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Abstract: The fragile karst habitat is extremely sensitive to human activities such as large-scale
engineering construction. To explore the influence of the construction and operation of the GH
(Guiyang-Huangguoshu) highway on the vegetation within a certain range and the response of NDVI
to climate factors, Landsat data were used to synthesize annual NDVI maps using the maximum
value compositing method. Trend, correlation, and coefficient of variation analyses were performed.
The results demonstrate that: (1) During the construction and operation periods, NDVI showed an
overall upward trend, and the NDVI value and growth rate in the contrast area were greater than
those in the core area; (2) the correlation between temperature and vegetation cover along the GH
highway was stronger than that between precipitation and vegetation; (3) construction of the GH
highway has had a significant impact on the surrounding vegetation, with the impact on vegetation
ecology along the road mainly concentrated within the 2 km range. The increase of artificial surfaces
along the road has had a great impact on the NDVI, and the vegetation cover change in the core area
is more significant than that in the contrast area; and (4) the overall disturbance of the GH highway
project to the surrounding ecology was mainly observed in the form of low and medium fluctuations.
This study aims to provide a reference for environmental assessment and management in karst areas.

Keywords: vegetation dynamics; road construction; influencing factors

1. Introduction

The environment is the basis of human survival and development, comprising the
sum of various natural factors within and around human society [1]. At present, China is
committed to conserving natural ecosystems, focusing on strengthening the protection of
the environment in large river basins [2]. Guizhou Province is located in the southwest
karst area of China—the largest continuous karst landform region in the world [3]—which
spans the Yangtze River and the Pearl River. It is an important ecological barrier in the
upper reaches of the “two rivers”. The entire ecological quality of this region is in good
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condition [4]; however, its ecosystems are vulnerable due to their significant sensitivity to
external disturbances (including human activities and climate change) in this zone [5]. The
Chinese government completed built numerous transportation infrastructure projects in
Southwest China in recent years. As a consequence, the depth of highway access, road qual-
ity and network level in Guizhou been significantly improved. However, road construction
projects are often in conflict with ecological protection. The rapid expansion of road traffic
has brought unprecedented challenges to the local environment, and the construction or
expansion of various types of roads may (directly or indirectly) leads to serious degradation
of the natural environment, as well as increased local plant mortality. Therefore, a primary
ecological problem to be addressed is to determine the current situation and change trend
of vegetation along highways in karst region.

Highway construction and other large-scale construction activities can directly affect
the environment by changing the surface vegetation cover. A construction project may
greatly change the topography of the original slope conditions, geological conditions
and natural stability, leading to increased vulnerability of the surrounding environment.
Furthermore, with the promotion of large-scale projects, economic activities along the
project will be activated, potentially including unreasonable human cultivation, excessive
reclamation, overgrazing and urban expansion, all of which can lead to a decrease in
vegetation coverage [6–8]. Therefore, large-scale artificial engineering activities have a
significant impact on the growth and distribution of land surface vegetation [9,10], and
can even change the distribution of vegetation coverage at the regional scale [11]. In
contrast, reasonable project construction planning and ecological protection measures,
such as afforestation, mountain closure afforestation and the improvement of agricultural
technology, can facilitate the recovery vegetation [12,13].

Vegetation is one of the key components of the terrestrial ecosystem playing a fun-
damental role in regulating energy exchange and material cycling [14], especially in the
process of karst rocky desertification control and ecological restoration [15,16]. Evidence
has shown that, climate change is an important environmental factor having a significant
impact on vegetation dynamics [17,18]. It influences the function and structure of the
ecosystem by acting on the growth and adaptation characteristics of plants [19]. Tempera-
ture and precipitation are the most direct and important factors for vegetation growth and
phenology [20,21]. At present, the normalized vegetation index (NDVI) is widely used to
monitor vegetation and explore its response to climate change [22]. NDVI is an effective
indicator of vegetation growth status and vegetation coverage, and it has a good linear
relationship with surface vegetation. In a study on the correlation between global climate
factors and NDVI changes, it has been found that NDVI presented an increasing trend with
the increase in temperature in the middle high latitudes of the Northern Hemisphere [23].
In a regional study, it has been found that the seasonal variation of NDVI in different years
were also responsive to land processes [24]. A spatial–temporal variation trend has been
observed to vegetation degradation along with its response to climate change and anthro-
pogenic stress [25]. Temperature may be an important driving force limiting forest greening
in mountainous areas due to recent climate warming [26]. The NDVI of Guizhou karst
area has been found to be more affected by temperature than precipitation and was one of
the provinces with the most obvious environmental improvement [27,28]. In karst areas, a
significant increase in vegetation NDVI is has been closely related to climate warming, but
weakly related to precipitation [27,29]. Climate change in karst regions typically presents a
cold-dry trend, while vegetation NDVI presents a recovery trend [30].

Although many scholars have studied the response of vegetation to human activities
and climate factors, few have studied the impact of large engineering construction on
the environment in karst areas. Relevant studies have revealed the spatial and temporal
response relationship between NDVI and climate factors along the Qinghai–Tibet (QT)
railway, as well as human activities, indicating that the influence of construction and
operation of the QT railway on NDVI tended to weaken outward from the QT railway,
while temperature and precipitation were positively correlated with NDVI [31,32]. Human
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activities have contributed to the response relationship between regional vegetation change
and climate change [33,34]. In karst areas, human activities tend to have a stronger role in
vegetation improvement and degradation than climate change [35].

The Guiyang–Huangguoshu highway (GH highway) is the first highway built in
the karst area. Over a long times scale (35 a), the construction and operation activities
of this large project and the subsequent enhancement of human activities along the line
were sufficient to change the original land-cover and affect the surrounding environment,
resulting in the destruction of habitats along the line. Therefore, GH highway is an ideal
research area. In this study, we take the earliest GH highway in the karst region as the
research object. High-resolution NDVI data from 1986 to 2020 are used. The trend of NDVI
in the area within 8 km of the GH highway route is analyzed. The impacts of temperature,
climate, land use and land-cover change (LUCC) on the vegetation along the highway are
comprehensively considered. We explored the long-term impact of road traffic engineering
on vegetation, in order to provide guidance for future road traffic route planning and
industrial layout in fragile karst regions.

2. Materials and Methods
2.1. Study Area

The GH highway is the first high-grade highway in the karst region [36]. It started
construction in August 1986 and opened to traffic in May 1991. GH highway starts from
Guiyang and finally reaches Huangguoshu, with a total length of 137 km (Figure 1). The
average elevation of the road is about 1200 to 1300 m, low in the middle and high around
the ends. The climate is subtropical monsoon with a mean annual temperature (MAT) of
15.3 ◦C. The mean annual precipitation (MAP) is about 1100 mm. The GH highway is
located in a typical karst landform area, within karst landforms accounting for 76.5% [37].
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2.2. Data Collection and Processing
2.2.1. NDVI Data

Landsat 5, Landsat 7, Landsat 8 TM image data has been collected by the Google Earth
Engine. The time resolution is 16 days and the spatial resolution is 30 m. The Maximum
Value Composite (MSV) method [38] was used to generate the annual Maximum NDVI
Value from 1986 to 2020. This study taken NDVI as an indicator and used the current
situation vector data of GH highway to generate a 4 km buffer zone (hereafter referred
to as the core area) in ArcGIS to evaluate the direct impact of human activities on the
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environment of GH highway. To evaluate the indirect effects of human activities on the
environment of GH highway. We generated a 4 km buffer zone (hereafter referred to as the
contrast area) in the periphery of the core area. The NDVI of the core area was divided into
four buffer zones according to 1 km, and the direct impact of GH highway on the NDVI of
human activities along the highway was evaluated.

2.2.2. Meteorological Data

Raster data of temperature and precipitation at 1 km resolution were used. The
temperature and precipitation from 1986 to 2015 were collected from the Data Center
of Institute of Geographic Sciences and Natural Resources Research, Chinese Academy
of Sciences (https://www.resdc.cn/, accessed on 1 October 2022). The data of annual
precipitation and annual temperature from 2016 to 2020 are from the monthly scale data
provided by China Meteorological Administration (http://data.cma.cn/, accessed on
1 October 2022). The meteorological interpolation software ANUSPLIN was used to
interpolate the temperature and precipitation data with a spatial resolution of 30 m. The
digital elevation map (DEM) was introduced in the interpolation process to reduce the effect
of topography on climate, thus minimizing the interpolation error and greatly improving
the accuracy compared with other interpolation methods [39], which is more suitable for
the analysis of meteorological elements of time series [40]. The above monthly synthesized
temperature and precipitation data are extracted by ArcGIS to synthesize the annual
average precipitation and annual average temperature data, and resampling into 30 m
in ArcGIS.

2.2.3. Terrestrial Surface Data

The DEM digital elevation model is derived from the Geospatial Data Cloud (http://
www.gscloud.cn/, accessed on 1 October 2022) with a spatial resolution of 30 m. LUCC data
from 2000 to 2020 are obtained from the Globalland30 (http://www.globallandcover.com/,
accessed on 1 October 2022), the spatial resolution is 30 m, the dataset includes ten types
of land cover [41]. Wetlands are reclassified as water bodies due to its small area in the
study region.

2.3. Methods
2.3.1. Trend Analysis Method

Trend analysis is a linear regression analysis of the changes of variables over timescales.
It can not only track and analyze the change trend of variables, but also predict the change
trend of variables. In the analysis of the change trend of inter-annual NDVI, the slope is the
minimum power of the raster value of the time series, and the change value of spatial pixel
on the time scale can be calculated by traversing pixel by pixel, and the change trend can
be obtained [42]. The calculation method is as follows:

∅Slope =
n × ∑n

i=1(i × NDVIi)− ∑n
i=1 i ∑n

i=1 NDVIi

n × ∑n
i=1 i2 − (∑n

i=1 i)2 (1)

where, ∅Slope is pixel regression Slope, NDVIi is NDV value in the n year, and n is time
length. When ∅Slope > 0, it indicates an increasing NDVIi trend, and when ∅Slope < 0, it
indicates a decreasing NDVI trend.

2.3.2. Analysis of Correlation

Correlation analysis is a statistical method to study the correlation between two or
more variables. In data analysis, it is often used to analyze the relationship between
continuous independent variables and continuous dependent variables. When there are
many features, Pearson correlation analysis is used. Pearson’s correlation coefficient is a

https://www.resdc.cn/
http://data.cma.cn/
http://www.gscloud.cn/
http://www.gscloud.cn/
http://www.globallandcover.com/
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statistic reflecting the degree of linear correlation between two variables. The calculation
formula goes as follows:

rxy =
∑n

i=1(xi − x)(yi − y)√
∑n

i=1(xi − x)2
√

∑n
i=1(yi − y)2

(2)

where, rxy is the correlation coefficient of NDVI precipitation or temperature, which is
between −1 and 1. The larger the value, the greater the correlation, and the smaller
the value, the smaller the correlation. x, y are the mean values of multi-year NDVI and
precipitation or temperature, xi, yi are the NDVI values of the ith year and the temperature
and precipitation values of the i year.

R12,3 =
r12 − r13r23√(

1 − r2
13
)(

1 − r2
23
) (3)

where R12,3, R13,2, R23,1 is the partial correlation coefficients among variables; R12,3 is the
partial correlation coefficient between r1 and r2 after fixing the variable r3. R12,3 > 0 indicates
positive correlation, that is, the two factors are correlated in the same direction; R12,3 < 0
indicate negative correlation, that is, the two elements of heterotrophy correlation; the
larger the partial correlation coefficient is, the stronger the correlation between the two
elements at the pixel is.

2.3.3. Coefficient of Variation

The coefficient of variation, also known as the “coefficient of dispersion”, is a nor-
malized measure of the degree of dispersion of a probability distribution. The calculation
formula is shown below.

Cv =
1
x

√
∑n

i=1(xi − x)2

n − 1
(4)

Cv stands for the coefficient of variation of NDVI; xi stands for the NDVI value in the
i-th year; x stands for the mean NDVI value in the n years. The higher the Cv value, the
more discrete the data, the higher the variation degree of the corresponding NDVI value,
and the greater the inter-annual variation. The smaller the Cv value is, the more the data is
aggregated, the lower the variation degree of the corresponding NDVI value and the lower
the inter-annual variation.

3. Results
3.1. Trends in Time Scale and Spatial Change of NDVI

In order to explore the influence of the construction and operation activities along the
GH highway, the NDVI obtained along the GH highway was divided into the construction
period (1986–1991) and the operation period (1992–2020) in the time scale. By piecewise
fitting of time-series NDVI, the trend of NDVI change in each time period was obtained.

Within the construction period, the NDVI in both the core and contrast areas showed
a clear upward trend (Figure 2a). The NDVI increased more significantly in the contrast
area at 0.0170/a, while it increased in the core area at 0.0149/a (Figure 2a). The results
revealed that the construction of the GH highway caused some damage to the surround-
ing vegetation, and the NDVI values decreased most significantly in the early stage of
construction (1987).

During the operation period, the vegetation cover in the core and contrast areas of
GH highway gradually improved and the NDVI showed a generally increasing trend.
The growth rates in the core and contrast areas were 0.0024/a and 0.0027/a, respectively
(Figure 2b). However, the change trend of NDVI obviously differed before and after 2000.
The NDVI increased at a faster rate in the core area (0.0137/a) than in the contrast area
(0.0130/a) during 1992 to 2000. After this period of growth, the NDVI reaching a relatively
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stable state, with little fluctuation around 2000. However, after this, the NDVI in both the
core and the contrast areas decreased (at rate of −0.0030/a and −0.0002/a, respectively),
showing two significant decreases (in 2010 and 2018) and one significant increase (2012)
between 2001 and 2020.
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The overall NDVI level in the operation period was higher than that in the construction
period, while the fluctuation of NDVI was smaller than that in the construction period.
Within the construction period, the MAT decreased slightly, while the MAP and NDVI
increased significantly (Figure 3a). The MAP increased at a rate of 12.04 mm/a, while the
MAT decreased at a rate of −0.0180 ◦C/a.

The trend of MAT generally increased, while the MAP decreased (Figure 3b). In the
fitting of temperature and precipitation from 1992 to 2020, the temperature increased at a
rate of 0.0288 ◦C/a, while the precipitation decreased at a rate of −16.44 mm/a.

Considering that there are many other traffic routes, cities, towns and villages along
the GH highway. The core area was divided into four buffer zones with a distance of 1 km
in order to measure the spatial impact level of GH highway. In the temporal dimension,
the NDVI showed an overall increase due to self-healing of the environment. In the
spatial dimension, the construction and operation of the GH road negatively affected the
vegetation within 2 km of the route. This impact was inversely proportional to the distance
from the GH highway route. The NDVI values were higher within the 1 km buffer than the
2 km buffer, but did not increase outward at the 3 km and 4 km ranges (Figure 4a,b).
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Within the construction and operation period, the slopes of the regression equations
in the core and contrast areas are concentrated between −0.05–0.15 and 0.002–0.015, respec-
tively (Table 1).

Table 1. Classification statistics of different trends in core and contrast areas within construction and
operation periods.

Period Classification Slope
Core Area Contrast Area

Pixels Area
(km2) Percent Pixels Area

(km2) Percent

Construction
Period

Significantly Decrease <−0.05 17526 14.08 0.17% 16562 13.31 0.13%
Slightly Decrease −0.05–0 219687 176.55 2.10% 204681 164.49 1.65%
Slightly Increase 0–0.05 9691449 7788.51 92.42% 11551849 9283.62 92.99%

Significant Increase 0.05–0.1 429426 345.11 4.10% 498663 400.75 4.01%
More Significantly Increase >0.1 127995 102.86 1.22% 151227 121.53 1.22%

Operation
Period

Significantly Decrease <−0.01 9413 7.56 0.09% 4997 4.02 0.04%
Slightly Decrease −0.01–0 140109 112.60 1.34% 85721 68.89 0.69%
Slightly Increase 0–0.01 9867593 7930.07 94.10% 11781944 9468.54 94.84%

Significant Increase 0.01–0.02 464370 373.19 4.43% 544514 437.60 4.38%
More Significantly Increase <0.02 4622 3.71 0.04% 5796 4.66 0.05%

Within the construction period, the extent of NDVI damage in the core area was
greater than that in the contrast area. However, the total trend of NDVI change was
still overall slightly increasing, with the proportion accounting for 92.42% and 92.99% in
core and contrast areas, respectively. Within the operating period, the NDVI showed an
increasing trend as before. However, the proportion showing a slight increase became
larger, accounting for 94.10% and 94.84% in the core and contrast areas, respectively.

Spatial differences in the increase or decrease in NDVI were observed along the GH
road. Slight and significant decreases were dominant near the road and in urban areas
(Figure 5a), while slight increases were dominant elsewhere. In particular, the increase was
more significant in the mountain forest area (Figure 5b).
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Figure 5. Spatial distribution of the trend of NDVI from 1986–2020. Trends were separated into
the following classification: significantly decrease (<−0.005), slightly decrease (−0.005–0), slightly
increase (0–0.005), non-significant increase (0.005–0.010), significantly increase (0.010–0.015), more
significantly increase (>0.015).
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3.2. Coefficient of Variation Analysis

The construction and operation of the GH freeway has had a negative impact on the
stability of vegetation along the route. The fluctuations of NDVI in the construction period
were greater than those in the operation period, and all fluctuations in the core area were
greater than those in the contrast area. The NDVI, in terms of both periods and area were
dominated by lower fluctuations, with lower fluctuations in the construction and operation
periods of 845.12 km2 and 993.80 km2, respectively, and lower fluctuations in the core
and contrast areas of 793.49 km2 and 968.78 km2, respectively. The high fluctuation of
NDVI in the construction period were larger than those in the operation period, as well
as were larger in the core than in the contrast area. The high fluctuation areas for the
construction and operation periods were 280.64 km2 and 121.98 km2, respectively, while
the high fluctuation sizes in the core and contrast areas were 225.54 km2 and 177.08 km2

respectively (Figure 6).
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(0.4–1).

3.3. Correlation Analysis of NDVI with Temperature and Precipitation

The correlation coefficient between NDVI and precipitation from 1986 to 2020 was
mainly concentrated between −0.45 and 0 (mean = −0.03), showing a low negative cor-
relation, while, its correlation coefficient with air temperature mainly ranged from 0–0.5
(mean = 0.08), showing a low positive correlation. The mean partial correlation coefficients
of NDVI with precipitation and temperature were 0.05 and 0.17, respectively, which were
both less than 0.5 (Figure 7).
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Figure 7. Correlation between temperature (a), precipitation (b), and NDVI from 1986 to 2020. The
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The correlation of NDVI with temperature was mainly low positive, while the corre-
lation with precipitation is mainly low negative; however, the correlation between NDVI
and precipitation was positive, while the correlation between NDVI and temperature was
negative in where the underlying surface was artificial, especially in urban areas and along
roads (Figure 7).

3.4. Analysis of Study Area LUCC

Wetlands were re-classified as water bodies before the calculations, due to their small
size. The LUCC decreased by 0.39% for forest, 6.04% for cultivated land, 0.97% for water,
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0.48% for shrub, and 0.97% for grass from 2000 to 2020, while the artificial cover increased
by 8.67% (Table 2).

Table 2. LUCC Classification statistics from 2000 to 2020.

Classification
2000 LUCC 2020 LUCC

Area (km2) Percentage Area (km2) Percentage

Cultivated Land 1070.71 45.82% 929.61 39.78%
Forest 510.85 21.86% 501.75 21.47%
Grass 338.67 14.49% 316.02 13.52%
Shrub 225.15 9.64% 214.16 9.16%
Water 64.46 2.76% 46.10 1.97%

Artificial Cover 126.94 5.43% 329.41 14.10%

The trend of NDVI decreased significantly along the GH highway (Figure 8), especially
in urban areas along the route (Figure 8). The construction and operation of the GH
highway and other later roads drove the development of towns along the route, leading to
an expansion of artificial cover along the route and exacerbating the decline of NDVI (see
Figure 5).
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4. Discussion
4.1. Characteristics and Reasons for Change in NDVI during the Construction Period

Within the construction period, the annual average value and growth rate of the NDVI
in the core area along the GH highway were smaller than those in the contrast area, and the
coefficient of variation was larger than that in the contrast area, due to by the destruction
of the original land-cover caused by the construction of the GH highway. The closer to
the road, the greater the damage to the vegetation. This slowed the NDVI growth rate in
the surrounding 4 km from the road, and breaks the environment for a certain distance
along the line, thus increasing the variation in fluctuation of vegetation along the line. The
fluctuation caused by highway construction activities on vegetation along the road were
also larger closer to the road, indicating that the construction activities of GH highway had
a negative effect on the stability of the surrounding environment. The construction and
operation of the GH highway have increased the intensity of human activities in towns
along the route, resulting in higher ecological fluctuations around the towns than other
areas. The influence of the GH highway is mainly within 2 km, as the highway along the
road are mainly within 2 km, making this the area with the strongest human activities. In
the area far from the GH highway, the vegetation was weakly affected by the highway,
and the heterogeneity of the surface was observed to have a greater impact on NDVI than
the highway and human activities. In the early stage of construction (1987), the NDVI
in both the area and the contrast areas declined sharply. This was due to the large-scale
destruction of the surface vegetation in the early stage of the project construction, which led
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to a sharp decline in NDVI in this year. In addition, the rocky desertification was serious in
this period, and there was a lack of relevant control work, leading to damage of the fragile
environment [43]. The engineering construction in the core area can easily affect involve
the vegetation cover in the contrast area, causing further damages.

4.2. Characteristics and Reasons for Change in NDVI during the Operation Period

Within the operation period, the overall NDVI in the core and contrast areas showed
an upward trend, where the growth rate in the contrast area was greater than that in the
core area; however the increase was small. Due to the implementation of environmental
protection policy [44], the vegetation being slowly restored by regeneration, afforestation,
and returning farmland to forest. The NDVI along the GH highway rose to a high value and
the change is relatively stable in 2000. However, after 2000, the NDVI showed a downward
trend. During the nearly 30 years of the operation period, human activities along the GH
highway have substantially enhanced, as is reflected by an increase in artificial surfaces
along the highway and the construction and widening of other roads along the highway.
In addition, the NDVI showed an obvious downward trend in 2008 and 2009, related to the
severe snow disaster in southwest China in the winter of 2008. A certain range of vegetation
died due to freezing, which affected the maximum NDVI in the following year. The same
significant decrease also occurred from 2010 to 2012, which was related to the destruction
of vegetation on the original surface due to the construction of the Shanghai-Kunming
highway in this section in 2010, and the severe drought in Guizhou in 2012, which resulted
in a decline in and reduced growth of NDVI from 2010 to 2012. Furthermore, the NDVI
decreased significantly in 2019–2020. Meteorological bureau data (http://gz.cma.gov.cn/
access on 1 October 2022) indicated that a spring drought occurred in the spring in Central
Guizhou during 2019–2020. This spring drought caused the vegetation to be short of water
during the growth period, leading to inhibition of vegetative growth throughout the year,
thus significantly reducing the NDVI value over this period.

The construction and operation of GH highway has increased the intensity of human
activities in towns along the line, these activities Include change of cropland area along
the GH highway will also affect the vegetation [45], causing the fluctuation of NDVI along
the GH highway to be higher than that in other regions. The construction and operation of
the GH highway mainly affected the area within 2 km, where a large number of villages,
towns, cities, and trunk roads are concentrated. These areas are characterized by strong
human activities. In the area far from the GH highway, the vegetation is less affected by
the highway, and the heterogeneity of the karst surface becomes the main factor affecting
the NDVI. Although the impact of human engineering construction on the environment
is not unique to karst, the heterogeneity, vulnerability, and sensitivity of the karst surface
are strong [46]. Therefore, the impact of human activities tends to cause greater damage in
karst areas. In recent decades, the frequency and intensity of extreme climate events have
increased, and the impact of high temperatures and drought on the productivity of the mid-
latitude ecosystem in the Northern Hemisphere has become greater and greater, leading
to a more sensitively responsive of NDVI [47]. Over the past three decades, the reduction
of precipitation and the increase in temperature have led to increased evaporation. The
soil moisture in many areas has decreased [48], while the sensitivity of vegetation to soil
moisture has generally increased [49]. In particular, soil moisture restricts karst ecological
restoration [50]. The study area is a typical karst area, with thin soil layer, weak soil water
holding capacity, many underground rivers, strong surface water infiltration, and easy
soil water loss. Under the trend of long-term temperature rise and precipitation decrease,
soil moisture evaporation will inevitably be intensified, leading to soil moisture reduction,
which will further affect the growth and development of vegetation along the line. The
enhancement of human activities along the GH highway will also lead to intensification
of soil erosion, especially with expansion of cities along the highway. The construction
of other highways will increase the sensitivity of vegetation in artificial surface areas to

http://gz.cma.gov.cn/


Land 2022, 11, 1771 13 of 16

drought, resulting in water shortages during the peak growth season, ultimately leading to
declining annual biomass.

4.3. Correlation between Climatic Factors and NDVI

Consistent with previous research, the correlation coefficient between NDVI and
precipitation along the GH highway showed an insignificant negative correlation. During
the nearly 30 years of the operation period, the slight decrease in total precipitation did
not cause major a catastrophe for vegetation growth in the Southwest China; instead, the
change in precipitation frequency made local rain recruitment more frequent, which partly
compensated for the growth of southwestern vegetation being limited by the alternating
time of dry and wet periods, rather than total precipitation [51]. At the same time, the
partial correlation coefficients of NDVI with precipitation and temperature were 0.05 and
0.17, respectively; both were less than 0.5, which is basically consistent with previous
research [29]. The proportion of karst landform in the study area is high (76.5%); together
with the large change of karst underlying surface and the high degree of topographic relief,
the spatial heterogeneity of temperature within a small range may be high. This results
in temperature being a major factor controlling vegetative growth over a small range. A
previous study has shown that terrain is generally a covariate of temperature, which is
highly consistent with temperature change. Therefore, we did not consider terrain factors
as covariates to participating in the partial correlation analysis [29].

Similar to previous studies, the correlation between NDVI and precipitation was
weakly positive on the artificial surface, while the correlation between NDVI and tem-
perature was low and negative on artificial surfaces [30]. Human activities are strong in
artificial surface areas, and the environment is more fragile than in other areas. The low
precipitation infiltration of hardened surface exacerbates water shortages and temperature
increases, which may force the growth of vegetation to be slow. The surrounding ecology
is fragile. The increase of precipitation makes the water supply needed for the growth
of regional vegetation sufficient, thus reducing the vulnerability, while artificial surface
vegetation is more sensitive to drought.

5. Conclusions

In this paper, NDVI and climate data were used to analyze the influence of the GH
highway on the area within 8 km of the route. It was found that the annual mean and
growth rate of NDVI in the core area within the construction and operation periods of
the GH highway were smaller than those in the contrast area, the inter-annual variation
fluctuated greatly, and the influence on the area was mainly within 2 km of the GH
highway. Within the operation period, the NDVI reached a peak and then decreased
slightly. Within the construction and operation period, the NDVI along the route increased
overall, precipitation showed a downward trend, and temperature showed an upward
trend. The correlation between NDVI and climate factors indicated that the correlation
between NDVI and temperature is stronger than that between NDVI and precipitation.
The influence of LUCC on NDVI was mainly manifested as an increase in artificial cover
surface and the decline of other land-use types, resulting in the change of NDVI.

6. Limitations and Prospects

In this study, only the inter-annual variability of climate variables in response to NDVI
was considered, seasonal variation of climate indicators was not considered; furthermore,
only the annual maximum value of Landsat was used to synthesize the NDVI images,
and multi-source remote sensing data fusion methods were not considered. In the future,
multi-source remote sensing can be used to explore the corresponding relationship between
NDVI and other climatic factors (e.g., surface soil humidity, evaporation, seasonal drought,
and so on). Remote sensing data under nighttime lighting can also be adopted, in order to
explore the correlation between vegetation cover and human activities.
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