贵州烂泥沟金矿广域电磁法低阻异常带 FO 成因: 地质、地球化学特征制约

晏兵¹² 谢卓君^{1*} ,谭亲平¹ ,肖景丹¹² ,郑禄璟³ ,鲁裕民³ 夏勇¹ ,王泽鹏⁴

1.中国科学院 地球化学研究所 矿床地球化学国家重点实验室 ,贵阳 550081; 2.中国科学院大学 ,北京 100049; 3.贵州锦丰矿业有限公司 ,贵州 黔西南 562204; 4.贵州省地质矿产勘查开发局 105 地质大队 ,贵阳 550018

摘 要: 烂泥沟金矿是贵州省内代表性的"断控型"超大型卡林型金矿床。随着矿山的开采,资源量逐渐减少,开展深部和外 围找矿迫在眉睫。前人通过广域电磁法测量发现了贯穿矿区西部的低阻异常带(FO),并进行了钻探验证。本次研究对验证 孔开展了岩相学、电感耦合等离子质谱仪(ICP-MS)和C、O同位素分析,以期探讨FO成因及其与金成矿的相关性。结果表明, FO位于上二叠统吴家坪组灰岩中的破碎带,灰岩角砾棱角明显,局部见红褐色铁染现象,角砾主要被方解石胶结。灰岩角砾中 未见与成矿相关矿物及元素组合。方解石胶结物显示轻稀土富集、Eu负异常,这与成矿相关的方解石(中稀土富集和 Eu 正异 常)显著不同。本次研究认为,FO 破碎带无成矿流体流经迹象,与成矿作用关系不大,推测为岩溶崩塌角砾岩,不宜作为深部找 矿的重点关注对象,找矿应重点围绕吴家坪组灰岩之上的地层/构造空间开展,同时关注中稀土富集型方解石脉的分布。 关键词:烂泥沟金矿床;广域电磁法;C、O 同位素;方解石;岩溶角砾岩 中图分类号:P618.5 文章编号:1007-2802(2023)03-0557-17 doi:10.19658/j.issn.1007-2802.2023.42.010

Genesis of the wide-field electromagnetic low-resistivity anomalous zone F0 in the Lannigou gold deposit , Guizhou Province: constraints from geological and geochemical characteristics

YAN Bing^{1,2} ,XIE Zhuo-jun^{1,*} ,TAN Qin-ping¹ ,XIAO Jing-dan^{1,2} ZHENG Lu-jing³ ,LU Yu-min³ , XIA Yong¹ ,WANG Ze-peng⁴

1. State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences Guiyang 550081, China;

2. University of Chinese Academy of Sciences Beijing 100049, China;

3. Guizhou Jinfeng Mining Limited , Qianxinan , Guizhou 562204 , China;

4. Geological Party 105, Guizhou Bureau of Geology and Mineral Exploration & Development Guiyang 550018, China

Abstract: The Lannigou gold (Au) deposit is a typical fault-controlled super-large Carlin-type Au deposit in Guizhou Province. The amount of Au resource of the deposit decreases gradually with the mining. To increase its resource , it is urgent to conduct exploration in the deep and peripheral area of the deposit. Jinfeng Mining Limited conducted the wide-field electromagnetic measurement , and discovered a low resistivity anomaly zone (F0 anomaly) in the western part of the mine , and drilled some holes for exploring and validating the F0 anomaly. In this study , in order to investigate the genesis and relevance to Au mineralization of the F0 anomaly , we have carried out petrography , inductively coupled plasma-mass spectrometry (ICP-MS) trace element analysis , and carbon and oxygen (C-O) isotope analysis of drill core samples. Results show that the F0 anomaly is corresponded to a fracture zone which is located in the limestone of Upper Permian Wujiaping Formation. There is irregular limestone breccia consisting of obviously angular limestone fragments (with reddish brown iron staining locally) and calcite cement in the F0 anomaly. No ore-related minerals or element association of the Carlin-type gold mineralization has been discovered in the limestone breccia. The calcite cement is characterized with LREE-enriched pattern and negative Eu anomaly. It is significantly different from the calcite (with a MREE-enriched

收稿编号: 2022-199 2022-10-19 收到 2022-11-11 改回

基金项目:国家自然科学基金资助项目(42073044,U1812402);贵州省科技计划项目(黔科合基础[2020]1Z034 黔科合支撑[2021]一般403)

第一作者简介: 晏兵(1996—),男,硕士研究生,研究方向:资源与环境. E-mail: yanbing@ mail.gyig.ac.cn.

^{*} 通信作者简介: 谢卓君(1987—), 男, 博士, 副研究员, 研究方向: 卡林型金矿成矿作用. E-mail: xiezhuojun@ mail.gyig.ac.cn.

pattern and positive Eu anomaly) related to the Au mineralization. In summary , the fracture zone (corresponded to the F0 anomaly) , in which there is no signs of activity of the ore-forming fluid , has no relationship with the gold mineralization of the deposit. We suggest that the F0 anomaly is corresponded to a fracture zone of the Karst collapse breccia. Future mineral exploration should focus on the strata and structure above the Wujiaping limestone rather than the F0 anomaly. Additionally , future exploration should pay attention to the distribution of MREE-enriched calcite.

Key words: Lannigou gold deposit; Wide-field electromagnetic method; C-O isotopes; calcite; Karst breccia

0 引言

金(Au)作为国家战略资源,在工业、经济等领 域均非常重要(徐荟竹等,2013;魏春霞,2018)。受 勘查技术和经费等限制,早年发现的金矿床勘查深 度大都较浅,对其深部成矿规律的认识不够。而已 有矿山的基础设施齐全,地质资料完善,勘查和研 究程度都较高,能为深部及外围找矿提供重要支撑 (姚磊等,2018;卢长建,2021)。加强老矿山深部和 外围找矿研究,能有效把握深部成矿规律,发现深 部和外围潜在资源,延长矿山开采年限,同时为矿 山的发展决策提供有力依据。

烂泥沟金矿床是右江盆地第二大卡林型金矿 床(仅次于水银洞金矿),其资源量超过109 t(Su et al. 2018)。矿山自2007年投产以来,年产量约4 t, 累计产金超过60 t 按当前年产量计算,剩余资源量 难以维持矿山生产。因此,在矿山深部和外围找矿 对矿山的持续发展是一项迫在眉睫的任务。

烂泥沟金矿床是典型的受断层控制矿床(Chen et al. 2011; Zheng et al. 2022)。目前已发现的主要 矿体均主要受断层 F_2 、 F_3 控制,其中约 80%的资源 量位于 F_3 断层内。矿体纵向延伸超过 1000 m,且 未见封闭(陈懋弘等,2007a; Xie et al. 2018b)。厘 清矿区的构造格架、建立导矿构造和容矿构造之间 的空间联系,查明流体运移通道是烂泥沟金矿在深 部和外围找矿的重点。

2019—2021 年,锦丰公司对矿区及外围开展了 EH4(电磁成像系统)连续电导率测量和广域电磁 法测量,以期查明矿区深部(0~3000 m)构造格架。 通过广域电磁法测量发现在矿区西侧存在一条低 阻异常带(F0),呈南北走向,长约2.7 km,宽度50~ 120 m。该低阻异常带倾角近直立,无明显地表出 露,地球物理剖面显示低阻带深部切穿石炭系地 层,推测其可能为深大断裂,有可能是成矿流体的 运移通道或是金成矿的容矿空间。

锦丰公司针对广域电磁法低阻异常带(FO)设 计了多个验证孔,本次研究选取其中的ZKF001(孔 深1050.6 m)、ZKF01-1(孔深1051.9 m)和ZKF0J01(孔深 586 m) 3 个孔,对其进行详细的野外观察, 以及相关样品的地质、地球化学分析,以期揭示广 域电磁法低阻异常带(F0)的成因,并评价其对深部 和外围找矿的意义。

1 区域地质背景

右江盆地受多条边界断裂控制,整体呈菱形。 其西南以红河剪切带为界,紧邻思茅地块;西北以 弥勒-师宗断裂带为界,紧邻扬子地块;东北方向以 紫云-亚都断裂带为界,与扬子陆块为邻;东南以凭 祥-南宁断裂带为边界,与华夏地块相邻(图1)。右 江盆地的演化可分为:早泥盆世-晚泥盆世裂谷盆 地阶段,早石炭世-早三叠世被动大陆边缘阶段,中 三叠世前陆盆地阶段,早侏罗世燕山运动阶段(杜 远生等 2013; Xie et al. 2018b; Su et al. 2018)。

右江盆地中发育有泥盆纪、石炭纪、二叠纪和 三叠纪地层,主要出露三叠纪地层。晚古生代-早 三叠世的沉积格局以台地相为主,形成台-沟-槽体 系(刘建中等,2022)。中三叠世以后,主要形成了 台地和盆地两个沉积体系,台地相位于右江盆地西 北部,以泥晶灰岩、鲕粒灰岩等碳酸盐岩为主;盆地 相位于东南部,以碎屑岩、硅质岩为主(杜远生等, 2009,2013;刘建中等,2022)。右江盆地内岩浆岩活 动较弱,主要为基性岩,含少量中酸性岩、超基性岩 等(刘寅等,2015;谢卓君等,2019)。岩浆岩多分布 在断裂附近,如个旧花岗岩紧邻红河断裂带,大明山 花岗岩位于凭祥-南宁断裂附近,部分基性岩浆活动 可能与峨眉地幔柱喷溢有关(周余国等,2009)。

2 矿床地质特征

烂泥沟金矿床位于北北东向赖子山背斜、北 西向板昌逆冲断层和册亨东西向构造带组成的构 造变形区北部顶点处(陈懋弘等,2006)。矿区内 揭露地层主要为中二叠统茅口组、上二叠统吴家 坪组和中三叠统许满组、尼罗组和边阳组。茅口 组以灰、灰白色厚层或块状灰岩为主;吴家坪组以 厚层状、块状灰岩、生物灰岩和礁灰岩为主,含少 量黏土岩;许满组为砂岩夹黏土岩或两者互层(毛

修改自 Chen 等(2015)和 Xie 等(2018a)。年龄数据引自 Liu 等(2010), Cheng 等(2010)和陈懋弘等(2014) 图 1 右江盆地区域地质图

铁等,2014),底部为薄层状灰岩,顶部则是较厚层的细砂岩;尼罗组以薄层-中厚层黏土岩、泥岩为 主,中部夹厚层瘤状灰岩;边阳组以细砂岩、中砂 岩和粉砂岩为主,局部与黏土岩呈互层。其中许 满组和边阳组是主要的赋矿地层。矿区内未见岩 浆活动,距离矿区最近的岩浆岩仅零星分布于罗 甸-望谟和贞丰县白层地区(陈懋弘等,2007a; 宋 威方等,2021)。

烂泥沟金矿床主要受断裂控制(Chen et al., 2011),矿区主体构造大致呈南北向和北东向展布 (图2)。矿区西侧为台地相厚层碳酸盐岩,产状 稳定;东侧为盆地相碎屑岩,构造变形强。在台地 相和盆地相交界处,发育有大型断层构造,如 F_1 、 F_7 等。主矿体受 F_2 和 F_3 控制,二者相交处是金 矿最富集区域。 F_2 走向北东,倾向南东向,倾角 $60^\circ ~ 85^\circ$,在地表出现局部反倾,断层破碎带最宽 处十余米; F_3 走向北西,倾向北东向,倾角 $60^\circ ~$ 85°,在 F_2 附近出现局部反倾,断层破碎带宽度多 数在 5~15 m 岩石变形强烈(陈懋弘等 ,2007a;毛 铁等 ,2014)。

矿体多赋存于边阳组和许满组上段的碎屑岩 中 其中薄至中厚层钙质细砂岩和泥岩含矿性高, 而孔隙度较小的黏土岩、单一厚层状砂岩的含矿性 则较差(陈懋弘等,2009;王旭阳等,2014)。与金成 矿相关的蚀变主要有成矿期的交代蚀变和晚期的 张性充填。交代蚀变主要包括硅化、黄铁矿化、毒 砂化、白云石化和黏土化、其中硅化、黄铁矿化和黏 土化最为常见(陈懋弘等,2007b;韩雪,2012; Xie et al. 2018b)。含砷黄铁矿为主要的载金矿物,与毒 砂呈浸染状分布,常具有明显的环带结构(陈懋弘 等 2009; 谢卓君等 ,2019)。硅化是最普遍的热液 蚀变 在成矿各阶段都有发育,成矿主阶段主要形 成他形细粒石英 成矿晚期则主要形成石英脉充填 在周围裂隙中。此外,成矿晚期还形成辉锑矿、方 解石、雄黄、辰砂、雌黄等脉状充填矿物(韩雪, 2012; Xie et al. 2018b) 。

Fig. 2 Geological map of the Lannigou gold deposit showing the location of the wide field electromagnetic

low-resistivity anomalous zone (F0)

3 广域电磁法测量结果和数据处理

锦丰公司委托湖南继善高科技有限公司开展 广域电磁法测量(蒋永芳等,2020),主要是利用岩 矿石电性特征来分析构造形态和展布情况。首 先,测量烂泥沟金矿区不同岩性的电阻率:三叠纪 碎屑岩地层平均电阻率低于1000 Ω•m,二叠纪灰 岩地层电阻率为5800~9200 Ω•m,其中下三叠统 罗楼组灰岩、上二叠统大厂层地层电阻率为1000 ~3500 Ω•m。烂泥沟金矿床岩矿石物性条件能满 足测量需要。然后,通过野外布设场源、测点等采 集数据。本次测量总计布设6条测线,其中GY01 测线长4.1 km,点距50 m,方位角91°。当干扰较 大时,增加叠加观测的次数;同时在视电阻率曲线 的关键部位,增加观测次数,确保数据精度。 将采集的数据进行预处理、定性分析和反演解 释。本次采用"地球物理资料综合处理解释一体化 系统"进行数据处理和解释。该系统以人机交互和 可视化数据处理、人机交互和可视化反演成像、人 机交互和可视化综合正反演解释和地质解释为主 要手段,可实现资料综合处理、成像、地球物理解释 和地质解释一体化。最终的综合解译结果表明,在 剖面西侧的电阻率明显低于围岩,存在一条带状分 布的低阻异常(图 3),推测可能是大断裂(蒋永芳 等 2020)。

4 样品采集与分析方法

本次研究采集验证孔和矿体样品共 108 个,其 中验证孔样品 84 个,采自 ZKF001、ZKF01-1 钻孔, 按照岩性变化、破碎带重点取样。矿体样品 24 个,

图 3 广域电磁法低阻异常带(FO) 剖面解译图

采自 31 号和 37 号矿体。

4.1 岩相学分析

对样品进行清洗、观察并描述,然后对重点区 制成厚约 50 μm 的光片,先采用徕卡 DM4P 显微镜 进行观察和整个片子面扫描,了解样品的结构、构 造和矿物组成。然后利用扫描电镜(SEM)进一步 确定矿物,并观察其微观结构。SEM 分析在中国科 学院地球化学研究所矿床地球化学国家重点实验 室完成。分析仪器为配备了 EDAX TEAM Apollo XL 能谱仪的 JSM-7800F 型热场发射扫描电子显微镜, 能快速准确地进行样品中元素半定量分析及微观 形貌观察。

4.2 微量元素分析

微量元素分析在中国科学院地球化学研究所 矿床地球化学国家重点实验室完成。将样品破碎 挑选 纯度达到 99%以上 玛瑙钵研磨至 200 目。取 50 mg 样品置于聚四氟乙烯坩埚中,加入 1 mL HF 和 1 mol HNO₃; 然后将坩埚放入钢套中密封,于 185 ℃烘箱中加热 35 h 进行消解; 冷却后取出坩 埚,置于低温电热板上蒸干,加入1 mL HNO₃ 继续 蒸干,接着在坩埚中加入 200 ng 的 Rh 内标溶液、 2 mL HNO₃、2 mL 去离子水,重新置于钢套中,在 140 ℃中继续加热5 h。冷却后取出坩埚,摇匀,取 0.4 mL 溶液至离心管中定容至10 mL,最后进行电 感耦合等离子质谱仪(ICP-MS)测定。具体方法参 考 Qi 等(2000)。

部分样品的 Au、Hg、As、Sb 和 Tl 元素检测由澳 实分析检测(广州)有限公司完成。Au 采用火试法-等离子质谱定量法和火试称重法分析,检测限分别 为 0.001×10⁻⁶~10×10⁻⁶和 0.05×10⁻⁶~10000×10⁻⁶。 Hg、As、Sb 和 Tl 采用酸消解-等离子光谱/质谱定量 分析,检测限分别为 0.01×10⁻⁶~100×10⁻⁶、0.2× 10⁻⁶~9000×10⁻⁶、0.05×10⁻⁶~900×10⁻⁶和0.02×10⁻⁶ ~1000×10⁻⁶。检测结果见表 1。

4.3 C、O 同位素分析

碳酸盐矿物的 C、O 同位素分析在中国科学院 地球化学研究所矿床地球化学国家重点实验室完成。将样品破碎挑选,于玛瑙钵研磨至 200 目 称重

			e		•	
验证孔	钻孔深度/m	$Au/(\times 10^{-6})$	$As/(\times 10^{-6})$	$Sb/(\times 10^{-6})$	$Hg/(\times 10^{-6})$	$Tl/(\times 10^{-6})$
	13	0.073	229.00	2.42	1.96	0.80
	30	15.50	830.00	29.80	9.37	0.81
	49	0.021	60.00	1.73	2.14	0.94
	155	0.014	7.40	1.23	0.27	0.88
	226	0.003	11.50	0.43	0.46	0.24
ZKF001	328	0.008	15.40	0.71	1.50	0. 22
2111 001	518	0.004	1.50	0.23	0.03	< 0. 02
	641	0.013	4.60	15.20	0. 23	0.14
	848	0.005	1.40	0.29	0.05	<0.02
	883	0.005	3.10	0.31	0.08	0.04
	910	0.015	24.30	0.66	0.41	0.07
	1004	0.003	1.90	<0.05	0.01	<0.02
	6	0.003	21.70	0.80	0.56	0.38
	49	0.008	29.70	8.46	1.43	0.10
	91	0.004	2.40	0.59	0.03	<0.02
	143	0.003	2.30	0.15	0.08	<0.02
	184	0.021	1.90	0.20	0.13	<0.02
	202	0.005	1.50	<0.05	0.06	<0.02
	264	0.003	1.40	0.05	0.02	<0.02
	296	0.010	1.70	0.19	0.37	0.03
	301	0.011	1.40	<0.05	0.13	<0.02
	315	0.068	9.20	1.00	1.28	0.54
	326	0.063	13.00	1.72	0.18	1.23
ZKF01-I	355	0.006	4.00	7.47	0.29	0.03
	370	0.005	1.70	0.11	0.01	0.02
	405	0.004	1.60	0.12	0.08	0.02
	437	0.004	2.40	0.23	0.03	0.03
	564	0.004	2.30	0.26	0.03	0.11
	653	0.002	1.30	<0.05	< 0. 01	0.03
	760	0.003	1.20	0.12	0.01	<0.02
	828	0.003	134.50	1.23	0.18	0.08
	897	0.003	2.60	1.78	0.02	<0.02
	964	0.003	2.30	0.08	0.04	<0.02
	1014	0.003	2.20	2.40	0.01	0.02

表1 成矿元素含量随钻孔深度变化

Table 1 The content of the ore-forming elements varies with drill hole depth

注:低于检测限的数据表示为"<该元素的检测限"。

0.7 mg 放入自动采样系统中并用高纯 He 清洗,使 用 100%磷酸恒温溶解 2 h,在气体稳定同位素比值 质谱仪(MAT253)上测试 精度为±0.2‰。

5 分析测试结果

5.1 岩心、手标本岩相学特征及验证孔元素变化

验证孔 ZKF001 上部(7.2~153.4 m) 为边阳组 砂岩、许满组 4-4 段细砂岩,中上部(153.4~321.2 m) 为许满组 4-3 段黏土岩,中、下部(321.2~1050.6 m) 为吴家坪组和茅口组灰岩(图 4b)。广域电磁法 低阻异常推测的 F0 位置为破碎带,位于吴家坪组 内 其视宽度约为 100 m 距离地表 542~641 m。破 碎带主要为方解石胶结灰岩角砾,角砾磨圆度差, 多呈棱角明显的多边形(图 4c~4f),胶结物中以方 解石为主,含少量白云石和石英,灰岩角砾主要由 方解石和少量白云石、石英组成(图 4g 4h)。

验证孔 ZKF01-1,其顶部(0~22.1 m)为坡积 物 在 22.1~32.3 m 处,为许满组黏土岩;上部 (32.3~320.5 m) 以吴家坪组灰岩为主,吴家坪组和 茅口组之间(320.5~328.7 m) 有一段约8 m 厚的大 厂层凝灰岩;下部(328.71~1051.9 m) 为茅口组、栖 霞组灰岩(图5b)。破碎带(F0) 位于吴家坪组灰岩 内,其视宽度约40 m,距地表364~304 m。破碎带 主要为方解石胶结灰岩角砾,角砾磨圆度差 (图5e~5f),角砾组成矿物主要为方解石和少量白 云石(图5g),偶见少量黄铁矿,黄铁矿未见环带结 构(图5h)。

从 ZKF001 的微量元素变化图(图 4a)可以看 出 'Au、As、Sb、Hg、Tl 的变化具有一致性 '仅在 30 m 处(许满组) Au 含量超过 10×10⁻⁶ 'As 含量超过了 800×10⁻⁶。其他样品 Au 含量普遍低于 0.1×10⁻⁶ , As 含量低于 50×10⁻⁶。在 ZKF01-1 的微量元素变化 图中(图 5a) 'Au 含量普遍低于 0.01×10⁻⁶。但在大 厂层处 'Au、As、Sb、Hg、Tl 含量明显增加 'Au 含量为 0.01×10⁻⁶~0.1×10⁻⁶ 'As 含量为 1×10⁻⁶~20×10⁻⁶ , 最高值可达 200×10⁻⁶(表 1)。

(a) 卡林元素随深度变化图 ,Au、As、Sb、Hg、Tl 具有协同变化特征 ,在地表相对富集 ,Au 含量普遍在 0.01×10⁻⁶左右;
 (b) 钻孔柱状图; (c) 岩心破碎带照片; (d~f) 破碎带手标本 ,方解石胶结灰岩角砾 ,角砾棱边平直; (g,h) 破碎带 SEM 背散射照片 图 4 ZKF001 元素变化图(a)、钻孔柱状图(b) 和破碎带特征照片(c~h)

Fig. 4 The trace element variations of core samples (a) and stratigraphic column (b) of the drill hole ZKF001 , and photos showing characteristics of core samples from the fracture zone ($c\sim h)$

Fig. 5 The trace element variations of core sample (a) and stratigraphic column (b) of the drill hole ZKF01–1 , and photos showing characteristics of core samples from the fracture zone ($c\sim h)$

图 6 为 37、31 号矿体中的矿石样品。矿石中常 见雄黄(图 6a)、方解石脉(图 6b),以及辰砂、辉锑 矿和石英(图 6c)。镜下可见矿石中含大量载金黄 铁矿,黄铁矿常具有环带结构(图 6e)。与黄铁矿密 切共生的矿物有石英、伊利石和(铁)-白云石(图 $6d_{5}6f$)。但破碎带中的角砾及赋矿围岩中均未见上 述蚀变矿物组合,且不含辰砂、辉锑矿等成矿晚期 矿物(图 $4g_{5}4h_{5}g_{5}5h$)。

(a) 37 号矿体中的矿石,含雄黄;(b) 矿石中含方解石脉;(c) 31 号矿体中的矿石,含辉锑矿、辰砂和石英脉;(d) 扫描电镜背散射照片 展示矿石中的矿物组合:石英、伊利石、(铁)白云石、黄铁矿、方解石;(e) 扫描电镜背散射照片展示成矿期黄铁矿具有环带结构; (f) 扫描电镜背散射照片展示脉状充填的辉锑矿

图 6 烂泥沟金矿矿石样品特征

Fig. 6 Characteristics of ores from the Lannigou gold deposit

5.2 稀土元素组成及配分模式

本次研究以验证孔 ZKF001、ZKF01-1 全岩样品 和方解石,以及矿石全岩样品和与成矿相关方解石 样品进行对比研究。分析测试结果见表 2。

5.2.1 全岩样品稀土元素特征 表 2 显示,验证孔 ZKF001 中破碎带中全岩样品的稀土元素总量为 15.19×10⁻⁶~56.31×10⁻⁶,均值为 24.35×10⁻⁶; La_N / Yb_N为 4.68~9.55,配分曲线为较缓的右倾型(图 7a); δ Eu、 δ Ce 较为稳定,表现出明显的负异常。2 个非破碎带岩石样品的稀土总量分别为 169.89× 10⁻⁶和 9.98×10⁻⁶; La_N /Yb_N 值分别为 7.35 和 8.72, 配分曲线均呈较缓的右倾型; 非破碎带稀土元素的 δ Eu 值分别为 0.65 和 0.61 δ Ce 值分别为 0.93 和 0.2 ,Eu、Ce 均保持一定的负异常特征。

验证孔 ZKF01-1 破碎带全岩样品的总稀土含 量较低,平均值为9.04×10⁻⁶; La_N/Yb_N为4.26~ 11.13 配分曲线为右倾型(图7b); δEu为0.62~ 0.68 均值为0.64,有一定的Eu负异常; δCe为 0.27~0.4 均值为0.36 负异常。

矿石全岩的稀土元素总量较高,为92.86×10⁻⁶ ~390.56×10⁻⁶,均值为199.56×10⁻⁶; La_N/Yb_N值为4.26~16.05,均值为10.11 配分曲线呈较为明显的右倾(图8); δ Eu为0.58~0.78,均值为0.67,具一

定的负异常; δCe 为 0.74~0.98,均值为 0.90,负异 常不明显。

5.2.2 方解石样品稀土元素特征 表 2 显示 验证 孔 ZKF001 中破碎带方解石样品的稀土元素总量较 低 均值为 9.64×10⁻⁶; La_N/Yb_N 值为 6.53~15.32, 配分曲线呈向右平缓倾斜型(图 9a); δEu 为 0.61~ 0.71,显示较明显的负异常; δCe 为 0.45~0.85,负 异常特征显著。非破碎带方解石样品的稀土总量 相对较高,均值为 89.13×10⁻⁶; 除样品 ZKF001-160 的 La_N/Yb_N 值为 0.76 外,其余样品的比值均大于 1; δEu 为 0.64~1.51,部分样品表现正异常 δCe 为 0.43~1.07。

验证孔 ZKF01-1 中破碎带方解石样品的稀土 总量 1.78×10⁻⁶~10.77×10⁻⁶,均值为 6.09×10⁻⁶; La_N/Yb_N 值为 3.79~58.34,配分曲线为明显的右 倾型(图 9b); δ Eu 为 0.69~4.35,大都有一定的负 异常; δ Ce 为 0.22~0.54,具明显的负异常。2 个 非破碎带方解石样品(ZKF01-1-828,ZKF01-1-897)的总稀土元素分别为 6.61×10⁻⁶和 3.82× 10⁻⁶; La_N/Yb_N 值分别为 5.44 和 6.55,配分曲线均 呈右倾型(图 9a); δ Eu 分别为 0.80 和 0.71,具较 弱的负异常; δ Ce 分别为 0.26 和 0.35,有较明显 的负异常。

				SREE IREE HREE					
钻孔编号	样品位置	样品类型	样品编号	$/(\times 10^{-6})$	$/(\times 10^{-6})$	$/(\times 10^{-6})$	${\rm La}_{\rm N}/{\rm Yb}_{\rm N}$	δEu	δCe
	非破碎带	方解石	ZKF001-160	45.30	10. 86	34.44	0.76	1.35	0.82
	破碎带	方解石	ZKF001-542	3.28	1.38	1.90	9.09	0.71	0.49
	破碎带	方解石	ZKF001-556	1.18	0.75	0.43	15.32	0.61	0.85
	破碎带	方解石	ZKF001-600	14.98	9.23	5.75	10.14	0.70	0.83
	破碎带	方解石	ZKF001-604	7.62	3.85	3.77	6.53	0.71	0.47
	破碎带	方解石	ZKF001-620	21.14	11.42	9.72	7.40	0.69	0.45
71/1001	非破碎带	方解石	ZKF001-883	197.75	146. 59	51.16	10.35	1.51	1.07
ZKF001	非破碎带	方解石	ZKF001-1044	24.35	8.75	15.60	3.82	0.64	0.43
	非破碎带	全岩	ZKF001-160	168.89	122. 92	45.97	7.35	0.65	0.93
	破碎带	全岩	ZKF001-542	25.74	14.55	11.19	9.55	0.64	0.42
	破碎带	全岩	ZKF001-556	56.31	25.98	30.34	4.68	0.62	0.37
	破碎带	全岩	ZKF001-600	16.31	7.95	8.36	7.97	0.66	0.36
	破碎带	全岩	ZKF001-604	22.37	12.49	9.88	8.53	0.66	0.37
	破碎带	全岩	ZKF001-620	15.19	6.90	8.30	7.87	0.67	0.38
	非破碎带	全岩	ZKF001-1044	9.98	3.93	6.05	8.72	0.61	0.20
	破碎带	方解石	ZKF01-1-264	10.06	5.99	4.07	47.81	1.77	0.22
	破碎带	方解石	ZKF01-1-278	10.77	6.10	4.67	22.19	0.95	0.54
	破碎带	方解石	ZKF01-1-288N	1.78	1.18	0.60	58.34	4.35	0.33
	破碎带	方解石	ZKF01-1-288W	3.69	1.90	1.78	12.46	0.95	0.40
	破碎带	方解石	ZKF01-1-296	6.09	3.31	2.78	17.42	0.69	0.43
ZKF01_1	破碎带	方解石	ZKF01-1-301	5.70	2.04	3.66	3.79	0.74	0.51
ZRIUI-I	破碎带	方解石	ZKF01-1-304	4.57	1.65	2.92	6.15	0.72	0.41
	非破碎带	方解石	ZKF01-1-828	6.61	2.05	4.57	5.44	0.80	0.26
	非破碎带	方解石	ZKF01-1-897	3.82	1.59	2.23	6.55	0.71	0.35
	破碎带	全岩	ZKF01-1-278	6.02	2.53	3.48	10.70	0.62	0.27
	破碎带	全岩	ZKF01-1-288	5.83	2.47	3.36	7.71	0.68	0.40
	破碎带	全岩	ZKF01-1-304	15.26	6.95	8.31	7.29	0.63	0.40
	37 号矿体	方解石	JF-1.5	23.20	6.17	17.02	0.98	1.77	0.70
	31 号矿体	方解石	JF-2.4	51.40	3.65	47.75	0.04	1.26	0.80
	31 号矿体	方解石	JF-2. 7	15.91	5.69	10.23	1.03	1.00	0.90
	31 号矿体	方解石	JF-3. 2	61.64	10.39	51.25	0.34	1.34	0.85
矿石	31 号矿体	方解石	JF-3. 3	48.50	8.47	40.03	0.29	1.14	0.87
	37 号矿体	全岩	JF-1.5	92.86	72.92	19.94	11.13	0.78	0.74
	31 号矿体	全岩	JF-2.4	390.56	204.88	185.68	4.26	0.69	0.98
	31 号矿体	全岩	JF-3. 2	194.98	168.72	26.26	16.05	0.64	0.95
	31 号矿体	全岩	JF-3.3	119.83	88.69	31.14	8.98	0.58	0.92

表 2 验证孔全岩和方解石、矿石中方解石和全岩的稀土元素含量及其特征参数 Table 2 Contents and parameters of REE of calcites and whole rocks from drill cores and ores

(C)1994-2023 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

陨石标准化图

Fig. 8 Chondrite-normalized REE patterns of ore-related calcites and ores

与成矿相关的方解石样品的总稀土含量较高, 为 15.91×10⁻⁶~61.64×10⁻⁶,均值为 40.13×10⁻⁶; La_N/Yb_N值为 0.04~1.03;δEu 均值为 1.30,为正异 常;配分曲线呈"上凸"状(图 8);δCe 为 0.70~ 0.90,为负异常。

5.3 C、O 同位素组成

本次研究对比分析了验证孔全岩、矿石全岩、 验证孔方解石、与成矿相关方解石的 C、O 同位素组 成(表3 图 10)。由图 10 可见 部分样品的 C、O 同 位素数据落在海相碳酸盐岩范围 ,另一部分大致沿 碳酸盐岩溶解作用线水平分布 ,向氧同位素降低方 向漂移。

5.3.1 全岩 C、O 同位素组成 表 3 显示, 验证孔

ZKF001 破碎带中全岩样品的 δ^{13} C_{V-PDB}为 1.98‰~ 3.03‰,均值为 2.54‰; δ^{18} O_{V-PDB}值为 21.93‰~ 27.69‰,均值为 25.10‰。非破碎带全岩样品的 δ^{13} C_{V-PDB}均值为-1.43‰ δ^{18} O_{V-PDB}均值为 20.65‰。验 证孔 ZKF01-1 破碎带中全岩样品的 δ^{13} C_{V-PDB}值为 2.83‰~3.79‰,均值为 2.97‰; δ^{18} O_{V-PDB}值为 16.21‰~26.39‰,均值为 20.61‰。2 个非破碎带 全岩样品的 δ^{13} C_{V-PDB}值分别为 0.53‰、3.84‰, δ^{18} O_{V-PDB}值分别为 16.97‰ 和 28.11‰。验证孔 ZKF0JO-1 破碎带中 2 个全岩样品的 δ^{13} C_{V-PDB}值分别 为 3.69‰和4.00‰,均值为 3.85‰; δ^{18} O_{V-PDB}值分别 为 25.38‰和27.57‰,均值为 26.47‰。非破碎带 全岩样品的 δ^{13} C_{V-PDB}值为-1.35‰~4.41‰,均值为 1.96‰; δ^{18} O_{V-PDB}值为 20.42‰ 23.53‰,均值 为 22.26‰。

矿石样品的全岩 δ¹³ C_{V-PDB} 值为 - 2.56‰ ~ -0.63‰ 均值为-1.57‰; δ¹⁸ O_{V-PDB} 值为 13.06‰ ~ 23.66 ‰ 均值为 20.04‰。

5.3.2 方解石 C、O 同位素组成 表 3 显示,验证 孔 ZKF001 方解石样品的 δ^{13} C_{VPDB} 值为 - 1.93% ~ -5.69% 均值为 - 3.28% ,小于 0,向负方向偏移; δ^{18} O_{VPDB} 值为 12.03% ~ 15.21% ,均值为 13.94% 非破碎带方解石样品的 δ^{13} C_{VPDB} 值为 0.18% ,大于 0; δ^{18} O_{VPDB} 均值为 23.26% 验证孔 ZKF01-1 方解 石样品的 δ^{13} C_{VPDB} 值为 0.97% ~ 4.21% ,均值为 2.72%; δ^{18} O_{VPDB} 值为 14.88% ~ 25.42% ,均值为 20.95% 2 个非破碎带方解石样品的 δ^{13} C_{VPDB} 值分别为

Fig. 9 Chondrite-normalized REE patterns of calcites from cores of drill holes

底图据 Hu 等(2002)

图 10 验证孔、与成矿相关的方解石和全岩样品的碳、氧同位素图解

表 3 验证孔全岩和方解石样品、矿石中方解石和全岩样品的碳、氧同位素组成

Table 3	С	O isotopic	compositions	of (calcites	and	whole	rocks	from	cores	of	drill	holes	and	ores	of	orebodi	ies
---------	---	------------	--------------	------	----------	-----	-------	-------	------	-------	----	-------	-------	-----	------	----	---------	-----

		 羊品		方解石样品					
样品编号	样品位置	δ ¹³ C /‰	δ^{18} O /‰	样品编号	样品位置	δ ¹³ C /‰	$\delta^{18}0 /\%$		
JF-1.5	37 矿体	-1.59	19.03	JF-1.5	37 矿体	-3.36	23.91		
JF-2.4	31 矿体	-1.50	22.34	JF-2.4	31 矿体	-3.59	21.83		
JF-2.7	31 矿体	-0.63	22.12	JF-2.7	31 矿体	-3.35	22.56		
JF-3.2	31 矿体	-2.56	13.06	JF-3. 2	31 矿体	-2.97	23.75		
JF-3. 3	31 矿体	-1.58	23.66	JF-3. 3	31 矿体	-2.88	23.36		
ZKF001-91	非破碎带	-4.64	22.45	ZKF001-160	非破碎带	-4.45	19.67		
ZKF001-160	非破碎带	-3.84	21.98	ZKF001-542	破碎带	-2.68	12.03		
ZKF001-542	破碎带	2.37	21.93	ZKF001-556	破碎带	-5.69	14.72		
ZKF001-556	破碎带	2.81	25.09	ZKF001-600	破碎带	-3.62	15.21		
ZKF001-600	破碎带	2.51	27.69	ZKF001-604	破碎带	-2.50	14.01		
ZKF001-604	破碎带	1.98	25.53	ZKF001-620	破碎带	-1.93	13.75		
ZKF001-620	破碎带	3.03	25.24	ZKF001-883	非破碎带	2.12	24.68		
ZKF001-883	非破碎带	0.84	20.11	ZKF001-1044	非破碎带	2.87	25.42		
ZKF001-1044	非破碎带	1.94	18.04	ZKF01-1-264	破碎带	3.54	25.91		
ZKF01-1-264	破碎带	3.79	26.39	ZKF01-1-278	破碎带	3.65	24.50		
ZKF01-1-278	破碎带	3.44	24.58	ZKF01-1-288N	破碎带	3.12	25.04		
ZKF01-1-288	破碎带	2.94	20.96	ZKF01-1-288W	破碎带	4.21	21.17		
ZKF01-1-296	破碎带	2.30	18.08	ZKF01-1-296	破碎带	2.37	19.44		
ZKF01-1-301	破碎带	2.54	17.44	ZKF01-1-301	破碎带	0.97	15.73		
ZKF01-1-304	破碎带	2.83	16.21	ZKF01-1-304	破碎带	1.15	14.88		
ZKF01-1-326	非破碎带	0. 53	16.97	ZKF01-1-828	非破碎带	4.18	28.51		
ZKF01-1-828	非破碎带	3.84	28.11	ZKF01-1-897	非破碎带	-0.75	13.81		
ZKF0J0-1-159	非破碎带	-1.35	22.00	ZKF0J0-1-296	非破碎带	1.15	14.35		
ZKF0J0-1-261	非破碎带	-0.24	22. 41	ZKF0J0-1-311	非破碎带	1.41	15.86		
ZKF0J0-1-296	非破碎带	4.41	22.93	ZKF0J0-1-397	非破碎带	-3.05	13.74		
ZKF0J0-1-311	非破碎带	3.35	20.42	ZKF0J0-1-468	破碎带	3.65	24.81		
ZKF0J0-1-397	非破碎带	3.65	23.53	ZKF0J0-1-569	破碎带	4.32	26.65		
ZKF0J0-1-468	破碎带	3.69	25.38						
ZKF0J0-1-569	破碎带	4.00	27.57						

Fig. 10 C-O isotopes plot of calcites and whole rocks from drill cores and ores

28. 51% 和 13. 81% 。ZKF0J0-1 验证孔非破碎带 3 个方解石样品的 δ^{13} C_{V-PDB}值分别为 1. 15% 、1. 41% 和-3. 05%; δ^{18} O_{V-PDB}值为 13. 74% ~ 15. 86% ,均值 为 14. 65% 。2个破碎带方解石样品的 δ^{13} C_{V-PDB}值 分别是 3. 65% 和 4. 32%; δ^{18} O_{V-PDB}值分别为 24. 81% 和 26. 65% 。

与成矿相关的方解石样品的 δ¹³ C_{V-PDB} 值为 -3. 59‰~-2. 88 ‰,均值为-3. 23‰; δ¹⁸ O_{V-PDB} 值为 21. 83‰~23. 66‰ 均值为 23. 08‰。

6 讨论

6.1 广域电磁法低阻异常带(F0)的形成机制

验证孔揭露的广域电磁法低阻异常带(F0)为 破碎带(图4e、5c),其空间位置与验证孔中破碎带 的埋藏深度与平面投影基本重叠(图3、图11)。破 碎带中的灰岩角砾与吴家坪组的岩性相同,其磨圆 度差,呈棱角分明的多边形形态(图4e、4f、5e、5f), 边界平直。破碎带的顶、底板无明显错动痕迹,如 阶步、划痕等,显示该破碎带无位移。烂泥沟金矿 区西侧深部破碎带中的角砾岩具有岩溶崩塌角砾 岩的典型特征:埋藏深度较大、角砾为致密的灰岩, 且灰岩与地层基质灰岩相同,胶结物是方解石,无 碎屑和黏土类填充物(王增银等,1998; 谭秀成等, 2015),应为岩溶崩塌角砾岩。

岩溶崩塌角砾岩多形成于台地相或斜坡相位 置(陈晓甫,2013),与该区地质背景相似。该破碎 带角砾岩性为灰岩,是经历了深埋藏且矿物相稳定 的硬质岩石。发育岩溶,则需要依靠裂缝、节理作 为岩溶水流体通道,当流体长时间与裂隙作用后, 裂隙逐渐形成管道并形成线性溶洞(Vacher and Mylroie 2002;谭秀成等,2015)。管道水流的形成, 不仅加速了围岩的溶蚀,而且还具有较强的机械侵 蚀作用。当岩石之间失去稳定性沿裂隙垮落,则线 性溶洞进一步扩大最终形成一定规模的岩溶洞穴。 当岩溶洞穴发育到一定尺度,岩石内部的凝聚力减 小,顶板无法支撑上部岩层或受到构造扰动就会发

Fig. 11 $\,$ The schematic section showing the location and scale of the fracture zone (F0) $\,$

生垮塌 形成不规则角砾堆积。由于岩溶作用溶解 碳酸盐岩 ,导致流体中 Ca²⁺大量增加 形成方解石沉 淀 ,胶结崩塌形成的角砾 ,从而形成岩溶崩塌角砾 岩。形成后的角砾岩充填溶洞空间 ,起到一定的支 撑作用(王增银等 ,1998; 徐锦龙等 2018)。

6.2 验证孔与矿石中方解石的特征及成因

由图 4h、5h 可见,破碎带胶结物的主要为方解 石 部分方解石颜色偏红褐色(图 4c),可能是由大 气水去白云石化形成的次生方解石(李婧娟等, 2019)。热液方解石的碳、氧同位素组成能很好的 示踪流体来源。由图 10 可见,验证孔方解石的碳、 氧同位素值变化范围小 碳同位素可能来源于海相 碳酸盐岩的溶解。部分验证孔方解石的碳同位素 值低于围岩,可能也是溶解作用导致的,而氧同位 素未发生改变(Zheng,1990)。氧同位素组成范围 较大 向左侧以花岗岩为代表的深部岩浆流体漂 移 但大部分落在海相碳酸盐岩范围内,说明氧同 位素来源可能主要为海相碳酸盐岩以及碳酸盐岩 的溶解作用。与成矿相关的方解石的碳、氧同位素 组成同样落在海相碳酸盐范围中,可能是热液在上 升过程中与围岩产生了水岩反应 围岩发生去碳酸 盐化作用而形成成矿期晚期的方解石脉。碳、氢同 位素沿 x 轴呈水平分布,有可能是因为脱气作用 (CO₂),当发生碳酸盐溶解作用时,且热液中的溶解 碳主要来源为[HCO]]时,其碳氧图解上就会表现 出呈水平分布(郑永飞 2001;杨成富等 2021)。

图 12a 显示,大多数验证孔方解石的数据都落 在 Y 轴附近,说明轻稀土相较于重稀土富集; 矿石 方解石的 La_N/Yb_N 较小,中、重稀土相较于轻稀土 富集 配分曲线呈"上凸"状,表现为中稀土富集。 两者的轻、重稀土分馏程度不一样。破碎带中方解 石同样是轻稀土相对富集 稀土元素配分曲线呈右 倾(图9)。一般情况下,方解石都富集轻稀土,可能 是受稀土元素流体体系的络合物影响(赵振华, 2016):稀土元素主要以 CO₃²⁻、HCO₃、OH⁻等络合物 形式存在,络合物稳定性随 La→Lu 原子序数增加 而增强 从而在热液体系中稳定性低的轻稀土元素 优先与 Ca²⁺发生沉淀,最终导致轻稀土相较于重稀 土富集(赵振华 2016)。从矿石中采集的样品都表 现出明显的中稀土富集,可能原因:①Fe+Mn 相物 质有关(王加昇等,2018; Zhuo et al., 2019)。Fe+ Mn 相物质(Fe-Mn 硬壳、富 Fe 有机胶体、悬浮颗粒 等) 可以通过吸附作用富集中、重稀土元素(Palmer and Elderfield , 1986; Alt , 1988; Bau et al. , 1996; Johannesson et al. ,1996; Kato et al. ,2005; Brugger and Meisser 2006),如果矿物形成时包裹中稀土元 素富集的 Fe+Mn 相物质就会导致矿物表现出中稀 土元素富集特征。 Mn^{2+} 、 Fe^{2+} 也可以替代 Ca^{2+} 进入 方解石晶格中,而CaCO,与MnCO,可以形成类质同 象 从而导致方解石中稀土元素富集。②受流体和 围岩 REE 特征影响(戢兴忠等 2020) 。由于本次研 究的方解石围岩大多是轻稀土富集型,所以呈现中 稀土元素富集的原因可能是矿物本身性质或者流 体所致。

Bau 和 Möller(1992) 认为,同源矿物在 La/Ho-Y/Ho 图 解 中 大 致 呈 水 平 分 布。图 12b 显 示, ZKF001、ZKF01-I 破碎带方解石并不在一条线上, 说明形成破碎带方解石的流体具有多源性。矿石

Fig. 12 Yb_N-La_N/Yb_N(a) and La/Ho-Y/Ho(b) plot of calcites and whole rocks from the Lannigou gold deposit

方解石也不在同一水平线上,也可能是多源流体作 用的结果。方解石中的 Eu 异常通常是由围岩 Eu 含量或者流体的氧化还原状态控制。验证孔中围 岩的 Eu 大多为负异常,但方解石却出现了一些正 异常,说明受到弱还原流体的影响导致破碎带中的 Eu 负异常(δEu 为 0.61~0.95)。矿石方解石存在 微弱的 Eu 正异常(δEu 为 1~1.77),指示矿石方解 石形成于偏中性和弱氧化的流体环境。上述研究 表明,验证孔中和矿石中的方解石的流体来源和形 成环境是不同的。

右江盆地卡林型金矿中的方解石都有明显的 中稀土富集特征(Su et al. 2009; Tan et al. 2017; 徐 碧良等,2020;杨成富等,2021),与本次矿石中的方 解石具有相同的特征,而与破碎带中方解石的轻稀 土富集模式不一样。综上可见,形成破碎带方解石 的流体与成矿流体具有显著的差异,形成破碎带方 解石的流体并非金成矿流体。验证孔中非破碎带 的一些方解石样品也表现出一定的中稀土富集(图 9a),这些方解石都产于三叠系,岩石样品含有较高 的 Au(图 4a)。

6.3 广域电磁法低阻异常带(F0)对找矿的意义

广域电磁法低阻异常带(FO)为破碎带,位于吴 家坪组灰岩中,未发现与已有矿体相关断层与其直 接联通,即与控矿构造无联系。破碎带角砾、围岩 为结构较致密的灰岩,与目前已发现矿体的主要赋 矿层位及岩性(许满组和边阳组碎屑岩)差别较大。 此外,破碎带中的方解石很纯净,无成矿晚期常见 的雄黄、雌黄、辉锑矿等矿物,也未见硅化、黄铁矿 化和黏土化等与成矿相关的蚀变(谢卓君等, 2019),未见金矿成矿热液侵入的痕迹。以上证据 均说明破碎带的形成时间可能晚于烂泥沟金矿床 的成矿时间,或是破碎带形成时间早于成矿期,但 是成矿流体并没有到达该破碎带。

综上,本文认为 F0 破碎带本身不含矿,并且没 有与成矿构造相联通,对找矿无直接的指示意义。 烂泥沟金矿今后的深部和外围找矿不宜把吴家坪 组灰岩中的广域电磁法低阻异常带作为下一步找 矿突破点。矿床西边为泥盆系-三叠系台地相碳酸 盐岩,不同层位的台地相碳酸盐岩中均可能出现类 似的岩溶崩塌角砾岩(陈晓甫,2013),这些岩溶崩 塌角砾岩形成于局限空间,如未与成矿构造联通, 则对成矿和找矿意义均不大,在找矿研究中不宜过 多关注。

由于目前发现的矿体均赋存在三叠系盆地相 碎屑岩构造带中,下一步的找矿工作应多关注 P/T 界面(碳酸盐岩与碎屑岩界面)及之上的构造格架、 构造期次的配套关系以及各期次构造的含矿性。 结合前人的工作,与成矿相关的方解石常具有中稀 土富集特征是右江盆地地区卡林型金矿重要找矿 标志(Su et al.,2009; Tan et al.,2017; 徐碧良等, 2020;杨成富等,2021),而方解石又在多层位普遍 出现,被发现的机率远大于矿体。如果遇到有方解 石脉出现的情况,可对方解石脉进行稀土元素分 析 轻稀土富集型的方解石一般与成矿关系不大, 而中稀土富集型的方解石脉则预示成矿热液流体 的存在。

7 结论

(1) 烂泥沟金矿床广域电磁法低阻异常带(F0) 为一破碎带,位于吴家坪组灰岩中。其角砾主要为 方解石胶结灰岩角砾,角砾具不规则状且平直棱边 结构,胶结物主要为方解石,含少量白云石。该破 碎带是吴家坪组灰岩地下岩溶结构发育,灰岩受溶 蚀作用后而崩塌,并形成方解石胶结而最终形成的 岩溶崩塌角砾岩。

(2) 形成方解石胶结物的流体大多来源于海相 碳酸盐岩溶解。胶结物方解石显示轻稀土元素富 集,有较弱的 Eu 负异常,指示当时形成环境是弱还 原条件。与成矿相关的方解石显示中稀土富集,有 明显的 Eu 正异常,指示成矿流体的弱氧化环境。

(3) 烂泥沟金矿床矿西侧深部破碎带中无矿化 现象,不是金矿成矿流体的运移通道或容矿构造, 其与金矿的形成无直接关系,不宜作为深部找矿的 重点关注对象。不同层位的台地相碳酸盐岩中均 可能出现类似的岩溶崩塌角砾岩,它们常形成于局 限封闭空间,如未与成矿构造联通,则对成矿无贡 献,在找矿研究中不宜过多关注。下一步深部和外 围找矿,应更多关注 P/T 界面(碳酸盐岩与碎屑岩 界面)及以上构造。同时多关注中稀土富集型方解 石脉的分布。

致谢:本次研究野外工作得到贵州锦丰矿业有限公司对的支持和帮助,岩矿鉴定和分析测试工作 得到中国科学院地球化学研究所矿床国家重点实 验室的董少花、胡静、谷静等老师的指导;研究工作 的部分经费来自锦丰公司委托项目(JF-M-1830); 黔科合平台人才-CXTD [2021]007),贵州省地质勘 查资金(520000214TLCOG7DG TNRG)和中国科学 院青年创新促进会会员项目(2022 402)。在此一并 致谢!

参考文献 (References):

- Alt J C. 1988. The chemistry and sulfur isotope composition of massive sulfide and associated deposits on Green Seamount , eastern Pacific. Economic Geology , 83(5): 1026–1033
- Bau M , Möller P. 1992. Rare earth element fractionation in metamorphogenic hydrothermal calcite , magnesite and siderite. Mineralogy and Petrology , 45(3-4) : 231–246
- Bau M , Koschinsky A , Dulski P , Hein J R. 1996. Comparison of the partitioning behaviours of yttrium , rare earth elements , and titanium between hydrogenetic marine ferromanganese crusts and seawater. Geochimica et Cosmochimica Acta , 60(10): 1709–1725
- Brugger J , Meisser N. 2006. Manganese-rich assemblages in the Barrhorn unit , Turtmanntal , central Alps , Switzerland. The Canadian Mineralogist , 44(1): 229–248
- Chen M H , Mao J W , Bierlein F P , Norman T , Uttley P J. 2011. Structural features and metallogenesis of the carlin-type Jinfeng (Lannigou) gold deposit , Guizhou province , China. Ore Geology Reviews , 43(1): 217–234
- Chen M H , Zhang Z Q , Santosh M , Dang Y , Zhang W. 2015. The Carlin-type gold deposits of the "golden triangle" of SW China: Pb and S isotopic constraints for the ore genesis. Journal of Asian Earth Sciences , 103: 115–128
- Cheng Y B , Mao J W. 2010. Age and geochemistry of granites in Gejiu area , Yunnan province , SW China Constraints on their petrogenesis and tectonic setting. Lithos , 120: 258–276
- Hu R Z , Su W C , Bi X W , Tu G Z , Hofstra A H. 2002. Geology and geochemistry of Carlin-type gold deposits in China. Mineralium Deposita , 37(3): 378–392
- Johannesson K H , Lyons W B , Yelken M A , Gaudette H E , Stetzenbach K J. 1996. Geochemistry of the rare-earth elements in hypersaline and dilute acidic natural terrestrial waters: Complexation behavior and middle rare-earth element enrichments. Chemical Geology , 133 (1-4): 125-144
- Kato Y , Fujinaga K , Nozaki T , Nakamura K , Ono R , Osawa H. 2005. Rare earth , major and trace elements in the Kunimiyama ferromanganese deposit in the northern Chichibu belt , Central Shikoku , Japan. Resource Geology , 55(4): 291–300
- Liu S , Su W C , Hu R Z , Feng C X , Gao S , Coulson IM , Wang T , Feng G Y , Tao Y , Xia Y. 2010. Geochronological and geochemical constraints on the petrogenesis of alkaline ultramafic dykes from southwest Guizhou Province , SW China. Lithos , 114: 253–264
- Palmer M R , Elderfield H. 1986. Rare earth elements and neodymium i– sotopes in ferromanganese oxide coatings of Cenozoic foraminifera from the Atlantic Ocean. Geochimica et Cosmochimica Acta , 50 (3): 409–417
- Qi , Jing H , Gregoire D C. 2000. Determination of trace elements in granites by inductively coupled plasma mass spectrometry. Talanta , 51 (3): 507–513
- Su W C , Hu R Z , Xia B , Xia Y , Liu Y P. 2009. Calcite Sm-Nd isochron age of the Shuiyindong carlin-type gold deposit , Guizhou , China. Chemical Geology , 258(3-4): 269-274
- Su W C , Dong W D , Zhang X C , Shen N P , Hu R Z , Hofstra A H ,

Cheng L Z , Xia Y , Yang K Y. 2018. Carlin-type gold deposits in the Dian-Qian-Gui "golden triangle" of Southwest China. In: Muntean J L ed. Reviews in Economic Geology: Diversity of Carlin-Style Gold Deposits. 20: 157–185

- Tan Q P , Xia Y , Wang X Q , Xie Z J , Wei D T. 2017. Carbon-oxygen i– sotopes and rare earth elements as an exploration vector for carlin– type gold deposits: A case study of the Shuiyindong gold deposit , Guizhou province , SW China. Journal of Asian Earth Sciences , 148: 1–12
- Taylor S R , McLennan S M. 1985. The continental crust: Its composition and evolution. Oxford: Blackwell Scientific
- Vacher H L , Mylroie J E. 2002. Eogenetic karst from the perspective of an equivalent porous medium. Carbonates and Evaporites , 17(2): 182-196
- Xie Z J , Xia Y , Cline J S , Koenig A , Wei D T , Tan Q T , Wang Z P. 2018a. Are there Carlin-type gold deposits in China? A comparison of the Guizhou , China , deposits with Nevada , USA , deposits. In: Muntean J L ed. Reviews in Economic Geology: Diversity of Carlin-Style Gold Deposits. 20: 187–233
- Xie Z J , Xia Y , Cline J S , Pribil M J , Koenig A , Tan Q P , Wei D T , Wang Z P , Yan J. 2018b. Magmatic origin for sediment-hosted Au deposits , Guizhou province , China: In situ chemistry and sulfur isotopie composition of pyrites , Shuiyindong and Jinfeng deposits. Economic Geology , 113(7): 1627–1652
- Zheng L J , Tan Q P , Zuo Y J , Xia Y , Xie Z J , Zheng L L , Liu J Z. 2022. Two hydrothermal events associated with Au mineralization in the Youjiang Basin , southwestern China. Ore Geology Reviews , 144: 104816
- Zheng Y F. 1990. Carbon-oxygen isotopic covariation in hydrothermal calcite during degassing of CO₂. A quantitative evaluation and application to the Kushikino gold mining area in Japan. Mineralium Deposita , 25(4): 246–250
- Zhuo Y Z , Hu R Z , Xiao J F , Zhao C H , Huang Y , Yan J , Li J W , Gao W , Li J X. 2019. Trace elements and C-O isotopes of calcite from carlin-type gold deposits in the Youjiang basin , SW China: Constraints on ore-forming fluid compositions and sources. Ore Geology Reviews , 113: 103067
- 陈懋弘,毛景文,吴六灵,Phillip JU,郑建民,秦运忠.2006.贵州 锦丰(烂泥沟)金矿成矿年代学研究新进展-兼论滇黔桂"金三 角"卡林型金矿成矿时代和动力学背景.矿床地质,25(SI):7 -10
- 陈懋弘,毛景文,Uttley PJ,Norman T,吴六灵,郑建民,秦运忠. 2007a.贵州锦丰(烂泥沟)超大型金矿床构造解析及构造成矿 作用.矿床地质,26(4):380-396
- 陈懋弘,吴六灵,Uttley PJ,Norman T,郑建民,秦运忠.2007b.贵 州锦丰(烂泥沟)金矿床含砷黄铁矿和脉石英及其包裹体的稀 土元素特征.岩石学报,23(10):2423-2433
- 陈懋弘,黄庆文,胡瑛,陈振宇,章伟.2009.贵州烂泥沟金矿层状 硅酸盐矿物及其³⁹Ar-⁴⁰Ar 年代学研究.矿物学报,29(3):353 -362
- 陈懋弘,张延,蒙有言,陆刚,刘苏桥.2014. 桂西巴马料屯金矿床 成矿年代上限的确定:对滇黔桂"金三角"卡林型金矿年代学研 究的启示.矿床地质,33(01):1-13

- 陈晓甫. 2013. 碳酸盐角砾岩的形成环境及其特征. 内江科技, 34 (1): 24-25
- 杜远生,黄宏伟,黄志强,徐亚军,杨江海,黄虎.2009.右江盆地晚 古生代──三叠纪盆地转换及其构造意义.地质科技情报,28 (6):10-15
- 杜远生,黄虎,杨江海,黄宏伟,陶平,黄志强,胡丽沙,谢春霞.
 2013. 晚古生代─中三叠世右江盆地的格局和转换. 地质论评, 59(1): 1-11
- 韩雪. 2012. 贵州烂泥沟卡林型金矿床地质地球化学特征及成因探 讨. 硕士学位论文. 成都: 成都理工大学, 18-25
- 戢兴忠,陈强,刘旭,马克忠,谢贤洋,韩忠华.2020.贵州泥堡金矿 床热液方解石地球化学特征及地质意义.矿床地质,39(5): 785-804
- 蒋永芳, 吕孝勇, 张雅龙, 陈胜芳, 袁魏. 2020. 贵州省贞丰县烂泥 沟金矿区外围广域电磁法测深勘探成果报告. 贵州:贵州锦丰 矿业有限公司
- 李婧娟,史云鹤,魏柳斌,张成弓,苏中堂.2019. 鄂尔多斯盆地东 南部奥陶系马五段去白云石化过程的地球化学示踪.中国岩 溶,38(3): 336-343
- 刘建中,王泽鹏,宋威方,王大福,杨成富,李俊海,郑禄林,李松 涛,谭亲平,谢卓君,陈发恩,覃永军,杨毓红,谭礼金,徐良 易,刘婧珂,汪小勇.2022. 滇黔桂地区卡林型金矿多层次构造 滑脱成矿系统构建和找矿实践.地质论评,68(4):2022082012. doi: 10.16509/j.georeview.2022.08.065
- 刘寅,胡凯,韩善楚,孙泽航.2015. 右江盆地构造和演化及对卡林 型金矿床的控制作用. 高校地质学报,21(1): 1-14
- 卢长建. 2021. 矿山深部及外围找矿新发现及意义. 内蒙古煤炭经济, (6): 138-139
- 毛铁,叶春,杜定全.2014.贵州烂泥沟金矿控矿断层构造地球化学研究.矿物岩石地球化学通报,33(1):98-107
- 宋威方,刘建中,吴攀,李俊海,杨成富.2021.黔西南卡林型金矿 床中矿化异常元素 Ag-U-W-Mo等的来源探讨.中国金属通报, (7):120-121
- 谭秀成,肖笛,陈景山,李凌,刘宏.2015. 早成岩期喀斯特化研究新进展及意义.古地理学报,17(4):441-456

- 王加昇,韩振春,李超,高振华,杨毅,周国超.2018. 黔西南板其卡 林型金矿床方解石 REE、Fe、Mn 元素特征及其对找矿的指示意 义.大地构造与成矿学,42(3):494-504
- 王旭阳,王方里,王宏阳.2014. 锦丰(烂泥沟) 金矿地质特征及找矿 方向浅析. 云南地质,33(1):130-132,137
- 王增银,沈继方,万军伟.1998.清江高坝洲地区古岩溶角砾岩特征 及形成条件.地球科学——中国地质大学学报,23(5):524 -528
- 魏春霞. 2018. 中国金矿资源的现状及前景分析. 中国金属通报, (1): 19-20
- 谢卓君,夏勇,Cline J,谭亲平,李松涛,赵亦猛,韦东田,王泽鹏, 闫俊.2019. 中国贵州与美国内华达卡林型金矿对比及对找矿 勘查的指示作用.矿床地质,38(5):1077-1093
- 徐碧良,谭亲平,夏勇,赵亦猛,陈明,王泽鹏.2020.贵州水银洞卡 林型金矿床方解石稀土元素地球化学特征与找矿意义.矿物学 报,40(6):685-694
- 徐荟竹,曹媛媛,杜海均.2013.货币国际化进程中黄金的作用.金 融研究,(8):98-108
- 徐锦龙,储东如,夏军,王朝.2018.安徽沿江地区中三叠统角砾岩 特征及其成因探讨.地层学杂志,42(3):267-277
- 杨成富,顾雪祥,刘建中,王泽鹏,陈发恩,王大福,徐良易,李俊 海.2021. 黔西南灰家堡金矿田热液方解石稀土元素与 C-O-Sr 同位素地球化学特征. 矿物岩石地球化学通报,40(1):124 -137
- 姚磊,吕志成,陈辉,张明超.2018.再谈矿山深部及外围找矿新发现及意义.南京大学学报(自然科学),54(2):296-307
- 赵振华. 2016. 微量元素地球化学原理. 第2版. 北京: 科学出版社
- 郑永飞. 2001. 稳定同位素体系理论模式及其矿床地球化学应用. 矿 床地质, 20(1): 57-70, 85
- 周余国,刘继顺,王作华,欧阳玉飞,高启芝,刘德利,黄元有. 2009. 从滇黔桂"金三角"区域地层地球化学演化特征探讨卡林 型金矿的物质来源. 地学前缘,16(2):199-208

(本文责任编辑: 龚超颖 胡宇思; 英文审校: 张兴春)