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A B S T R A C T   

The global climate change situation partly depends on the climate change policies of countries around the world, 
including China. Therefore, it is necessary to reasonably reduce carbon emissions (CEs) and increase carbon sink 
in order to progressively achieve the carbon neutral (CN) goal. However, the capacity and the potential to 
achieve carbon neutral with the support of its ecosystem, that is to say the carbon neutral capacity (CNC) and 
potential, are still unclear. To this end, based on China’s energy emissions data, meteorological and hydrological 
data, lithology data, and vegetation data, we used the GEM-CO2 model, soil respiration model, spatial auto
correlation analysis method and other methods to establish the spatial information map of China city-scale CNC 
from 1997 to 2017. Furthermore, based on the future climate, vegetation data, CEs data and their influencing 
factors in 2025–2060, the Back Propagation neural network model was used to predict the CN potential of 
China’s provinces. This study found during the study period, annual CEs of 5.63 Pg CO2 were not absorbed, 
which is about 90% of the average annual CEs. And the carbon surplus regions were mainly concentrated in the 
less developed northeastern and southwestern border regions. Moreover, the change in the CNC in China from 
1997 to 2017 was − 13.37 Tg/yr, indicating that the CNC of China’s terrestrial ecosystems overall reduced. It 
should be noted that most provinces are not highly polarized, that is, there is no significant differences in CNC 
between cities in the provinces. Moreover, the scenario simulation’s method of IPCC provides a reference for this 
manuscript, so we set up two future scenarios (A2 and B1 scenarios). In the future, China is expected to achieve a 
carbon emission peak before 2030 under the B1 scenario while it will continue to grow under the A2 scenario. 
From 2017 to 2060, the CNC under the two scenarios (A2/B1) will decrease by 44.58% and increase by 15.54%. 
It follows then that the road to CN in China will be difficult without corresponding policy intervention. In short, 
this study has clarified China’s CNC from the past to the future, as well as CNC’s spatial distribution and 
changing trends. This provided theoretical and data support for China to introduce corresponding zero-carbon 
solutions based on its understanding of CNC.   

1. Introduction 

In September 2020, China announced its goal of addressing climate 
change, which is to achieve a peak in carbon emissions (CEs) based on 
energy consumption by 2030 and carbon neutral (CN) by 2060. How
ever, China’s CEs have exceeded 10 Pg and not yet reached the carbon 
peak stage. Moreover, the speed of achieving net zero in 40 years has not 

been tried by other countries (Mallapaty, 2020). Therefore, the road to 
CN in China will be arduous and rapid in the foreseeable future. In order 
to achieve this goal, at the same time as deep emission reduction, China 
focus on nature-based solutions to form a green and low-carbon model: 
reducing energy consumption and increasing ecosystem carbon sink 
(ECS). So China urgently needs to formulate corresponding policies 
regarding zero-carbon projects based on understanding the carbon 

* Corresponding author. State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China. 
E-mail address: baixiaoyong@vip.skleg.cn (X. Bai).  

Contents lists available at ScienceDirect 

Journal of Cleaner Production 

journal homepage: www.elsevier.com/locate/jclepro 

https://doi.org/10.1016/j.jclepro.2022.130966 
Received 15 July 2021; Received in revised form 9 February 2022; Accepted 12 February 2022   

mailto:baixiaoyong@vip.skleg.cn
www.sciencedirect.com/science/journal/09596526
https://www.elsevier.com/locate/jclepro
https://doi.org/10.1016/j.jclepro.2022.130966
https://doi.org/10.1016/j.jclepro.2022.130966
https://doi.org/10.1016/j.jclepro.2022.130966
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jclepro.2022.130966&domain=pdf


Journal of Cleaner Production 347 (2022) 130966

2

neutral capacity (CNC). When CNC (ECS-CEs) is a positive value, it 
means that the place is in a state of carbon surplus and has achieved CN. 
On the contrary, when CNC is a negative value, it is in a state of carbon 
deficit and lacks the capacity to offset CEs. Previous studies have shown 
that the largest total carbon exchange in the world occurs at the inter
face between the atmosphere and the terrestrial biosphere (Solomon 
et al., 2007). Nearly 43% of the CO2 emitted by human activities re
mains in the atmosphere, 22% is removed by the ocean, and 29% is 
removed by terrestrial ecosystems (Friedlingstein et al., 2019). In 
addition, many scholars have also found that continental rock weath
ering carbon sink (RCS) account for 30% of the missing carbon sink 
(Ciais et al., 2013; Xi et al., 2021). Thus, in addition to improving 
technology for reducing CEs, carbon sequestration in ecosystems can 
offset the global climate problems caused by human development. 

The International Biology Program (IBP) in 1964 was the beginning 
of the global study of carbon storage in terrestrial forest ecosystems 
(Worthington, 1965). Carrie et al. (1996) affirmed the role of forests in 
absorbing CO2. In addition, he has also repeatedly proposed that forests 
can be used to achieve the storage of CO2, but due to a lack of biomass 
calculations, it is impossible to quantify the role of vegetation carbon 
sink (VCS; Lapenis and Klene, 1997). In order to accurately quantify 
VCS, Foley (1995) and Fang (2000) proposed using forest area and 
biomass per unit area to calculate the magnitude of the sink. Then, 
Goulden et al. (1998) determined that a deciduous broad-leaved forest 
in New England, USA, has a large carbon sink capacity of 1.4–2.8 t 
C⋅hm− 2/yr based on the Eddy variance method. The net ecosystem 
productivity (NEP) is also an important indicator for measuring the size 
of the ECS. Therefore, Zhang et al. (2020) used the method of estimating 
the NEP and found that the ECS in China was 0.134 Pg C/yr. 

RCS is also an important part of global terrestrial ecosystems (Ciais 
et al., 2013). The ions formed by the weathering of rocks eventually 
become sedimentary carbonate minerals and flow into the ocean, 
thereby removing CO2 from the atmosphere (Tao et al., 2011). Based on 
the Intergovernmental Panel on Climate Change’s (IPCC) fifth climate 
change assessment report, RCS is listed as one of the 4 methods of CO2 
removal (Pu et al., 2015). Using the greenhouse gas emissions 
(GEM)-CO2 model, Gong et al. (2020) found that the RCS in China was 
about 20% of the ECS. In addition, based on the same method, Xi et al. 
(2021) showed that the global RCS was 0.32 ± 0.02 Pg C. Therefore, the 
RCS is of great significance to the carbon cycle and carbon budget (Liu, 
2000; Martin, 2017; Li et al., 2018). 

As CEs is a key factor leading to climate change, it has attracted the 
attention of many researchers (Lin and Benjamin, 2017). The con
sumption of different energy sources multiplied by the emissions factor 
is a method of calculating the CEs, generally on the international scale. 
In terms of CE prediction, the impact, population, affluence, technology 
(IPAT) model, market allocation-macroeconomic (MARKAL-MACRO) 
model, long range energy alternatives planning (LEAP) model, and 
stochastic impacts by regression on population, affluence, and technol
ogy (STIRPAT) model have been widely used to predict China’s CEs (Xi 
et al., 2014; Zhou and Mi, 2010; Yang, 2017). For example, Qu and Guo 
(2010) used the STIRPAT model to predict that China’s CEs will reach a 
peak in 2020–2045. Song and Zhang (2011) applied the neural network 
method to show that during the Twelfth Five-Year Plan period, the 
growth rate of the gross domestic product (GDP) should be appropriately 
reduced to accelerate the fulfillment of the emissions targets. 

For achieving the goal of CN, we desperately need to assess the status 
quo of China’s CNC so that the government can use it as a basis to 
formulate corresponding policies and systems. Furthermore, to accu
rately estimate China’s CNC, it is necessary to precisely evaluate China’s 
ECS and anthropogenic CEs. However, the current accurate estimation 
of the overall carbon sinks of China’s terrestrial ecosystems is incom
plete, and the distribution of the ECS is not clear. First, the previous 
analyses of the temporal and spatial patterns of the ECS considered 
forest and soil but ignored rocks, which are a huge missing carbon sink, 
especially in karst areas where carbonate rocks are widely distributed. 

Second, most scholars have only focused on carbon sources or carbon 
sinks, thus ignoring the investigation and quantification of the overall 
situation of China’s carbon budget. Finally, there is also a lack of rele
vant research on the evaluation of the future performance of China’s 
CNC under different scenarios. 

The main goals of this study are to resolve the incompleteness of 
China’s carbon budget, investigate the temporal and spatial distribution 
process, and resolve the lack of future scenario simulations and pre
dictions. Based on China’s energy emissions data, meteorological and 
hydrological data, lithology data, and vegetation data, we used the 
GEM-CO2 model, soil respiration model, spatial autocorrelation analysis 
method, neural network model, and other methods to reveal the tem
poral and spatial distributions of the ECS in China, to explore the dif
ferences in the CNC in different regions of China, and to simulate and 
predict the CN potential under future scenarios. This is essential to 
gaining a better understanding of the carbon cycle, supporting the 
formulation of climate policies, and predicting future climate change. 

2. Material and method 

2.1. Data source 

2.1.1. Carbon emissions and driving factor data 
The data from CEs accounts and datasets (CEADs) used particle 

swarm optimization-back propagation (PSO-BP) algorithm to unify 
DMSP/OLS and NPP/VIIRS satellite imagery, and estimate the CO2 
emissions of 2735 counties in China from 1997 to 2017. During this 
period, China city-level CEs data set was organized by this study (Chen 
et al., 2020). 

According to the widely used logarithmic mean divisia index (LMDI) 
model, the CE driving factors were determined (He, 2019). The popu
lation and urbanization rate were selected as the population scale in
dicators; GDP and the proportion of the secondary industry were used as 
the economic level indicators; energy intensity, total energy use and 
energy structure were regarded as the technical level indicators. The 
above data were obtained from the statistical yearbook of the National 
Bureau of Statistics of China (NBSC, 2021). According to the research of 
He (2019), this study set the growth rate in the CEs of impact factors 
from 2025 to 2060 (Tables S1–4). 

2.1.2. Climate data 
The resolution of temperature and precipitation data from 1997 to 

2017 is 1 km (Peng et al., 2019). This set of data was based on the 
Chinese mean temperature (2 m) and precipitation data set (1 km) 
published by Climatic Research Unit (CRU) and the climate data set 
published by WorldCLIM. In addition, the data of 496 independent 
meteorological observation points were used for verification, and the 
verification results were credible. The 1 km evapotranspiration data is 
the Chinese surface evapotranspiration product (v1.5) established by the 
evapotranspiration complementary method (http://www.geodata.cn). 
The temperature and precipitation data from 2025 to 2060 come from 
the future monthly climate data of the National Center for Atmospheric 
Research (https://ncar.ucar.edu/), including two scenarios (A2 and B1) 
with a resolution of 0.5◦. In addition, the evapotranspiration data for 
this time period is driven by the future climate change data released by 
CRU and simulated by using the Integrated Biosphere Simulator (IBIS) 
model. The data has been extensively verified by comparison (Zhen 
et al., 2013). 

2.1.3. Vegetation and lithology data 
The net primary production (NPP) data in China comes from the 

monthly composite products of the MOD17A3 datasets from the Land 
Processes Distributed Active Archive Center (Running et al., 2015), with 
a spatial resolution of 1 km and a time span of 2000–2017. Due to the 
lack of MODIS data before 2000, China’s NPP data from 1997 to 1999 
was based on the Carnegie-Ames-Stanford approach (CASA) model, with 
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input including solar radiation, normalized vegetation index, tempera
ture and water stress factors and other parameters (Chen et al., 2019). 
The NPP data from 2025 to 2060 was driven by the global historical 
period weather data released by the CRU Meteorological Center, and 
was obtained by using the IBIS model to simulate in different scenarios 
of A2 and B1 (http://www.geodata.cn). In addition, the data has been 
extensively verified by comparison (Zhen et al., 2013). 

The lithology distribution map and various lithology coefficients in 
China come from the global lithology database with a spatial resolution 
of 0.5◦ (Hartmann and Moosdorf, 2012). 

2.2. Method 

2.2.1. Carbon emissions model 
In the “2006 IPCC Guidelines for National Greenhouse Gas In

ventories” (IPCC, 2006), the IPCC detailed three methods for estimating 
CEs from fossil fuel combustion in stationary and mobile sources. This 
study selected the first method to calculate national CEs. The specific 
method is as follows: 

CO2 =
∑14

i=1
CO2,i =

∑14

i=1
Ei × NCVi (1) 

CO2 represents CEs to be estimated; i represents various energy fuels, 
including coal, coke, coke oven gas, blast furnace gas, converter gas, 
other gas, crude oil, gasoline, kerosene, diesel, fuel oil, liquefied pe
troleum gas, Natural gas and liquefied natural gas; Ei represents the 
combustion consumption of various energy sources; NCVi is the average 
low calorific value of various energy sources, used to convert various 
energy consumption into energy units (TJ); CEFi represents the CEs of 
various energy sources factor. 

2.2.2. Calculation method for NEP 
Net ecosystem productivity (NEP) was first proposed by Woodwell 

et al. (1978), which referred to NPP minus the photosynthetic product 
consumed by heterotrophic organisms (soil respiration). NEP represents 
the net storage of carbon on a larger scale. When NEP is greater than 0, it 
means that the ecosystem is a sink of CO2, otherwise it is a source. The 
formula is as follows: 

NEP=NPP − RH (2)  

where, NPP means net primary productivity (kg m− 2 yr− 1), and RH 
means heterotrophic respiration (kg m− 2 yr− 1). In order to invert RH to a 
larger spatial scale, the regression equation of temperature, precipita
tion and CEs was used to calculate it (Pei et al., 2009): 

RH= 0.22 × (e(0.0913×T)+ ln(0.3145×R+ 1)) × 30 × 46.5% (3) 

T is the average surface temperature (◦C) and R is the precipitation 
(mm). 

2.2.3. GEM_CO2 method 
The “Global Erosion Model of CO2 Flux” (GEM-CO2) model is a 

method for estimating the latitudinal distribution of carbon consumed 
by global chemical weathering using lithology and continental basin 
maps (Suchet et al., 2003). The model takes runoff as the main influ
encing factor of global chemical weathering, and obtains the relation
ship between different lithological weathering rates and runoff, thereby 
establishing a simple model based on empirical coefficients. 

Fco2 = aQ (4)  

where Q represents the runoff (mm) and a is the empirical coefficients of 
silicate rock types. 

2.2.4. Back Propagation (BP) neural network model 
The Back Propagation (BP) neural network model proposed by 

Rumelhart and Mcclelland (1987) is currently a more widely used 
multilayer feedforward neural network model. It can fit nonlinear 
functions with arbitrary precision. The topology of the BP neural 
network model includes an input layer, a hidden layer, and an output 
layer. The population, urbanization rate, GDP, the proportion of the 
secondary industry, energy intensity, total energy use and energy 
structure were selected as seven input layers. The output layer was CEs. 
After many adjustments, 4 hidden nodes were set to obtain network 
structures of [5 4 8 6]. Finally, CEs data with good fitting effect was 
outputted from the model. 

In the model, the output formula of the hidden layer neuron is: 

Outj = f

(
∑m

i=1
W1

jiXi − θ1
j

)

, ​ j = 1, 2, 3........ (5) 

Out represents the hidden layer neuron, f(x) is the transfer function 
(ReLU function) of the hidden layer, and W1 represents the network 
weight matrix between the input layer and the hidden layer. 

The output formula of the output layer neuron is: 

Zk = g

(
∑m

i=1
W2

kjOj − θ2
k

)

, k = 1, 2, 3....... (6) 

Z represents the output layer neuron, g(x) is the transfer function 
(linear function) of the output layer, and W2 represents the network 
weight matrix between the hidden layer and the output layer. 

In order to finally test the reliability of the fitting results, this study 
chose the coefficient of determination (R2) as the corresponding index. 
Then, the closer R2 is to 1, the better the performance of the prediction 
model. 

2.2.5. Hurst index 
The Hurst index can quantitatively describe the degree of depen

dence of sequence length and describe the degree of sustainability 
through numerical grading. In this study, the aggregate variance method 
was used to calculate the Hurst index of CNC changes. The formula is as 
follows: 

Xm(k)=
1
m

∑km

i=(k− 1)m+1

xi, k= 1, 2..., [N /m] (7) 

Then the sample variance of their mean is calculate: 

VarXm =
1

N/m
∑N/m

k=1
[Xm(k) − X]2 (8) 

The slope interval can be divided into the following three situations 
(Walter, 1994): (1) If 0 ≤ H ≤ 0.5, it indicates that the change of CNC 
time series has reverse persistence, and the more H value tends to 0, the 
stronger anti-persistence. (2) If H = 0.5, the correlation degree before 
and after the correlation time series is weak; (3) If 0.5 ≤H ≤ 1, it in
dicates that the time series change has positive persistence, and the 
value of H tends to 1, the stronger the persistence. 

2.2.6. Trend analysis method 
This paper uses the pixel-by-pixel unitary regression trend analysis 

method to analyze the evolution trend of various indicators of China’s 
carbon budget during the research period. If the slope is greater than 0, 
it indicates that these indicators are upward trend during the study 
period, and vice versa. And the larger the magnitude of absolute value of 
the slope is, the faster the change is. The formula is as follows: 

θ=
n ×

∑n
i=1(i × Xi) −

( ∑n
i=1i
)(∑n

i=1Xi
)

n ×
∑n

i=1i2 −
( ∑n

i=1i
)2 (9)  

Where θ is the evolution trend, i is the serial number of the year, n is the 
research period, and Xi is the indicator in the i-th year. 
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2.2.7. Mann—Kendall method 
Mann–Kendall (M–K) trend analysis is a method to detect the 

changing trend of a series (Kendall, 1975; Mann, 1945), without the 
need for a specific distribution test on the data series. In the method, UFk 
stands for sequential time series and UBkc stands for sequential time 
series. If the value of UFk or UBk is greater than 0, it indicates that the 
sequence has an upward trend, and if it is less than 0, it indicates a 
downward trend. When they exceed the critical straight line, it indicates 
a significant upward or downward trend. The range beyond the critical 
line is determined as the time zone where the sudden change occurs. If 
the two curves of UFk and UBk have an intersection point, and the 
intersection point is between the critical lines, then the time corre
sponding to the intersection point is the time when the sudden change 
begins. 

2.2.8. The spatial autocorrelation analysis 
By using spatial autocorrelation analysis, the spatial dependence and 

agglomeration patterns of CNC in China were obtained. Spatial auto
correlation (including global and local spatial autocorrelation) can 
indicate the degree of interdependence and aggregation between attri
butes in a specific area and attributes in other areas. The Moran’s I index 
is used to analyze the overall spatial agglomeration of the entire study 
area (Moran, 1950), as shown in the equation (10). The local index of 
spatial correlation (Anselin, 1995) reflects a large extent the spatial 
correlation between the spatial attribute and its neighboring spatial 
attribute value, as shown in the equation (11). 

Moran
′

sI =

∑n

i=1

∑n

j=1
Wij(xi − x)(xj − x)

S2
∑n

i=1

∑n

j=1
Wij

(10)  

LocalMoran′ sI =
n(xi − x)

∑m

j=1
Wij(xj − x)

∑n

i=1
(xi − x)2

(11)  

where n represents the number of cities in China, m is the number of 
cities adjacent to cityj in space, i ∕= j; S = 1

/n
∑n

i=1(xi − x)2; xi and xj 
represent the CNC of cities i and j; Wij represents the spatial weight 
matrix of i and j; x is the average CNC. The value of I is between − 1 and 
1, and the higher the absolute value of I, the stronger the spatial auto
correlation reflected. When I > 0, there is a positive spatial correlation; 
when I < 0, there is a negative spatial correlation; when I = 0, there is no 
spatial autocorrelation. Local autocorrelation includes four types: high- 
high (HH), low-low (LL), high-low (HL) and low-high (LH), which 
respectively represents the collection of units with high CNC, the 
collection of units with low CNC and units with high (or low) CNC are 
surrounded by units with low (or high) CNC. 

2.2.9. The Gini coefficient 
At present, the Gini coefficient is widely used in the field of CEs 

research to measure its distribution characteristics (Chen et al., 2016; 
Clarke-Sather et al., 2011; Liu et al., 2019). Therefore, this study used 
the Gini coefficient to analyze the degree of polarization of China’s CNC. 
Based on the distribution function, the calculation formula is: 

G=

∫max

min

F(x)(1 − F(x))dx

/

μ (12)  

where the probability density function of the CNC (X) is ƒ(x), min < x <
max. In this formula, min and max indicate the lower limit (can be 
negative) and upper limit of the X. In addition, the distribution function 

of the X is F(x) =
∫x

min
ƒ(t)dt and expectation is μ =

∫min

max
xƒ(x)dx。. 

Since the CNC has a negative value, it is divided into three cases: 
carbon deficit, carbon surplus, and CN to calculate the Gini coefficient 
(Ai, 2017). The CNC function should be segmented function: 

F(x)=

⎧
⎨

⎩

P1F1, min < x < 0
1 − P2, x = 0
1 − P2 + P2F2, 0 < x < max

(13)  

where P1, 1 - P1 - P2 and P2 are the proportions of the three municipal 
administrative regions in the province, with carbon deficit, carbon 
surplus, and CN. The sum of the three equals 1. F1(x) and F2(x) are the 
distribution function of CNC of the case of carbon deficit and carbon 
surplus respectively in each cities. 

According to formula (1), their distribution function can be derived. 
The calculation formula is as follows: 

G1=
∫0

min

F1(x)(1 − F1(x))dx

/

|μ1| (14)  

G2=
∫max

0

F2(x)(1 − F1(x))dx

/

|μ2| (15)  

in the above formulas, G1 is the Gini coefficient for the carbon deficit, 
G2 is the Gini coefficient for the carbon surplus, and the Gini coefficient 
for CN is 0. Therefore, the overall Gini coefficient is: 

G=

∫0

min

F1(x)(1 − F1(x))dx

/

|μ1| +

∫max

0

F2(x)(1 − F1(x))dx

/

|μ2| (16)  

3. Results 

3.1. Spatial pattern and changes in the terrestrial ecosystem carbon sink 
in China 

The NEP and RCS are the main carbon sequestration pathways in 
terrestrial ecosystems, so the ECS is the sum of the NEP and the RCS. This 
study drew a more comprehensive map of the ECS distribution in China 
(Fig. 1), as well as the different continental carbon sink processes. 

This study showed that China’s terrestrial ecosystem was a huge 
carbon sink from 1997 to 2017, and its annual average NEP reached 
0.61 Pg CO2/yr. In 2000, the NEP rose sharply (Fig. 1d). This was due to 
the large-scale ecological restoration project implemented in the 21st 
century in China (Lythgoe et al., 2007; Pan et al., 2011). In terms of 
distribution, the two sides had opposite effects on the NEP with the Hu 
Huanyong line as the boundary. To the southeastern of the boundary, 
the carbon sink was greater than the respiration, exhibiting a carbon 
sink state overall, while the area to the northwest of the boundary 
became a huge carbon source (Fig. 1a). In the carbon sink regions, the 
higher NEP regions were mainly distributed in Yunnan, Sichuan, and 
Heilongjiang, and they were 152.78 Tg, 73.41 Tg, and 61.30 Tg 
respectively. Among them, Yunnan is rich in natural resources and 
contains a wide area of vegetation, so the NEP was particularly promi
nent. In addition, the provinces that were carbon source regions were 
Tibet, Xinjiang, Qinghai, Ningxia, and Tianjin. Among them, the NEP in 
Tibet was more than 100 times that in Tianjin. 

In addition to the vegetation and soil carbon sink in the ecosystem, 
the IPCC pointed out that rock weathering is also a main carbon sink (Pu 
et al., 2015). The RCS in China was 10 Tg C/yr. As can be seen from 
Fig. 1b, the RCS varied significantly spatially. The RCS high values were 
mainly distributed in southwestern China. For example, due to the warm 
climate, abundant precipitation, and widespread carbonate rocks, the 
RSC has further increased Guangxi’s CO2 absorption (6.14 Tg), ac
counting for 10% of the RCS in China. 

From 1997 to 2017, the ECS exhibited a slow upward trend, with an 
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average annual growth rate of 2.77%. The minimum occurred in 1998 
(0.12 Pg C/yr), and the maximum occurred in 2014 (0.21 Pg C/yr). The 
RCS was stable, with slight fluctuations, during this period. China’s CEs 
rose sharply year by year from 1997 to 2017, with an average annual 
rate of change of 9.81%, which was about four times the change in the 
ECS. In addition, the ECS is a natural background resource, so it only can 
alleviate the pressure of CN to a certain extent. Since 2005, the gap 
between the CEs and ECS has continued to widen. 

3.2. Spatial pattern of the carbon neutral capacity in China 

During the study period, annual CEs of 5.63 Pg CO2 were not 
absorbed, which is about 90% of the annual average CEs. However, the 
entire country was not in a state of carbon deficit. Due to economic 
factors, the carbon surplus regions were mainly concentrated in the less 
developed northeastern and southwestern border regions (Fig. 2). 

Twenty-eight cities (county-level cities) across the country contrib
uted 117 Tg of ECS in addition to achieving CN. China derived 53.56% of 
carbon surplus (25.26 Tg) from Yunnan, which contains 11 cities. The 
top provinces were Heilongjiang, Guangxi, and Gansu, with 12.53 Tg, 
7.35 Tg, and 5.51 Tg, respectively. Heilongjiang was the only province 
located in the north. It should be noted that the top three carbon surplus 
provinces contributed about 88.5% of the country’s carbon surplus. 
Yunnan was the province with the most cities achieving CN in China. 

From 1997 to 2017, the carbon deficit regions were widely distrib
uted within all of the provinces and 325 cities (Fig. 2b). The province 
with the highest carbon deficit (0.52 Pg/yr) was Shandong Province in 
northern China, and each of the cities in the province was in a state of 

carbon deficit. 
Based on geographical and economic characteristics, China can be 

divided into eight economic regions (Development Research Center of 
the State Council, 2005). The carbon deficit was more serious in the 
plains and economically developed sections of the coastal areas. The ECS 
of the northern and eastern coastal areas were much smaller than the 
CEs, so the carbon deficit in the coastal areas was 0.07–0.52 Pg (Fig. 3). 
The carbon deficit fluxes of Shanghai and Tianjin were as high as 8.78 
t/km2/yr and 27.16 t/km2/yr, respectively (Table S5). The north
western and southwestern regions showed the opposite pattern. These 
two regions were the largest carbon sources and carbon sinks in China. 
Therefore, in the northwest, the terrestrial ecosystems in all of the 
provinces, except Gansu emitted CO2, of which Xinjiang was the most 
significant. In southwestern region the only province (Yunnan) achieved 
an average annual CN target (24.67 Tg/yr). The CNC fluxes of all of the 
other provinces, except Chongqing, were greater than − 0.8 t/km2/yr 
(Table S5), which has great potential for achieving CN. Due to the water 
loss and soil erosion, flooding, and relatively developed economies in 
the Yellow River Basin and the middle reaches of the Yangtze River, the 
provinces in these regions experienced carbon deficits, and the carbon 
deficit in the middle reaches of the Yellow River was more serious (1.11 
Pg/yr). 

3.3. Temporal evolution of the carbon neutral capacity in China 

As shown in Fig. 4, the change in the CNC in China from 1997 to 
2017 was − 13.37 Tg/yr, indicating that the CNC of China’s terrestrial 
ecosystems generally weakened (Fig. 4a). The year with the weakest 

Fig. 1. The spatial pattern of the terrestrial ecosystem carbon sink (ECS) in China (b), including the net ecosystem productivity (NEP) (a) and rock weathering carbon 
sink (RCS) (b). The time evolution of them and carbon emissions (CEs) (d). (In the Fig. 1d, these data exclude Tibet, Hong Kong, Macau and Taiwan; green axis is NEP 
and ESC, organ axis is RCS and red axis is CEs). 
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Fig. 2. The spatial distribution (a) of the carbon neutral capacity (CNC) of cities in China and the proportions (b) of the carbon surplus and deficits of the cities (the 
above data exclude Tibet, Hong Kong, Macau and Taiwan). 

Fig. 3. The current status of the carbon budget in eight economic regions of China (Unit: Tg/yr; a positive value of carbon budget means carbon deficits; the above 
data exclude Tibet, Hong Kong, Macau and Taiwan). 
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CNC was 2014 (− 8.71 Pg/yr), which was caused by the dramatic in
crease in the CEs of the country at that time (Fig. 1d). In 1998, China’s 
CNC reached its peak (− 2.22 Pg/yr), which was far smaller than China’s 
CN since the beginning of the 21st century. Moreover, the changes in the 
CNC of various provinces were also quite different due to differences in 
their natural conditions and the growth rate of their CEs. During the 
study period, most of the provinces (cities) remained stable as carbon- 
deficient provinces (Fig. 4a). These provinces, especially Xinjiang and 
Ningxia, cannot achieve indirect emission reductions in the terrestrial 
ecosystem, so they can only seek man-made scientific and technological 
means of achieving the CN targets. 

In order to further analyze the changes in China’s CNC, ECS, and CEs 
from 1997 to 2017 and to avoid the randomness and contingency of the 
analysis results (Lv et al., 2014), the trend analysis method was used to 
explore these calculation results. In this study, the downward trend was 
divided into three grades: slight decrease (0 to − 10), significant 
decrease (− 10 to − 20), and sharp decrease (>-20). Although the CNC of 
the four municipalities were relatively weak, they also maintained a 
slight upward trend during the study period (Fig. 4b). This showed that 
the leading edge of China’s economic development was doing its best to 
achieve the emissions reduction targets. In addition, the trend of 
maintaining a slight decrease in the CNC exhibited temporal continuity 
(H > 0.8). As can be seen from Fig. 4, the temporal change in the ECS 
was maintained at 3.50 Tg/yr to − 0.13 Tg/yr, which was much lower 
than the growth rate of the anthropogenic CEs. Therefore, the CNC of 
each province was limited by the CEs. The provinces with significant 
decreases were Guangdong, Liaoning, Zhejiang, Xinjiang, and Shanxi. 
Among them, Liaoning, Xinjiang, and Shanxi are China’s major energy 
provinces. This showed that in China, economic development and CN 
goals exist in a state of contradiction. The top five provinces with the 
strongest decreases in CNC were Shandong, Jiangsu, Hebei, Inner 
Mongolia, and Henan, which are mainly northern provinces. 

From 2001 to 2003, the proportion of heavy industry in the indus
trial added value increased year by year, reaching 60.6%, 62.6%, and 
64.2% in 2001, 2002, and 2003, respectively (Zheng, 2005). This indi
cated that 2004 was the time node, and China had officially entered a 
period of heavy industrialization. Thus, with the advent of the heavy 

industrialization period, the CNC of most of the provinces in China 
exhibited a significant downward trend (Fig. S1). The mutation time for 
Beijing, Inner Mongolia, Qinghai, and other provinces was earlier. 
Around 2000, the CNC further dropped sharply. The mutation point of 
the decline in Hainan’s CNC was 6 years later than the average mutation 
time in China. This was because Hainan’s economy predominantly 
relied on tourism, and its industrial development was relatively lagging. 
In 2010, Hainan’s economic growth rate hit a record high since 1994, 
and its GDP increased by 200 billion yuan (Li, 2021). 

3.4. Potential spatial dependence and degree of polarization of carbon 
neutral capacity 

The average CNC of China’s cities from 1997 to 2017 was analyzed 
using the global Moran’s I (Fig. 5a), and the results showed that the CNC 
had a significant positive spatial correlation (Moran’s I = 0.315, p = 0). 
There was an obvious spatial agglomeration characteristic. We further 
analyzed the local Moran’s I and divided the spatial dependence into 
four types: (1) high values and high value clusters; (2) high values and 
low value outliers; (3) low values and high value outliers; and (4) low 
values and low value clusters. The cities in China were dominated by 
high values and high value clusters and by low values and low value 
clusters. The spatial boundaries of the distribution of the two were 
located in the southwestern and the northeastern parts of China, 
respectively. Both had 99% confidence levels (Fig. 5b). Lanzhou in 
Gansu Province was the only city in northwestern China whose low CNC 
was surrounded by high values. In Sichuan, Yunnan, Guizhou, and 
Guangxi, there were mainly high values and high value clusters. Only in 
Jiangsu were there low values and low value clusters in the entire 
territory. 

The Gini coefficient is a common index used to measure the degree of 
polarization of internal indicators in a region. The closer the Gini coef
ficient to 0, the more equal the CNC of the province. Values of <0.2 are 
regarded as the absolute average CNC; 0.2–0.3 is regarded as a relatively 
average CNC; 0.3–0.4 is regarded as a relatively reasonable CNC dis
tribution in the province; and 0.4–0.5 is regarded as a CNC with a large 
gap. When the Gini coefficient reaches >0.5, there is a great disparity in 

Fig. 4. Time change (a), trend (b), and trend persistence (c) of carbon neutral capacity (CNC) of Chinese provinces from 1997 to 2017 (Unit: Tg/yr; the above data 
exclude Tibet, Hong Kong, Macau and Taiwan; The sequence of Fig. 4b is the same as that of Fig. 4c). 
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the CNC. Most provinces are not highly polarized, that is, there is no 
significant differences in CNC between cities in the provinces. It should 
be noted that the CN capacities of the cities in the provinces with weaker 
CN capacities were also weaker, that is, the area with cold spots corre
sponded to a low Gini coefficient (Fig. 5b and c). However, Qinghai, 
Hubei, Sichuan, Gansu, Heilongjiang, and Xinjiang had very large gaps 
between different cities, with Gini coefficients of 0.53, 0.47, 0.46, 0.45, 
0.44, and 0.40, respectively. These provinces all represent regions with 
large economic differences within provinces. The high growth rates of 
the economy and industrialization capabilities were mainly concen
trated in the provincial capitals and in a few developed prefecture-level 
cities. This further widened the gap between their CNC. For example, 
Chengdu is the economic center of Sichuan, with a carbon deficit of 59 
Tg, which emitted nearly 30% of the province’s CO2, while the Ganzi 
Tibetan Autonomous Prefecture in Sichuan had a carbon surplus of 8 Tg 
and only emitted 4 Tg of CO2. 

4. Discussion 

4.1. Comparison with related studies 

In recent years, several scholars have separately estimated and 
analyzed the CEs and ECS. To this end, the IPCC has also established an 
internationally accepted CEs calculation model. The CEs data used in 
this study were basically consistent with the data obtained using the 
IPCC method, with an average relative error of only 5% (Table 1). This 
demonstrates that the CEs data used in this study were more accurate 
and reliable. 

As can be seen from Table 2, in 2011, Fang et al. (2007) found that 
the NEP in China was 0.136–0.176 Pg/yr based on the resource in
ventory, which is slightly smaller than the value obtained in this study. 
This difference is caused by the author’s failure to make a more accurate 
assessment of the soil carbon sequestration, but the two results still 
remain at one of the same orders of magnitude, and the difference is not 
large. In addition, Pan et al. (2011) also found that the carbon sink in 
China was 0.182 ± 0.45 Pg/yr based on the forest data inventory and 
the ecological carbon sink mode. The result of this study (0.153 Pg/yr) 
lies between these estimated values, which demonstrates that our 
research on the NEP is reasonable. Zhang et al. (2020) used the same 
research ideas and estimated the value of the NEP from 2001 to 2010 to 
be 0.134 Pg/yr based on multi-source data, and these results are rela
tively close. In addition, Piao et al. (2009) used five ecosystem models to 

confirm China’s huge carbon sequestration potential (0.13–0.22 Pg/yr). 
The results of this study are between Piao’s results for the same time 
scale. This provides strong scientific support for China to formulate 
appropriate direct emissions reduction measures based on the goal of 
CN. Moreover, the results of this study have also been confirmed to be 
reliable on other regional scales (Pacala et al., 2001) (Table 1). 

Qiu et al. (2004) and Gong et al. (2020) used the GEM-CO2 method to 
estimate the magnitude of the RCS in China, and their results were 14 Tg 
C and 17.6 Tg C, respectively. These results are slightly larger than the 
values calculated in this study, but they are both of the same order of 
magnitude. This situation may be caused by differences in the runoff 
calculation methods and the spatial resolution. In this study, higher 
precision (1 km) raster data were used, so our value more clearly reflects 
the changes in the regional runoff, but the carbon sink value will be 
slightly smaller. However, Liu and Zhao (2000) and Xu and Jiang (1997) 
calculated that the RCS in China was 0.48–1.78 Tg C based on the 
hydrochemical runoff law. The magnitude of the carbon sink obtained in 
this study is also within the range of their results, and the differences in 
research period, data sources, and accuracy may also lead to small dif
ferences in the results. 

In summary, the comparison presented above shows that the results 
of this study are reliable. This model is reasonable and reliable in terms 
of the calculation of China’s CNC. It can more accurately quantify the 
temporal and spatial patterns of the CNC in the different regions of 
China. 

4.2. Comparison of carbon neutral capacities of China and other 
countries 

From 2000 to 2015, China made great achievements in reducing 
emissions. The carbon intensity in China was in a period of rapid decline, 
from 2.60 kg/USD in 2000 to 0.81 kg/USD in 2015, i.e., an average 
annual decrease of up to 11% (Fig. 6a). However, there was still a large 
gap compared with developed countries. In 2015, China’s CEs intensity 
was 2.74 times that of the United States and 2.92 times that of Japan. 
Therefore, the 14th Five-Year Plan proposes to “implement a system 
with carbon intensity control as the mainstay and total CEs control as a 
supplement.” It is necessary to start by adjusting the industrial structure, 
optimizing the energy consumption structure, and accelerating the 
economic transformation (Ping et al., 2020). 

However, in terms of per capita CEs, China’s was lower than the 
United States, Japan, and Russia, and the annual average level was only 

Fig. 5. Potential dependence analysis (a), degree of polarization (b), and the hot and cold spots (c) of carbon neutral capacity (CNC) in China’s provinces from 1997 
to 2017 (the above data exclude Tibet, Hong Kong, Macau and Taiwan). 
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25% that of the United States. However, during this period, the per 
capita CEs in the United States exhibited a continuous downward trend 
through the turning point (Fig. 6b). As a newly industrialized country, 
China was continuously increasing its per capita CEs due to industrial
ization, urbanization, and improved living patterns (Diakoulaki et al., 
2006; Talukdar and Meisner, 2001). In addition, the rate of decrease of 
the CNC in China far exceeded those of the above three countries, and its 
ECS was the lowest, except for Japan, which has small resources (Fig. 6c 
and d). We should consider that economic development is important, 
but economic growth alone cannot bring about environmental sustain
ability (Yang et al., 2021; Cumming and von Cramon-Taubadel, 2018). 
Therefore, achieving the inflection point of per capita CEs as soon as 
possible should be a policy goal. 

4.3. Future scenario forecast of China’s carbon neutral capacity 

By exploring the future potential of China’s CN, this study hoped to 
understand emissions in China in order to provide theoretical support 
for the more effective implementation of greenhouse gas emissions 
reduction. In this study, population size, economic level, and techno
logical level were considered to be the driving factors of CEs, and the CEs 
in different years were used as the output parameters. Finally, a back 
propagation (BP) neural network model was used to predict China’s CEs 
from 2025 to 2060. We have envisaged two scenarios for the future, 
where A2 is a regional development scenario, and B1 is a global sus
tainable development scenario (Intergovernmental Panel on Climate 
Change, 2000). The test results of the neural network model showed that 
in the verification of the test samples, the relative errors of the CEs in the 
two scenarios were within 10% (Fig. S2). Among them, 90% of the 
annual CEs had a relative error of less than 5%. This proved that the 
model had certain accuracy in predicting China’s CEs. So the results 
indicated that under scenario A2, CEs will continue to increase in the 
future, and the goal of reaching peak CEs will still not be achieved by 
2030 (Fig. 7). Moreover, China’s CEs will exceed 13 Pg in 2060. In 
scenario B1, China’s CE rate will increase enormously because some 
high-tech industries and service industries will emerge, and the demand 
for infrastructure investment will continue to increase (Wang and Lin, 
2017, Wang et al., 2018). As a result, CEs will soar and exceed 20 Pg, but 
the carbon peak will eventually be achieved in 2029 through the 
establishment of a mature sustainable development system, which will 
reduce CEs to 8 Pg in 2060 and return to the 2010 CEs level. Therefore, 
scenario B1 is more in line with the long-term development goals. In 
view of this fact, if the industrial structure and other aspects are not 
adjusted, China’s rapid economic growth will occur at the expense of 
natural resources and the environment (Hatfield-Dodds et al., 2015). 

Using the IBIS model to calculate the NPP, in this study, the future 
ECS was also divided into two scenarios, A2 and B1. As can be seen from 

Table 1 
Comparison of the carbon emissions (CEs) in this paper with the IPCC results.(carbon emission accounts and datasets (CEADs); International Panel on Climate Change 
(IPCC)).  

Location 1997 2010 2017 MEAN 

IPCC CEADs IPCC CEADs IPCC CEADs IPCC CEADs 

Beijing 61.9 42.5 103.0 90.9 85.0 60.1 86.8 64.0 
Tianjin 51.4 52.9 136.6 123.9 141.0 150.0 104.9 99.0 
Hebei 212.1 225.6 647.0 594.8 726.0 682.4 502.1 463.6 
Shanxi 148.7 156.1 406.5 374.1 488.0 397.6 327.1 292.2 
Inner Mongolia 97.0 117.0 477.4 465.7 639.0 573.5 351.9 334.1 
Liaoning 200.7 174.6 446.3 405.7 479.0 433.5 341.8 318.8 
Jilin 98.6 93.2 202.1 213.8 204.0 227.7 158.9 165.4 
Heilongjiang 129.1 86.3 218.3 217.5 269.0 225.4 190.4 170.7 
Shanghai 103.2 109.1 187.1 230.7 190.0 192.5 160.6 171.5 
Jiangsu 183.9 186.4 580.3 583.8 736.0 669.7 451.8 440.3 
Zhejiang 115.4 117.3 358.6 373.5 382.0 369.6 272.3 271.9 
Anhui 109.5 105.7 261.9 282.8 371.0 322.9 222.1 218.8 
Fujian 44.2 68.2 199.4 188.4 230.0 230.0 147.8 149.2 
Jiangxi 51.8 57.8 148.4 150.0 224.0 212.5 124.9 123.6 
Shandong 199.3 320.4 766.6 727.6 806.0 766.6 557.2 523.5 
Henan 154.3 175.9 504.7 475.9 494.0 551.3 364.0 372.2 
Hubei 133.9 130.4 324.3 305.4 325.0 329.0 238.0 239.2 
Hunan 98.0 82.9 254.9 231.8 310.0 311.5 194.7 187.5 
Guangdong 165.1 171.3 471.5 469.0 542.0 514.6 369.9 366.2 
Guangxi 50.8 59.5 171.8 162.5 221.0 231.8 129.5 133.2 
Hainan 7.2 13.0 28.9 19.5 42.0 39.6 24.0 20.6 
Chongqing 55.4 63.2 141.5 141.0 158.0 153.8 109.3 110.2 
Sichuan 123.1 106.9 303.8 291.7 309.0 331.1 221.5 224.7 
Guizhou 72.2 87.3 191.5 207.5 255.0 253.6 161.3 166.7 
Yunnan 58.0 60.6 194.2 167.9 195.0 211.9 136.3 131.6 
Shaanxi 68.9 69.6 218.6 216.3 262.0 275.4 162.5 167.3 
Gansu 50.3 54.0 126.5 138.2 151.0 171.4 102.2 109.9 
Qinghai 11.5 17.8 31.8 28.3 53.0 58.1 29.6 29.3 
Ningxia 17.1 32.0 95.3 81.6 175.0 168.6 82.3 77.5 
Xinjiang 63.2 53.0 167.6 190.5 404.0 340.7 168.6 162.2 
Total 2935.8 3090.5 8366.4 8150.3 9866.0 9456.4 6494.1 6304.9  

Table 2 
Comparison of NEP magnitude in China with other research results.  

Region Method NEP (Pg C/ 
yr) 

Study 
period 

Reference 

China Bottom-up process 0.182 ± 0.45 2000–2007 Pan et al. 
(2011) 

Resource inventory 0.136–0.176 1981–2000 Fang et al. 
(2007) 

NPP-RH 0.134 2000–2015 Zhang et al. 
(2020) 

Ecosystem models 0.13–0.22 1980–2002 Piao et al. 
(2009) 

United 
States 

The tracer-transport 
inversion method 

0.30–0.58 1980–1989 Pacala et al. 
(2001) 

China This study 0.12–0.21 1997–2017  
This study 0.120–0.127 1997–2000  
This study 0.153 2000–2007  
This study 0.172 2000–2015  

United 
States 

This study 0.39 2000–2015   
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Fig. 7, the ECS will continue to increase in the future in both scenarios 
A2 and B1 (Fig. 7b). Under scenario B1, the growth trend of the ECS will 
be greater than that under scenario A2, which shows that the sustainable 
development of globalization can not only drive the improvement of the 
economy and the value of ecological services but also contribute more to 
the mitigation of global climate change. However, due to global 
warming and the effect of CO2 fertilization, the CO2 absorbed by 
terrestrial ecosystems under scenario A2 from 2025 to 2060 will be 
slightly greater than that under scenario B1. In summary, under scenario 
B1, the terrestrial ecosystem will absorb nearly 21 Tg of CO2 less than 
under scenario A2, which is equivalent to the CO2 emitted by half of 
Qinghai in 2017. 

Since the magnitude of the ECS will be smaller than that of the CEs, 
the future change in the CN potential will be mainly affected by the 
changes in the CEs (Fig. 7c). As shown in Fig. 7c, in scenario A2, China’s 
carbon deficit soars from 9.46 Pg in 2025 to 11.33 Pg in 2030. By 2060, 
China will have 12.5 Pg CO2 of CEs that need to be eliminated to achieve 
CN. In scenario B1, China’s carbon deficit will be 15.0 Pg, 21.18 Pg, and 
7.3 Pg by 2025, 2030, and 2060, respectively. This indicates that 
although the potential for CN status is going to weaken in the early 
stage, the sustainable development of globalization may relieve the 
pressure of reducing emissions to a certain extent during long-term 
development. From 2017 to 2060, the CN capacities under the two 
scenarios (A2/B1) will decrease by 44.58% and increase by 15.54%. 
Among them, under scenario B1, the sharpest decline between 2017 and 
2028 may be caused by the failure to find a correct balance between 
rapid economic development and ecological protection (Liu et al., 
2020). In addition, it can be clearly seen that under the two scenarios, 
the proportion of CEs absorbed by terrestrial ecosystems over time will 
change along opposite trends (Fig. 7d). This demonstrates that 

environmental sustainability can only be achieved through timely 
technological innovations and the transformation of the production 
structure and consumption patterns (Liang et al., 2014). The application 
of clean energy and man-made emissions reduction technologies should 
be further strengthened. Only with low-carbon industries, buildings, and 
transportation systems and the implementation of the concept of 
low-carbon consumption can we achieve future CN goals while taking 
into account regional poverty alleviation and development. However, in 
the early stage of promoting sustainable development and clean energy, 
the cost China needs to pay in terms of CEs is also huge. 

4.4. Future perspectives and uncertainty 

There is also some uncertainty in the results of this study. First, for 
the CE measurement, the different statistical standards and units used 
(Chen et al., 2005, 2009; Pan et al., 2013) caused differences in the CE 
statistics of the different provinces and countries. In addition, in terms of 
the prediction of the CN capability, the factors were quite complex and 
diverse. Although eight representative indicators were selected for the 
analysis in this study, the impacts of factors such as the energy prices, 
and environmental regulations on CEs were not considered. This had an 
impact on the calculation of the CEs. These factors will be incorporated 
into the model in the future. 

Second, when calculating the RCS, due to the difficulty of obtaining 
the actual runoff on the pixel scale, the calculated runoff depth was 
deduced from the actual results. Moreover, soil erosion also can influ
ence ECS (Luo et al., 2022). In addition, studies have shown that the 
error of the soil respiration was between 2% and 4% (Pei et al., 2009). In 
terms of the simulation and prediction of the carbon sink, the spatial 
resolution of the CMIP5 and IBIS prediction data was relatively large 

Fig. 6. Carbon emissions (CEs) intensity (a), per capita CEs (b), carbon neutral capacity (CNC) (c), and the relationship (d) between ecosystem carbon sink (ECS) and 
CEs for China and other countries (the United States, Japan, and Russia). 
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(0.5◦), so the model cannot reflect the details in specific regions in a 
more detailed manner, including smaller cities such as Shanghai. These 
issues need to be resolved in future research. Finally, according to the 
uncertainty model (Landschützer et al., 2014), the uncertainty of the 
results in this study was between 15.36% and 27.26%. The uncertainty 
represents the maximum deviation because it is the maximum cumula
tive uncertainty in all data and models. 

5. Conclusion 

Based on China’s energy emissions data, meteorological and hydro
logical data in China, lithology data and vegetation data, we used GEM- 
CO2 model, soil respiration model, spatial autocorrelation analysis 
method, neural network model and other methods to reveal the tem
poral and spatial distribution pattern of ECS in China, explore the dif
ferences in CN capacity in different regions of China, and Simulate and 
predict it under future scenarios. Specific conclusions are as follows:  

(1) China’s terrestrial ecosystem was a huge carbon sink from 1997 
to 2017, and its annual average NEP reached 0.61 Pg CO2/yr. 
Furthermore, China’s CEs have been rising sharply year by year 
from 1997 to 2017, with an average annual change rate of 9.81%.  

(2) During the study period, annual CEs of 5.63 Pg CO2 were not 
absorbed, which is about 90% of CEs.  

(3) In China, CNC was generally weakening. Although the CNC of 
some municipalities were relatively weak, they also maintained a 
slight upward trend. This showed that the leading edge of China’s 
economic development were trying its best to achieve emission 
reduction targets.  

(4) The cities in China were dominated by high-value and high-value 
clusters and low-value and low-value clusters. The spatial 

boundaries of the distribution of the two were obvious located in 
the southwest and the Northeast of China respectively. The po
larization degree of China’s CNC is in a relatively reasonable 
level.  

(5) In the B1 scenario, China’s carbon deficit will be 15.0 Pg, 21.18 
Pg and 7.3 Pg by 2025, 2030, and 2060, respectively. This proved 
that although the potential for CN is going to weak in the early 
stage, the sustainable development of globalization may be 
relieve the pressure of reducing emissions to a certain extent in 
the long-term development. 
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