DE also has similar effects. The smaller
the upper bound of the magnetic parameters, the larger the boundary of the recovered
model, and on the contrary, the more concentrated they are. When dealing with real data,
the upper and lower bound constraints need to be concerned.

The Zaohuoxi study area is located at the junction of the Qimantag suture zone and
the North Kunlun magma arc zone. Most of the area is covered by Quaternary sediments
with an average thickness of more than 60 m. The mineral resources in the area were
mainly contact skarn-type iron polymetallic deposits. According to the work in [64], the
highest magnetic susceptibility of the mineral in this region was magnetite with an average
of 0.37 SI. At the same time, there was strong remanence with a maximum of 33.4 A/m in
the study area. The magnetic parameters of minerals and rocks in the study area are shown
in Table 1. The geomagnetic inclination I0 and the geomagnetic field amplitude |B0| were
53.73◦ and 53,739 nT, respectively.
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Table 1. Magnetic parameters of minerals and rocks in the Zaohuoxi research area [64].

Rock Lithology Number of
Specimens

Average Susceptibilityχ
(10−5 SI)

Remanent Magnetism Jr
(10−3 A/m)

Medium strong
magnetism

magnetite ore 9 3.73 × 104 3.34 × 104

chalcopyrite magnetite ore 4 8.97 × 103 2.89 × 103

magnetized skarn 5 2.07 × 103 8.32 × 102

Medium
magnetism

granodiorite 4 5.41 × 102 1.70 × 102

biotite granodiorite 9 4.02 × 102 3.52 × 102

alteration granodiorite 9 2.63 × 102 1.14 × 102

Weak magnetism

marble 14 1.85 × 102 1.22 × 102

alteration monzogranite 31 1.44 × 102 1.27 × 102

biotite plagioclase gneiss 11 2.39 × 102 1.16 × 102

quartz-diorite 16 1.98 × 102 1.29 × 102

The drilling results show that there was magnetite with a small distribution range in
line L, which is shown in Figure 14. The magnetic anomaly of line L is shown in Figure 15.
The magnetic anomaly in the central and southern part of the study area was regular in
shape and distributed in a north-west-west (NWW) band. The anomaly was positive in the
south and negative in the north.
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The magnetic anomaly of line L has a sharp shape (in Figure 15), high intensity (the
peak value up to 1980 nT), and a steep gradient. It is the strongest magnetic anomaly zone
in the region. Ou et al. [64] constructed the underground distribution of the area based on
the drilling and geology information, as shown in Figure 16.
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In Figure 16, the magnetite with a small distribution range, buried to a depth about
100 m, x = 450 m. The high magnetic anomaly corresponding to line L in this area was
mainly caused by magnetite with magnetic susceptibility χ = 0.37 SI. In the following
inversion, the upper bounds of susceptibility were set as 0.37, 0.74, and 1.21 SI, respectively.
The inversion results are shown in Figure 17. From Figure 17, the inverse position of the
magnetite was buried at about 100 m, and the horizontal position was also consistent with
the information in the drill hole. It was shown that the inversion result of this method
was reliable. The inversion results with the upper bound of magnetic susceptibility can
highlight the distribution of abnormal bodies better. When the upper bound of magnetic
susceptibility was large, the distribution of the abnormal bodies was reduced. At the same
time, the larger the upper limit of magnetic susceptibility, the dip direction of the magnetic
body will be affected by oblique magnetization and deviate to the magnetization direction.

To sum up, the constrained smooth inversion of magnetic anomaly data in the study
area was carried out. The results show that the constrained inversion can better reveal the
distribution of the magnetic bodies. However, this kind of constraint was still rough. A
more reasonable constraint was needed by using the magnetic susceptibility of different
depths and different lithologies or according to the known and reliable reference model.
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5. Conclusions

In this paper, an improved DE algorithm is proposed to solve the lp norm inversion
of 2D magnetic data. An adaptive regularization coefficient updating strategy for DE is
proposed, and the mutation strategy of DE is improved by smoothing individual vectors.
The proposed algorithm can obtain a smoother solution. The influence of smoothness
and p in the model constraint term is analyzed. When there is more reliable constraint
information, the smaller p can be used to highlight the model contour. As validated by
synthetic models, this method can obtain a smoother solution and delineates abnormal
bodies’ distribution. Finally, the method is used in real data in the Zaohuoxi area, China,
and the inversion result is consistent with the drilling results.

However, the search efficiency of the DE algorithm is not compared with other algo-
rithms, and it is difficult to compare the DE algorithm with other techniques like gradient-
based algorithms and particle swarm optimization algorithms by applying a fair criterion.
This work will be completed in future research. At the same time, the 2D of magnetic
inversion is based on the assumption that the strike of the anomaly body is perpendicular
to the inversion profile with infinite extension. In practical problems, this assumption will
restrict the application of 2D inversion. Therefore, it is necessary to extend the inversion
method based on the DE algorithm to a three-dimensional case.
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