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A B S T R A C T   

The Yidun Terrane, sandwiched between the Qiangtang and Songpan-Ganze terranes, hosts important infor-
mation on the tectonic evolution of the eastern Tibetan Plateau. However, its tectonic link with adjacent terranes 
and East Gondwana remains equivocal. Here, we present U-Pb-Hf isotopes of detrital zircons from the upper 
Neoproterozoic-lower Paleozoic clastic rocks in the Yidun Terrane. The results show that detrital zircons from the 
Neoproterozoic rocks are mainly of ca. 821 – 890 Ma, 1714 – 1977 Ma, and 2317 – 2520 Ma, with εHf(t) values of 
each group comparable to coeval magmatic rocks in the nearby South China Block. This suggests that the Yidun 
Terrane and South China were possibly connected in the late Neoproterozoic, with the latter being the main 
sedimentary provenance. In contrast, the five Paleozoic samples have markedly different detrital zircon age 
spectra at ca. 2600 – 2300 Ma, 1100 – 900 Ma, 900 – 740 Ma, and 690 – 480 Ma, which were interpreted to have 
derived from Pan-African and Grenville-age provinces in the East Gondwana, as well as the South China Block 
and Songpan-Ganze Terrane. Such a major change on provenance suggests that after prolonged isolation in the 
Proto-Tethys, the Yidun Terrane began to collide with the East Gondwana in late Ediacaran to early Paleozoic. 
Integrated with published works, we consider that the Yidun Terrane, along with Songpan-Ganze Terrane and 
Yangtze Block, was located on the northern margin of East Gondwana during the early Paleozoic.   

1. Introduction 

The modern Tibetan Plateau was formed by the amalgamation of 
many allochthonous terranes (e.g., Qiangtang, Lhasa, and Himalaya) 
(Yin and Harrison, 2000; Metcalfe, 2013, 2021), which were originally 
rifted from East Gondwana and then progressively drifted northward 
during the late Paleozoic to Cenozoic periods (Pan et al., 2012). This is 
accompanied by the opening and closure of the intervening Paleo- 
Tethys, Meso-Tethys, and Neo-Tethys oceans (Gehrels et al., 2011; 
Zhu et al., 2011a; Xia et al., 2016; Metcalfe, 2021). Thus, determining 
the detailed tectonic evolution of each individual terrane is highly 
important to the tectonic reconstruction of the Tibetan Plateau. 
Currently, numerous studies were conducted on the origin and tectonic 
evolution of the Lhasa and Qiangtang terranes (e.g., Zhu et al., 2011a, 
2013; Song et al., 2015; Ma et al., 2017, 2018, 2019; Hu et al., 2019; Luo 

et al., 2020; Wang et al., 2020), yet the tectonic evolution of geological 
terranes in the eastern Tibetan Plateau is rarely studied. 

The Yidun Terrane is one of the representative Precambrian meta-
morphic terranes in the eastern Tibetan Plateau (Fig. 1a). Due to a large 
number of Mesozoic porphyry Cu-Mo deposits developed in the terrane, 
previous studies were mainly focused on Mesozoic regional tectono- 
metallogenic evolution (e.g., Hou et al., 2001; Li et al., 2011, 2017b; 
Leng et al., 2012, 2018; Chen et al., 2014a; Peng et al., 2014; Gao et al., 
2017; Wu et al., 2017; Tian et al., 2019b; Guo et al., 2020). Pre-Mesozoic 
tectonic evolution of the terrane remains poorly constrained. Some 
studies suggested that the Yidun Terrane was rifted from the Yangtze 
Block during the late Permian Emeishan mantle plume activity (Chang, 
2000; Song et al., 2004; Xiao et al., 2004), whereas some argued that it 
was derived from the eastern Kunlun Terrane by the early Triassic back- 
arc extension due to the north-dipping Paleo-Tethys subduction (Pullen 
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et al., 2008; Ding et al., 2013; Zhang et al., 2014b). Moreover, paleo-
geographic reconstruction indicates that major geological terranes of 
the Tibetan Plateau were connected to either the northeastern margin of 
India Craton (e.g., Qiangtang Terrane) or the northwestern margin of 
Australia (e.g., Lhasa Terrane) during the Neoproterozoic-early Paleo-
zoic (Zhu et al., 2011a). However, the paleogeographic location of the 
Yidun Terrane within the Gondwana supercontinent, or whether it was 
even part of Gondwana remains enigmatic. 

Detrital zircons from siliciclastic rocks record a wealth of informa-
tion about their source regions, and their U-Pb age spectra and Hf 

isotope composition are useful to unravel the tectonic and paleogeo-
graphic affinities (Veevers et al., 2005; Long et al., 2010, 2020; Gehrels, 
2012; Burrett et al., 2014; Yao et al., 2014b; Wang et al., 2013a, 2018, 
2021; Zhang et al., 2018; Xia et al., 2020). The upper Neoproterozoic to 
lower Paleozoic sedimentary rocks are good research objects to study 
any tectonic link between the Yidun Terrane and its surrounding ter-
ranes (Fig. 1b), as well as its location relative to Gondwana. However, 
these sedimentary rocks are poorly understood because of the rugged 
terrain, high altitude with poor accessibility of the Yidun Terrane. 

In this study, we first present detrital zircon in-situ U-Pb age, trace 

Fig. 1. (a) Sketch map showing the location of Yidun Terrane in the Tibetan Plateau; (b) Simplified geological map of the Yidun Terrane and adjacent regions (after 
Yan et al., 2008). ASZ: A’nyemaqen Suture Zone; BSZ: Bangong-Nujiang Suture Zone; GSZ: Ganze-Litang Suture Zone; ISZ: Indus-Yarlung Suture Zone; JSZ: Jin-
shajiang Suture Zone; LSZ: Lancangjiang Suture Zone; ATF: Altyn Tagh Fault; XGF: Xiangcheng-Geza Fault; XSF: Xianshuihe Fault; YT: Yidun Terrane. 
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element, and Lu-Hf isotope data for the upper Neoproterozoic to lower 
Paleozoic sedimentary rocks in the Yidun Terrane. We aim to (i) identify 
the sediments provenance of these rocks, (ii) clarify the tectonic affinity 
of the Yidun Terrane, and (iii) reveal any tectonic link between the 
Yidun Terrane and Gondwana. 

2. Regional geology 

Tectonically, the Yidun Terrane is separated from the Qiangtang 
Terrane to the west by the Jinshajiang Suture Zone, and from the 
Songpan-Ganze Terrane and South China Block to the east by the Ganze- 

Fig. 2. Geological maps of the Kasi (a) and Zhongza (b) areas in the Yidun Terrane, showing sampling locations.  
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Litang Suture Zone. Geological setting of these four terranes/blocks and 
two sutures are summarized as below: 

2.1. The Yidun Terrane 

The Yidun Terrane is composed of Precambrian crystalline basement 
and overlying Paleozoic to Triassic sedimentary rocks. It can be 
geologically divided into two units, the western Yidun Terrane and 
eastern Yidun Terrane, by the NNW-trending Xiangcheng-Geza fault 
(Fig. 1b). The western Yidun Terrane (also known as the Zhongza 
massif) is mainly composed of Paleozoic shallow to deep marine car-
bonates and clastic rocks with volcanic interbeds, whereas the eastern 
Yidun Terrane is dominated by Triassic volcanic-sedimentary succes-
sions with minor Precambrian to early Paleozoic basement rocks (Tian 
et al., 2019a). 

The oldest strata in the Yidun Terrane is the Qiasi Group, which is 
only exposed in the southern segment of eastern Yidun Terrane (Fig. 2a), 
and were long considered to be Precambrian basement of the Yidun 
Terrane (BGMRSP, 1991). The Qiasi Group has undergone different 
degrees of metamorphism and deformation, and can be divided into four 
members (Du, 1986; BGMRSP, 1991): (from the bottom to top) (i) schist 
and leptynite; (ii) schist with minor felsic volcanic and marble interbeds; 
(iii) albite leptynite and sandstone, with minor schist (Tian, 2020); (iv) 
sandstone with local schist interbeds. The field contact relations be-
tween the different members are obscured by dense vegetation and slope 
sediments. The Qiasi Group is in fault contact with the Sinian strata 
(Tian, 2020), which is in turn overlain by the lower Paleozoic sequences. 
The Cambrian strata are sandwiched between the Sinian and lower 
Ordovician strata (Fig. 2a), and are dominated by shallow marine car-
bonates with minor sandstone interbeds. Due to the lack of index fossils 
or radiometric age data, the age of the strata is loosely constrained 
(BGMRSP, 1991). The Ordovician strata overlie conformably on the 
Cambrian strata, and are composed mainly of sandstone, siltstone, and 
slate. These lower Paleozoic strata are overlain by Devonian carbonate 
and mica-schist, as well as Permian volcanic-sedimentary sequence 
(Fig. 2a). 

Lower Paleozoic strata are widely exposed in the western Yidun 
Terrane (Fig. 2b). The Cambrian strata consist mainly of shallow marine 
carbonate, sandstone, slate, and schist. Fossils in the strata include 
trilobite (e.g., Calvine sp., Haniwa sp., Saukiidae) and brachiopods (e.g., 
Finkelnburgia sp., Palaeostrophia sp., and Apheoorthis sp.) (Zheng et al., 
1984). The Ordovician strata overlie conformably on the Cambrian 
strata, and are composed mainly of marine carbonate with minor slate 
interlayer. Fossils in the strata include graptolite (e.g., Callograptus sp.), 
trilobite (e.g., Asaphidae and Leiostegiidae), and brachiopods (e.g., Lep-
tellina sp., and Aporthophyla sp.). The Silurian strata overlie conformably 
on the Ordovician strata and are dominated by marine carbonate rocks. 
These Paleozoic sedimentary rocks in the western Yidun Terrane have 
undergone greenschist- to lower amphibolite-facies metamorphism 
(Reid et al., 2005a, 2005b). 

Magmatic rocks in the Yidun Terrane are mainly formed in the late 
Triassic (ca. 230 – 206 Ma) and late Cretaceous (ca. 88 – 80 Ma) (Tian 
et al., 2019a). The late Triassic magmatic rocks consist of both intrusive 
(e.g., diorite, monzonite, granodiorite, granite) and extrusive (e.g., 
basalt, andesite, dacite, and rhyolite) rocks, which were interpreted as 
products of the westward subduction of the Ganze-Litang Paleo-Tethys 
Ocean at late Triassic (Wang et al., 2011a; Huang et al., 2012; Leng 
et al., 2014; Wu et al., 2017). In contrast, the Cretaceous igneous rocks 
are predominantly plutonic, and include (biotite) granite, mon-
zogranite, and granitic porphyry. They were suggested to have formed in 
an intraplate extensional setting (Wang et al., 2014a; Li et al., 2017b; 
Yang et al., 2017). 

2.2. The Ganze-Litang Suture Zone 

This suture zone is about 1000 km long and 5 – 70 km wide (Hou 

et al., 2003; Yang et al., 2012), and forms the boundary between the 
Yidun and Songpan-Ganze terranes. To the north, the suture zone 
merges with the Jinshajiang Suture Zone, while to the south it passed 
into a transitional zone between the South China Block and Qiangtang 
Terrane (Jackson et al., 2020). Ophiolites, exposed sporadically in the 
suture, include metamorphosed peridotite, cumulate gabbro, diabase, 
mid-ocean-ridge basalt, and Devonian to Triassic radiolarian cherts 
(Hou et al., 2003; Li et al., 2017a). Previous plagioclase 40Ar-39Ar and 
zircon U-Pb dating constrained the ophiolite formation to 292 – 231 Ma 
(Qu and Hou, 2002; Yan et al., 2005), indicating an early Permian to 
middle Triassic development of the Ganze-Litang ocean. 

2.3. The South China Block 

The South China Block comprises the Yangtze and Cathaysia blocks, 
which were welded along the Jiangnan Orogen in the middle Neo-
proterozoic (~830 Ma) (Zhao et al., 2011). The Yangtze Block comprises 
Archean (e.g., Kongling Complex: ~3300 – 2900 Ma, Gao et al., 2011; 
Yudongzi Complexe: ~2700 – 2500 Ma, Chen et al., 2019; and Douling 
Complex: ~2500 Ma, Hu et al., 2013) and Paleoproterozoic (e.g., Phan 
Si Pan gneiss: ~2280 – 2190 Ma, Wang et al., 2016; Quanqitang granite: 
~1850 Ma, Peng et al., 2012) crystalline basement, which was uncon-
formably overlain by Neoproterozoic to middle Triassic marine sedi-
mentary rocks. Neoproterozoic (ca. 870 – 730 Ma) granite, diorite, 
gabbro, TTG genesis, and their volcanic equivalence are widespread in 
the western and northern Yangtze Block (Zhou et al., 2006; Wang et al., 
2008; Zhao et al., 2008b, 2010a, 2018; Zhu et al., 2019a). These 
magmatic rocks were interpreted to have formed by subduction-related 
(Zhou et al., 2002) or mantle plume-related magmatism (Li et al., 2002, 
2003). 

Unlike the Yangtze Block, no Archean rocks have been found in the 
Cathaysia Block. The oldest basement rocks in the Cathaysia Block are 
Paleoproterozoic (~1900 – 1800 Ma) granitoids and supracrustal rocks, 
as represented by the Badu Complex (Yu et al., 2009). These basement 
rocks are unconformably overlain by Neoproterozoic to Cretaceous 
sedimentary sequences. Magmatism in the Cathaysia Block mainly 
occurred during the Jinningian (850 – 770 Ma), Kwangsian (430 – 400 
Ma), Indosinian (245 – 200 Ma), and Yanshanian (170 – 120 Ma) 
orogenic events (Wang et al., 2010; Duan et al., 2012). 

In addition to the Yangtze and Cathaysia blocks interior, middle to 
late Neoproterozoic igneous rocks are also widely exposed in the Jian-
gnan Orogen. Previous studies suggested that these rocks were produced 
by partial melting of mafic rocks in the lower crust or recycled hetero-
geneous supracrustal materials (Wang et al., 2006, 2011b; Zheng et al., 
2007; Zhao et al., 2013a; Yao et al., 2014a; Lv et al., 2021). 

2.4. The Songpan-Ganze Terrane 

The terrane is triangular-shaped (outcrop size: >200,000 km2) and 
located at the junction of the Yidun, Yangtze, Qiangtang, North China, 
and Kunlun terranes/blocks (Chang, 2000; Burchfiel and Chen, 2012). 
Sedimentary rocks in the terrane are almost exclusively middle to upper 
Triassic flysh, with a thickness of 5 – 15 km (Nie et al., 1994; Enkelmann 
et al., 2007). Provenance studies reveal that most of the detritus were 
sourced from the neighboring North China, Yangtze, and Kunlun 
terrane/blocks and Qinlin-Dabie Orogen (Nie et al., 1994; Bruguier 
et al., 1997; She et al., 2006; Weislogel et al., 2006; Enkelmann et al., 
2007). Pre-Triassic rocks are exposed sporadically in a NE-trending belt 
within/close to the Longmenshan Thrust Fault, which separates the 
Songpan-Ganze Terrane from the Yangtze Block (Burchfiel et al., 1995; 
Burchfiel and Chen, 2012). These pre-Mesozoic strata are interpreted to 
be allochthonous, and were dismembered from the western part of 
Yangtze Block (Burchfiel and Chen, 2012). Hence, the nature of base-
ment rocks (oceanic or continental) below the Triassic sediments is still 
unclear (Burchfiel and Chen, 2012; Nie et al., 1994). Granitoids in the 
Songpan-Ganze Terrane were mainly formed from the late Triassic to 
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early Cretaceous, and are interpreted to be generated by partial melting 
of the thickened crust during a regional shortening event (Roger et al., 
2004), or by lithospheric delamination (Zhang et al., 2007). In addition, 
some Neoproterozoic igneous rocks, such as the Xuelongbao adakitic 
complex (748 ± 7 Ma; Zhou et al., 2006), Gongcai magmatic granites 
(822 ± 14 Ma; Zhou et al., 2002), and Gezong granite (864 ± 8 Ma; 
Zhou et al., 2002), are also documented. 

2.5. The Qiangtang Terrane 

The terrane is bounded by the Jinshajiang Suture Zone to the north 
and the Bangong-Nujiang Suture Zone to the south, and can be divided 
into the North Qiangtang and South Qiangtang terranes by the Triassic 
Shuanghu suture. The Qiangtang Terrane consists of Proterozoic to early 
Paleozoic metamorphic basement (e.g., Gemuri Group) intruded by 
Ordovician granitoids (ca. 470 Ma) (Yin and Harrison, 2000; Gehrels 
et al., 2011; Zhu et al., 2013). These basement rocks are overlain by 
Carboniferous to Triassic marine strata and mafic rocks: the upper 
Carboniferous sequence contains abundant glacial-marine diamictites 
and basalt interlayers (Zhu et al., 2013), and the intruding 302 – 284 Ma 
mafic dykes (Zhai et al., 2009). Apart from the Paleozoic magmatism, 
extensive early Jurassic-middle Cretaceous (183 – 101 Ma) arc-type 
magmatic rocks are developed (Zhang et al., 2012c. and references 
therein). In addition, some high-pressure metamorphic rocks, including 
blueschist, phengite-schist, eclogite, and matabasite, were documented 
in the central Qiangtang Terrane (Zhang et al., 2012c; Zhu et al., 2013). 

2.6. The Jinshajiang Suture Zone 

The suture is located between the western Yidun and Qiangtang 
terranes, and contains remnants of the Paleo-Tethyan Jinshajiang Ocean 
(Metcalfe, 2013). It extends southward to connect with the Ailaoshan 
Suture Zone. Previous studies suggested that the Jinshajiang and 
Ailaoshan suture zones are contiguous and represent the same ocean 
basin (Wang et al., 2000; Jian et al., 2009). Ophiolitic mélanges in the 
suture zone are mainly composed of dismembered peridotite, cumulate 
gabbro, pillow lava, and limestone and radiolarian chert. Zircon U-Pb 
dating shows that the cumulate gabbro in the suture zone was formed at 
343.4 ± 2.7 Ma (Jian et al., 2009), and the plagiogranite was formed at 
340 ± 3 Ma and 294 ± 3 Ma (Wang et al., 2000). However, the cumulate 
gabbro and plagiogranite in the Ailaoshan Suture Zone are older (383 – 
362 Ma; Wang et al., 2000; Jian et al., 2009; Lai et al., 2014a). This 
suggests that the Jinshajiang-Ailaoshan ocean basins were formed 
before the middle Devonian (~383 Ma). Consumption of the Paleo- 
Tethyan Jinshajiang Ocean was resulted from its westward subduction 
beneath the Qiangtang Terrane, which generated numerous late 
Permian to early Triassic (ca. 250 – 230 Ma) subduction-/collision- 

related magmatic units (Zhu et al., 2011b; Zi et al., 2012a, 2012b; Lai 
et al., 2014b). 

3. Sampling and analytical methods 

3.1. Sampling 

Based on detailed field geological investigations, six representative 
sedimentary samples were collected from the Yidun Terrane. Among 
these samples, three (DC16-92, DC16-94, DC17-23) were collected from 
the Qiasi Group (4th member), and two (DC17-45, DC17-46) from the 
previously-assigned Cambrian and Ordovician strata, respectively, at 
Kasi Village (Daocheng County) in the eastern Yidun Terrane. One 
sample (DR17-35) was taken from the well-defined lower Cambrian 
strata at Zhongza Town (Derong County) in the western Yidun Terrane. 
All the samples have similar mineral assemblages, consisting mainly of 
quartz, plagioclase, K-feldspar, mica, and minor chlorite. The detailed 
rock type, mineral content, and GPS location of each sample are sum-
marized in Table 1. Representative field photos and thin-section mi-
crographs of these rocks are shown in Fig. 3. 

3.2. LA-ICP-MS U-Pb dating and trace element analyses 

Zircon grains were separated from the samples using conventional 
magnetic and heavy liquid techniques, and were then hand-picked 
under a binocular microscope. Over 200 zircon grains for each sample 
were randomly selected, mounted in epoxy resin on a 2 cm diameter 
disk, then polished to half of their thickness for analyses. Prior to in-situ 
U-Pb isotope and trace element analyses, all zircons were examined by 
transmitted/reflected optical microscopy, and cathodoluminescence 
(CL) imaging to reveal their external and internal structure. CL images 
were undertaken on a JSM-7088F type thermal field scanning electron 
microscope attached with a Gatan Mono CL4 detector at Institute of 
Geochemistry, Chinese Academy of Sciences (IGCAS). Detrital zircons, 
without obvious cracks or inclusions, were randomly selected for U-Pb 
isotopic and trace element analyses at IGCAS. Zircon U-Pb dating and 
trace element analyses were synchronously conducted by an Agilent 
7900 Inductively Coupled Plasma Mass Spectrometer (ICP-MS) coupled 
to a GeoLas Pro 193 nm ArF excimer laser ablation system. Analyses 
were performed with a spot diameter of 32 μm and a repetition rate of 5 
Hz. Helium was applied as a carrier gas which is mixed with Argon via a 
T-connector before entering the ICP-MS. Each analysis includes circa 20 
s background signal followed by 40 s data acquisition from the sample. 
Harvard zircon 91,500 was used as the external standard to correct 
instrumental mass bias, depth-dependent elemental, and isotopic frac-
tionation. It was analyzed twice before and after ten analyses. Zircon 
Plešovice and Qinghu were analyzed as quality controls and analyzed 

Table 1 
Location, lithologies, and stratigraphic information of the samples analyzed.  

Sample GPS coordinates Stratigraphic 
information 

Lithology Mineral composition Maximum age 
(Ma） 

Eastern Yidun Terrane 
DC16- 

92 
N28◦22′7.8′′

E100◦14′17.5′′

Qiasi Group (4th 
member) 

Fine sandstone Quartz (70%), K-feldspar (10–15%), plagioclase (5–10%), 
mica (<5%), and minor heavy minerals 

510 ± 8.6 Ma 

DC16- 
94 

N28◦21′04.4′′

E100◦13′16.5′′

Qiasi Group (4th 
member) 

Greywacke Quartz (60–65%), K-feldspar (15–20%), plagioclase 
(10–15%), and minor heavy minerals 

456 ± 6.6 Ma 

DC17- 
23 

N28◦21′0.30′′

E100◦13′25.20′′

Qiasi Group (4th 
member) 

Medium-/fine-grained 
feldspathic quartz sandstone 

Quartz (65–70%), K-feldspar (10–15%), plagioclase 
(5–10%), mica (<5%), and minor heavy minerals 

515 ± 4.8 Ma 

DC17- 
45 

N28◦24′28.22′′

E100◦14′37.07′′

Cambrian (?) Medium-grained quartz arenite Quartz (85–90%), feldspar (<5%), mica (<5%), and minor 
heavy minerals 

637 ± 5 Ma 

DC17- 
46 

N28◦24′30.60′′

E100◦14′30.50′′

Ordovician Fine feldspathic quartz 
sandstone 

Quartz (65–70%), plagioclase (10–15%), K-feldspar 
(5–10%), mica (<5%), and minor heavy minerals 

525 ± 5 Ma 

Western Yidun terrane 
DR17- 

35 
N29◦20′59.08′′

E99◦20′24.73′′

Lower Cambrian Fine-grained sandstone Quartz (70–75%), plagioclase (5–10%), mica (10–15%), 
and minor heavy minerals 

532 ± 7.9 Ma 

Note: the maximum depositional age of each sample was constrained by the youngest age of detrital zircon in this study. 
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once before and after ten analyses. NIST SRM610 glass was used as the 
external standard to normalize U, Th, Pb concentrations of the un-
knowns, whilst zircon 29Si concentration was used for internal stan-
dardization. Trace element compositions of zircons were calibrated 
against multiple reference materials (BCR-1G and BCR-2G) combined 
with the internal standardization (Liu et al., 2010). The analytical results 
of standard zircons Plešovice and Qinghu yielded respective weighted 
mean 206Pb/238U ages of 337 ± 2 Ma and 160 ± 2 Ma, consistent with 
their corresponding recommended values o 337.13 ± 0.37 Ma (Sláma 
et al., 2008) and 159.5 ± 0.2 Ma (Li et al., 2013b) within errors. Off-line 
selection and integration of background and analytic signals, and time- 
drift correction and quantitative calibration for U-Pb dating and trace 
element analyses were performed with the ICPMSDataCal program (Liu 
et al., 2008b, 2010). The age calculations and the concordia plotting 
were made using Isoplot/Ex_ver4.15 (Ludwig, 2003). Individual ana-
lyses in the data table and concordia plots are present at 1σ and age 
uncertainty is quoted at the 95% confidence level. 

3.3. In-situ Hf isotope analysis 

After LA-ICP-MS zircon U-Pb dating, Lu-Hf isotope analyses were 
carried out using a Neptune Plus multi-collector inductively coupled 
plasma mass spectrometer (MC-ICP-MS) coupled with a Geolas HD 
excimer ArF laser ablation system (Coherent, Göttingen, Germany) at 
the Wuhan Sample Solution Analytical Technology Co. Ltd. (China). In 
situ Hf isotope analyses were conducted at/near the U-Pb dated domain. 

The laser ablation beam was 44 μm in diameter and the analysis used 8 
Hz laser repetition rate and 7 J/cm2 laser energy. Each measurement 
was made up of 20 s background signal acquisition followed by 50 s 
ablation signal acquisition, resulting in 20 – 40 μm-deep pits. Helium 
was used as a carrier gas to transport the ablated aerosol, and argon as a 
make-up gas to mix with the carrier gas. Standard zircons 91,500 and 
GJ-1 were used to monitor the accuracy of interference correction dur-
ing the analyses. Zircon 91,500 and GJ-1 yielded weighted average 
176Hf/177Hf ratios of 0.282310 ± 0.000010 and 0.282009 ± 0.000007, 
respectively, consistent (within error) with their respective recom-
mended values of 0.282311 ± 0.000005 (Yuan et al., 2008) and 
0.282013 ± 0.000004 (Yuan et al., 2008). Detailed operating conditions 
and analytical procedures were similar to those described by Hu et al. 
(2012). Off-line selection and integration of analyte signals and mass 
bias calibrations were performed with ICPMSDataCal (Liu et al., 2010). 
A decay constant of 1.865 × 10-11 year− 1 for 176 Lu was adopted (Scherer 
et al., 2001), and the initial Hf isotope ratios were calculated relative to 
the chondritic reservoir with a 176Hf/177Hf ratio of 0.282772 and 
176Lu/177Hf of 0.0332 (Blichert-Toft and Albarède, 1997). The depleted 
mantle line is defined by the present-day 176Hf/177Hf and 176Lu/177Hf 
ratios of 0.28325 and 0.0384, respectively (Griffin et al., 2004). Two- 
stage Hf model ages (TDM2) were calculated for the source rocks of the 
magma by assuming a mean 176Lu/177Hf value of 0.015 for the average 
continental crust (Griffin et al., 2000). 

Fig. 3. Representative field photos (a-d) and thin-section photomicrographs (e-i) of the samples used for zircon U-Pb dating. Mineral abbreviations: Bi-biotite, Chl- 
Chlorite, Kf-potassium feldspar, Mus-Muscovite, Pl-Plagioclase, Q-Quartz. 
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4. Results 

4.1. Zircon morphology and origin 

Zircons from the investigated samples are colorless to light pink and 
exhibit a significant difference in size and morphology. They are 50 – 
200 μm long and 40 – 90 μm wide, with length to width ratios of 1:1 to 
3:1 (Fig. 4). Typically, these zircon grains are (sub)rounded, indicating 
prolonged and/or possibly multicycle transport (Fedo et al., 2003). 
Some zircon grains are subhedral-euhedral prismatic, suggestive of a 
proximal source. 

Zircon CL imaging and Th/U ratios define three zircon types. Most 
zircons display varying intensity (strong to weak) of oscillatory zoning 
and high Th/U ratios (typically > 0.2) (Figs. 4 and 5), indicative of an 
igneous origin (Hanchar and Rudnick, 1995; Corfu et al., 2003). A few 
zircon grains show dark or homogeneous internal structure (Fig. 4), with 
low Th/U ratios of < 0.09 (Fig. 5), consistent with a metamorphic origin. 
In addition, a few zircon grains show complex internal structures with 
oscillatory-zoned or homogeneous cores overgrown by unzoned rims 
(Fig. 4). 

4.2. Detrital zircons U-Pb age and Hf isotope compositions 

A total of 475 zircon grains from six representative sedimentary 
samples were analyzed, in which 459 grains yielded < 10% discordance 

and were considered suitable for provenance analysis. The zircon U-Pb 
dating and Hf isotope analysis results are given in supplementary 
Table S1 and Table S2, respectively, and presented in Fig. 6 and Fig. 7. 
207Pb/206Pb and 206Pb/238U ages are used for zircon grains older and 
younger than 1000 Ma, respectively. All analyses are plotted on con-
cordia diagrams, while only those within 90% concordance are included 
in the frequency plots and discussed below. 

4.2.1. Qiasi Group (4th member) (DC16-92, DC16-94, and DC17-23) 
The three samples have similar age ranges and spectra. A total of 235 

zircon grains were dated, yielding 227 concordant ages (<10% discor-
dance) from 3349 to 456 Ma. This indicates either input from multiple 
source regions or from source rocks with diverse ages (Fedo et al., 2003). 
Four age populations were identified: 2331 – 2595 Ma (n = 36 (15.9%); 
peak ~ 2467 Ma), 900 – 1095 Ma (n = 71 (31.3%); peak ~ 967 Ma), 754 
– 864 Ma (n = 24 (10.6%); peak ~ 816 Ma), and 507 – 625 Ma (n = 25 
(11.0%); peak ~ 579 Ma) (supplementary Table S1 and Figure S1). 
Furthermore, forty-nine (21.6%) zircons yield 207Pb/206Pb ages of 1100 
– 2244 Ma, and eleven (4.8%) detrital zircons have Archean 207Pb/206Pb 
ages of 2648 – 3349 Ma. The youngest zircon has a concordant 
206Pb/238U age of 456 ± 6.6 Ma, representing the maximum deposi-
tional age of the strata. 

Hafnium isotope analyses were made on 176 zircons from these three 
samples. The 2331 – 2595 Ma zircons have 176Hf/177Hf ratios =
0.280796 – 0.281569, εHf(t) = -18.7 to + 12.2, and two-stage model ages 

Fig. 4. Representative cathodoluminescence (CL) images of detrital zircon grains from six samples in the Yidun Terrane. The yellow and red circles represent the U- 
Pb and Hf isotopic analyzed spots, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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(TDM2) of 2226 – 4010 Ma (supplementary Table S2, Fig. 7a). The 900 – 
1095 Ma zircons have 176Hf/177Hf = 0.281159 – 0.282541, εHf(t) = -36.2 
to + 13.6, and TDM2 = 1058 – 4044 Ma (supplementary Table S2, 
Fig. 7a). The 754 – 864 Ma zircons have εHf(t) = –22.7 to + 10.4 and 
corresponding TDM2 = 1052 – 3118 Ma (supplementary Table S2, 
Fig. 7a). The 507 – 625 Ma zircon have εHf(t) = -27.9 to + 13.5 and TDM2 
= 615 – 3204 Ma. 

4.2.2. Cambrian strata (DC17-45 and DR17-35) 
Sample DC17-45 from the eastern Yidun Terrane has a distinctively 

different zircon age spectrum and ranges from the well-defined lower 
Cambrian strata (e.g., DR17-35) in the western Yidun Terrane. For 
sample DC17-45, a total of 80 detrital zircons (yielding 79 concordant 
ages) were dated to be 637 Ma to 3348 Ma. The detrital zircon age 
pattern of this sample is distinctly different from other samples 
mentioned above, as characterized by two major age groups of 821 – 
890 Ma (n = 16; peak ~ 869 Ma) and 1714 – 1977 Ma (n = 39; peak ~ 
1843 Ma), and a minor age group of 2317 – 2520 Ma (n = 9; peak ~ 
2496 Ma) (Fig. 6h). Importantly, late Mesoproterozoic-early Neo-
proterozoic and early Paleozoic detrital zircons are absent in this sam-
ple, but they are abundant in sample DR17-35 (see below) and other 
samples from the Qiasi Group (4th member). The oldest and youngest 
zircon in this sample is 3348 ± 19.8 Ma and 637 ± 5 Ma, respectively. A 
total of 59 concordant zircons were analyzed for their Hf isotope com-
positions. The 2317 – 2520 Ma zircons have negative to positive εHf(t) 
values (-17.3 to 3.7), which correspond to TDM2 = 2757 – 4061 Ma 
(Fig. 7b). Except for one analysis, twenty-six zircons (1714 – 1977 Ma) 

have negative εHf(t) values (-10.2 to − 0.4) and TDM2 ages ranging from 
2455 to 3093 Ma. The 821 – 890 Ma zircons all have negative εHf(t) 
(-26.6 to − 4.2), corresponding to the TDM2 of 2011 – 3392 Ma. 

Eighty zircon grains from sample DR17-35 were U-Pb dated, among 
which 77 are concordant and fall on/near the concordia. The age pop-
ulation is pretty similar to that of samples from the Qiasi Group (4th 
member) (i.e., DC16-92, DC16-94, and DC17-23) in the eastern Yidun 
Terrane. It is characterized by a predominant late Mesoproterozoic-early 
Neoproterozoic cluster (910 – 1087 Ma; n = 28) with an obvious peak at 
~ 974 Ma, and two subordinate clusters of 774 – 894 Ma (n = 12, peak 
~ 818 Ma) and 532 – 598 Ma (n = 11, peak ~ 554 Ma) (Fig. 6l). 
Moreover, some zircon grains are clustered around 2276 – 2567 Ma (n =
7). The oldest and youngest zircon in the sample are 3283 ± 17.9 Ma 
and 532 ± 7.9 Ma, respectively, with the latter defining the maximum 
depositional age. Sixty dated concordant zircons from this sample were 
analyzed for Hf isotopes. The major zircon population at 910 – 1087 Ma 
have varying εHf(t) values (-14.9 to + 10.3) and TDM2 = 1225 – 2825 Ma 
(Fig. 7a). The 774 – 894 Ma zircons have εHf(t) = -25.2 to + 6.3 and TDM2 
= 1284 – 3272 Ma, whilst the 532 – 598 Ma zircons have εHf(t) = -14.8 to 
+ 6.3 and wide TDM2 range of 1284 – 2433 Ma. The 2276 – 2567 Ma 
zircons have εHf(t) = -28.4 to + 4.7 and TDM2 = 2704 – 4536 Ma. 

4.2.3. Ordovician strata (DC17-46) 
A total of 80 zircon grains were analyzed, yielding 76 concordant 

ages (525 – 3565 Ma) that fall into four clusters: 525 – 598 Ma (n = 16 
(21%); peak ~ 560 Ma), 801 – 886 Ma (n = 10 (13%); peak ~ 824 Ma), 
922 – 1106 Ma (n = 25 (33%); peak ~ 974 Ma), and 2428 – 2558 Ma (n 
= 7 (9.2%); peak ~ 2502 Ma) (Fig. 6j). In addition, eleven zircon grains 
have U-Pb ages of 603 – 709 Ma, and Proterozoic (1476 – 2076 Ma, n =
4) and Archean (3081 – 3565 Ma, n = 3) zircons were also identified. 
The youngest zircon age (525 ± 5 Ma) defines the upper limit of depo-
sitional age. 

A total of 53 concordant zircons from this sample were Hf isotope 
analyzed. The 922 – 1106 Ma zircons have mostly negative εHf(t) values 
(-17.3 to − 1.3), although few zircons have positive εHf(t) values (+0.5 to 
+ 10.6) (Fig. 7a). The corresponding TDM2 of the 922 – 1106 Ma zircons 
are 1161 – 2897 Ma. The 801 – 886 Ma zircons have εHf(t) = -27.5 to +
4.1 and a wide TDM2 range (1504 – 3414 Ma). All the 525 – 598 Ma 
zircons have negative εHf(t) values (-28.1 to − 1.2) and wide TDM2 ranges 
(1578 – 3253 Ma), indicating that their parent magmas were produced 
by reworking of the Archean-Paleoproterozoic continental crust. Be-
sides, four 2428 – 2558 Ma zircons have εHf(t) = -1.9 to + 11.3 and TDM2 
= 2348 – 3103 Ma. 

4.3. Detrital zircon trace element compositions 

Typically, zircons with magmatic origin have Th/U ratios higher 
than 0.1, HREE-enriched and LREE-depleted patterns, and marked 
positive Ce but negative Eu anomalies; whilst metamorphic zircons are 
generally depleted in HREEs, and have low Th/U ratios (<0.1) and flat 
REE patterns without negative Eu anomaly (Hoskin and Ireland, 2000; 
Hoskin and Schaltegger, 2003). In this study, most of the zircons 
analyzed display clear negative Eu anomalies, positive Ce anomalies, 
and distinct HREE-enriched patterns (Fig. 8), consistent with the 
magmatic origin. In addition to distinguishing its origin, trace elements 
(e.g., U, Yb, Hf, Y) of zircon can also fingerprint the source rock types 
(Belousova et al., 2002). Most detrital zircons in this study have rela-
tively high U (100 – 1846 ppm), but low Y (35.9 – 4718 ppm), Yb (8.31 – 
1445 ppm), and Hf (5106 – 18379 ppm) concentrations (supplementary 
Table S1). In the U/Yb versus Hf and U/Yb versus Y discrimination di-
agrams (Fig. 9a and b), almost all detrital zircons analyzed fall inside the 
continental zircon field, precluding an oceanic crust origin (e.g., MORB, 
ophiolite). According to the classification and regression tree analysis 
proposed by Belousova et al. (2002), the rock types from which the 
detrital zircon crystallized are dominated by granitoid, dolerite, basalt, 
and carbonatite (Fig. 9d). 

Fig. 5. Plots of U vs. Th (a) and U-Pb age vs. Th/U (b) for detrital zircon in 
our samples. 
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5. Discussion 

5.1. Constraints on depositional age of the sedimentary successions 

5.1.1. Age reassignment for the Qiasi Group 
Depositional age of the Qiasi Group has long been controversial. It is 

traditionally considered to be Paleoproterozoic based on whole-rock Rb- 
Sr isochron age (1972 ± 289 Ma; n = 3) and regional stratigraphic 
correlation (Du, 1986; BGMRSP, 1991; Li et al., 1991). However, a 
recent study shows that the meta-volcanic/sedimentary rocks from the 
2nd and 3rd members of Qiasi Group were formed at Neoproterozoic 
(Tian, 2020). The 4th member of Qiasi Group has the largest exposure 
area among the four members (Fig. 2a), but its depositional age is still 
equivocal. 

In this study, zircons of three sandstone samples from the 4th 
member of Qiasi Group have the youngest 206Pb/238U ages of 510 ± 8.6 
Ma (DC16-92), 456 ± 6.6 Ma (DC16-94), and 515 ± 4.8 Ma (DC17-23), 
respectively (Table 1). Although the youngest zircon from sample DC16- 
94 is considerably younger than that from the other two samples, the 
sampling sites are close to each other, and thus the three samples should 
have received similar detritus and deposited after 456 Ma. However, the 
minimum depositional age is difficult to constrain due to the paucity of 
volcanic rock interlayer and intruding pluton. Although some zircon 
grains develop metamorphic rims with strong CL reflectance, these rims 
are too narrow to be LA-ICP-MS U-Pb dated (Fig. 4). Previous studies 
found that the Qiasi Group (4th member) contains macroalgal fossils 
Trachysphaereridium sp. (Du, 1986; BGMRSP, 1991) that lived from the 
Mesoproterozoic to early Devonian (Zhu et al., 1984; Gong et al., 2009), 

Fig. 6. Concordia plots (left column) and relative probability plots (right column) for detrital zircon U-Pb ages in our samples.  
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indicating that the deposition should not have continued after the early 
Devonian. Moreover, the lower Devonian strata locally overlie the Qiasi 
Group (4th member) along an angular unconformity in our study area. 
The youngest detrital zircons (515 – 456 Ma), combined with paleon-
tological and geological evidence, indicate that the Qiasi Group (4th 
member) was probably deposited in the late Ordovician to Silurian (ca. 
456 – 419 Ma). In summary, we suggest that the 2nd and 3rd members of 
the Qiasi Group were deposited in middle Neoproterozoic, and the 4th 
member was deposited in late Ordovician to Silurian. 

5.1.2. Cambrian strata 
Sample DR17-35 was collected from the well-defined lower 

Cambrian strata (Zhongza Town, western Yidun Terrane), with its 
youngest detrital zircon (532 ± 7.9 Ma) defining the maximum depo-
sitional age. Given that the strata are overlain by the lower Ordovician 
strata, it should be deposited at ca. 532 – 485 Ma, which agrees with the 

previously-assigned Cambrian age based on fossils and stratigraphic 
correlation (Zheng et al., 1984). 

Sample DC17-45 was taken from the previously-defined (based on 
stratigraphic correlation) Cambrian strata in the eastern Yidun Terrane. 
Our LA-ICP-MS U-Pb dating yielded the youngest zircon age of 637 ± 5 
Ma, which represents the maximum depositional age of the sample. The 
sample contains two major detrital zircon age populations of 821 – 890 
Ma (peak ~ 869 Ma) and 1714 – 1977 Ma (peak ~ 1843 Ma), which is 
distinct from the Cambrian sample DR17-35 in the western Yidun 
Terrane (Fig. 6h and l). In contrast, except for the proportion of specific 
age population, the detrital zircon age populations of sample DC17-45 
are comparable to those of the upper Neoproterozoic sedimentary 
sequence (e.g., Shigu Group) in the Yidun Terrane (Su et al., 2019) and 
the nearby Yangtze Block (e.g., Doushantuo and Chengjiang formations, 
Mengdong Group) (Fig. 10a and b). In this case, one possibility is that 
the previously-defined Cambrian strata in the eastern Yidun Terrane 

Fig. 6. (continued). 
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were deposited in the late Neoproterozoic. Another possibility is that the 
strata were deposited in the Cambrian but shared similar detrital prov-
enance to those of the upper Neoproterozoic sequences. Given that 
sample DR17-35 was collected from the well-defined Cambrian strata, 
which has markedly different detrital zircon age patterns from sample 
DC17-45, and that the previously-assigned Cambrian strata are distrib-
uted around the Sinian strata in the region (Fig. 2a), it is most likely that 
these previously-assigned Cambrian sedimentary rocks in the eastern 
Yidun Terrane were actually deposited in the late Neoproterozoic. 

5.2. Detrital zircon provenance 

5.2.1. The upper Neoproterozoic strata 
Zircon grains from the upper Neoproterozoic sedimentary rocks in 

the Yidun Terrane contain a high proportion of late Paleoproterozoic 
(1714 – 1977 Ma; peak ~ 1843 Ma) and middle Neoproterozoic (821 – 
890 Ma; peak ~ 869 Ma) zircons, and fewer late Archean to early 
Paleoproterozoic (2317 – 2520 Ma; peak ~ 2496 Ma) ones (Fig. 10a). 
These three age ranges match well with the multiphase magmatic events 
in the neighboring South China Block. This implies that the South China 
Block was probably the main detrital source for the upper Neo-
proterozoic sedimentary rocks in the Yidun Terrane. The minor popu-
lation of 2317 – 2520 Ma detrital zircons were likely sourced from the 
late Archean-early Paleoproterozoic magmatic rocks (e.g., ~2500 Ma 
Douling Complex; Hu et al., 2013) in the northern margin of Yangtze 
Block. Such inference is supported by their overlapping εHf(t) values and 
crustal model ages (Fig. 7b). The 1714 – 1977 Ma zircons are broadly 
consistent with the ~ 1850 Ma Quanqitang granitic pluton and mafic 
dykes in the northern Yangtze Block (Peng et al., 2009, 2012), and with 
the 1860 – 1890 Ma granitoids in the northeastern Cathaysia Block (Yu 
et al., 2009). Similar zircon Hf isotope compositions and crustal model 
ages further support such interpretation (Fig. 7b). Alternatively, the 
1714 – 1977 Ma and 2317 – 2520 Ma zircons could also be sourced from 
the recycling of Paleoproterozoic-Mesoproterozoic strata (e.g., 
Dahongshan, Dongchuan, and Hekou groups) in the western Yangtze 
Block, which contain a high population of ~ 1700 – 1900 Ma and ~ 
2300 – 2400 Ma detrital zircons (Fig. 11c). The nearby Songpan-Ganze 
Terrane, Yangtze Block, and Jiangnan Orogen all contain voluminous 
870 – 730 Ma igneous rocks, and may represent the possible source for 
the 821 – 890 Ma detrital zircons. Nonetheless, Neoproterozoic igneous 
rocks in this age range from the Songpan-Ganze Terrane and western/ 
northern margin of the Yangtze Block have mostly positive zircon εHf(t) 
values (Fig. 7b), different from the 821 – 890 Ma detrital zircons in 
upper Neoproterozoic strata in the Yidun Terrane that has exclusively 
negative εHf(t) values (Fig. 7b). The scarcity of Neoproterozoic detritus 
from the Songpan-Ganze Terrane and western/northern margin of the 
Yangtze Block may suggest that the Neoproterozoic magmatic rocks 
were not exposed (and eroded) at that time. This agrees with the widely- 
accepted interpretation that most domains of the Yangtze Block were 
submerged during much of the Ediacaran (Yao et al., 2014. and refer-
ences therein). Alternatively, the western Jiangnan Orogen, which 
contains voluminous Neoproterozoic plutons with negative εHf(t) values 
(Fig. 7b), may represent possible provenance for the 821 – 890 Ma 
detrital zircons. 

5.2.2. The lower Paleozoic strata 
As above mentioned, five early Paleozoic samples have similar 

detrital zircon age ranges and populations at 2600 – 2300 Ma, 1100 – 
900 Ma, 900 – 740 Ma, and 690 – 480 Ma, with peaks at ~ 2480 Ma, 974 
Ma, ~822 Ma, and ~ 554 Ma (Fig. 10d). In the Yidun Terrane, apart 
from the ~ 822 Ma meta-rhyolite and minor 991 – 775 Ma detrital zircon 
reported from the Qiasi Group (2nd and 3rd members) (Tian, 2020), no 
other coeval igneous rocks or detrital zircons in sedimentary rocks were 
reported. Moreover, most detrital zircons in the lower Paleozoic sedi-
mentary rocks are rounded to subrounded (Fig. 4), suggesting long- 
distance transport before their deposition (Chen et al., 2018a). Hence, 

Fig. 7. Plots of εHf(t) versus U-Pb ages of detrital zircons from the (a) lower 
Paleozoic, and (b) upper Neoproterozoic sedimentary rocks in the Yidun 
Terrane. Detrital zircon data from the western Yangtze Block (Duan et al., 2011; 
Chen et al., 2016), South Qiangtang Terrane (Dong et al., 2011; Zhu et al., 
2011a), Tethyan Himalaya (Zhu et al., 2011a), Greater Himalaya (Spencer 
et al., 2012), Lhasa Terrane (Zhang et al., 2008; Zhu et al., 2011a), western 
Australia (Veevers et al., 2005), and Antarctica (Grew et al., 2012; Halpin et al., 
2013) are shown for comparison. Other data source for the South China Block 
(SCB): ~2.5 Ga igneous rocks (Zheng et al., 2006; Hu et al., 2013), ~1.85 Ga 
igneous rocks (Peng et al., 2009, 2012; Yu et al., 2009), ~0.9 – 1.1 Ga igneous 
rocks (Zhang et al., 2012a; Li et al., 2013a, 2018; Wang et al., 2013b, 2014b; 
Chen et al., 2014b, 2018b, 2021a; Zhu et al., 2016); western Jiangnan Orogen 
(JO): ~0.8 – 0.9 Ga igneous rocks (Wang et al., 2006, 2011b; Zheng et al., 
2007; Zhao et al., 2013a; Yao et al., 2014a; Lv et al., 2021); Songpan-Ganze 
Terrane (SGT) and western Yangtze Block (YB): ~0.75 – 0.9 Ga igneous rocks 
(Zheng et al., 2007; Huang et al., 2008, 2009; Zhao et al., 2008a, 2008b, 2010a; 
Chen et al., 2015; Meng et al., 2015; Luo et al., 2018; Zhu et al., 2019a, 2019b). 
The fields of 0.9 – 0.99 Ga igneous rocks from India-Himalaya and 0.5 – 0.6 Ga 
igneous rocks from the Pan-African Orogen are modified after Liu et al. (2020). 
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most detritus in the lower Paleozoic sedimentary rocks in the Yidun 
Terrane may have sourced from exotic terranes. 

As previously mentioned, the neighboring Yangtze Block contains 
late Archean to early Paleoproterozoic magmatic rocks, such as ~ 2500 
Ma Douling Complex (Hu et al., 2013), and ~ 2700 – 2500 Ma Yudongzi 
Complex (Chen et al., 2019, and references therein), and ~ 2360 – 2220 
Ma Cuoke Complex (Cui et al., 2020; Lu et al., 2021). These Neoarchean- 
early Paleoproterozoic magmatic rocks could be the detrital source of 
2600 – 2300 Ma zircons. This inference is supported by the similar 
zircon εHf(t) values and crustal model ages between them (Fig. 7a). 

The late Mesoproterozoic-early Neoproterozoic (1100 – 900 Ma) 
detrital zircons constitute the most abundant age population in our 
lower Paleozoic samples, which corresponds temporally to the global 
Grenville orogeny associated with the final Rodinia supercontinent as-
sembly (Hoffman, 1991). The adjacent South China Block contains local 
outcrops of 1100 – 900 Ma igneous rocks (Zhang et al., 2012a; Li et al., 
2013a, 2018; Wang et al., 2013b, 2014b; Chen et al., 2021a), which may 
supply some detritus for the lower Paleozoic sedimentary rocks in the 
Yidun Terrane. However, Grenville-age magmatic rocks in South China 
Block are volumetrically minor and mainly mafic, and thus may not be 
able to supply such enough detrital zircons of this age range. Further-
more, detrital zircon trace element compositions reveal that, in addition 
to basic rocks, the detrital sources also contain abundant granitoids and 

carbonatites (Fig. 9d). Most importantly, the 1100 – 900 Ma detrital 
zircons from the Yidun Terrane have both negative and positive εHf(t) 
values (Fig. 7a), distinct from magmatic zircons from similar-age 
igneous rocks in South China Block, which have dominantly positive 
εHf(t) values (Fig. 7a). Most 1100 – 900 Ma detrital zircons are moder-
ately- to highly-rounded, indicating that they have experienced recy-
cling or long-distance transport before deposition. However, a recycling 
origin can easily be ruled out, as the middle and upper Neoproterozoic 
strata in both the Yidun Terrane, and nearby Songpan-Ganze Terrane 
and Yangtze Block do not develop 1100 – 900 Ma detrital zircons 
(Figs. 10 and 11). The lower Neoproterozoic strata (e.g., Kunyang and 
Huili groups) in the Yangtze Block have a small amount of ~ 990 Ma 
detrital zircons, but a large amount of ~ 1850 Ma ones (the latter being 
uncommon in our lower Paleozoic sedimentary rocks) (Fig. 11b). 
Therefore, we suggest that South China Block is not the main detrital 
source of the 1100 – 900 Ma zircons. In other words, other exotic ter-
ranes may have been connected to the Yidun Terrane in the early 
Paleozoic and supplied the 1100 – 900 Ma zircons. 

For the 900 – 740 Ma detrital zircons, some of them have euhedral to 
subhedral profiles, which indicates little transport before deposition, e. 
g., from the nearby Songpan-Ganze Terrane and South China Block. 
Unlike the upper Neoproterozoic strata in the Yidun Terrane, which are 
dominated by sedimentary input from Neoproterozoic magmatic rocks 

Fig. 8. Chondrite-normalized rare earth element (REE) patterns for the analyzed detrital zircons. Chondrite-normalizing values are from Sun and McDo-
nough (1989). 
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in the western Jiangnan Orogen. The 900 – 740 Ma zircons from the 
lower Paleozoic strata exhibit both negative and positive εHf(t) values 
(Fig. 7a), suggesting an additional detrital input from the Yangtze Block. 
Moreover, the source-proximal middle Neoproterozoic siliciclastic rocks 
in the Yidun Terrane, Songpan-Ganze Terrane, and Yangtze Block also 
contain a large proportion of middle Neoproterozoic zircons (Fig. 11a), 
which may also have contributed to the 900 – 740 Ma detritus. 

The late Neoproterozoic-Cambrian (690 – 480 Ma) detrital zircons 
are the second-most abundant age population in our early Paleozoic 
samples. Apart from a few late Neoproterozoic volcanic intercalations, 
coeval magmatic rocks are rare in the Yidun Terrane and the neigh-
boring Yangtze Block and Songpan-Ganze Terrane. Although the 
Cathaysia Block develops early Paleozoic granites (460 – 400 Ma) that 
were formed under an intracratonic orogeny setting (e.g., Zhang et al., 
2012b; Zhao et al., 2013b; Huang and Wang, 2019), these rocks have 
much younger emplacement ages than the zircon grains under discus-
sion, precluding the Cathaysia Block as a possible contributor. Here, we 
interpret that these late Neoproterozoic-early Paleozoic detrital zircons 
were also sourced from an exotic terrane that was once connected to the 
Yidun Terrane during the early Paleozoic. 

Numerous studies reveal that prominent end-Mesoproterozoic to 
earliest Neoproterozoic and late Neoproterozoic-early Paleozoic detrital 
zircon populations are common in many siliciclastic suites in East 
Gondwana (Myrow et al., 2010; Duan et al., 2011; Cawood et al., 2013; 
Xu et al., 2013; Xue et al., 2021). In the Gondwana, there are abundant 
end-Mesoproterozoic to earliest Neoproterozoic igneous rocks along the 
Rayner-Eastern Ghats (990 – 900 Ma) belt in India and Antarctica, and 
along the Maud-Namaqua-Natal (1090 – 1030 Ma) belt in Antarctica and 

Africa (e.g., Fitzsimons, 2000). Similarly, late Neoproterozoic to early 
Paleozoic igneous rocks related to the final Gondwana assembly and 
related orogeny are extensively documented in the East Gondwana (e.g., 
Meert, 2003), e.g., 600 – 500 Ma and 560 – 530 Ma igneous rocks along 
the Prydz-Darling and Kuunga orogen, respectively. The distinct 974 Ma 
and 554 Ma detrital zircon age peaks from the lower Paleozoic sedi-
mentary rocks in the Yidun Terrane correlate well with many Grenvil-
lian and Pan-African magmatic rock suites in the East Gondwana. 
Therefore, we consider that the East Gondwana is the most likely source 
of the Grenvillian and Pan-African zircon populations. This inference is 
further supported by their similar εHf(t) values (Fig. 7a). 

In summary, the 2600 – 2300 Ma and 900 – 740 Ma detrital zircons 
could be supplied by coeval igneous rocks in the neighboring Songpan- 
Ganze Terrane and South China Block, while the 1000 – 900 Ma and 690 
– 480 Ma zircons are likely derived from the East Gondwana (e.g., 
Rayner-Eastern Ghats, Prydz-Darling, and Kuunga orogens). 

5.3. Tectonic affinity of the late Neoproterozoic-early Paleozoic Yidun 
Terrane 

The Yidun Terrane was long considered to be the western extension 
of the Yangtze Block, in view of their similar Neoproterozoic-Paleozoic 
lithological assemblages and fossils (BGMRSP, 1991). The Yidun 
Terrane may have rifted from the Yangtze Block due to the late Permian 
Emeishan mantle plume activity (Chang, 2000; Song et al., 2004; Xiao 
et al., 2004). However, some authors argued that the Yidun Terrane was 
rifted from the eastern Kunlun Terrane in the early Triassic, due to back- 
arc extension of the north-dipping Paleo-Tethyan subduction (Pullen 

Fig. 9. Geochemical discriminant diagrams for detrital zircons in our samples. (a) Hf vs. U/Yb diagram (after Grimes et al., 2007); (b) Y vs. U/Yb diagram (after 
Grimes et al., 2007); (c) Classification and regression trees for the recognition of zircon from different source rock types (Belousova et al., 2002); (d) Inferred parent 
rock types of detrital zircon are based on their trace element compositions. 
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et al., 2008; Ding et al., 2013; Zhang et al., 2014b). Recently, Tian 
(2020) suggested that the middle Neoproterozoic meta-sedimentary 
rocks (collected from the 3rd member of the Qiasi Group) in Yidun 
Terrane have similar detrital zircon age population to those of the 
Neoproterozoic strata in the Yangtze Block, but are distinct from coeval 

strata in the eastern Kunlun Terrane. This demonstrates a close tectonic 
link between the Yidun Terrane and Yangtze Block in the middle Neo-
proterozoic. Our late Neoproterozoic sample is characterized by the 
presence of obvious age peaks at ~ 637 Ma, ~822 Ma, ~869 Ma, ~1843 
Ma, and ~ 2496 Ma, similar to those of upper Neoproterozoic strata in 

Fig. 10. Detrital zircon age distribution 
spectra for the upper Neoproterozoic and 
lower Paleozoic sedimentary rocks in the 
Yidun Terrane, Yangtze Block, Songpan- 
Ganze Terrane, and eastern Kunlun Terrane. 
All detrital zircon U-Pb ages are within 90% 
concordance. Data sources: (a) Upper Neo-
proterozoic clastic rocks in the Yidun Terrane 
(this study); (b) Upper Neoproterozoic clastic 
rocks in the Yangtze Block (Liu et al., 2008a; 
Sun et al., 2009; Zhou et al., 2018); (c) Upper 
Neoproterozoic clastic rocks in the Songpan- 
Ganze Terrane (Chen et al., 2016, 2018a); 
(d) Lower Paleozoic clastic rocks in the Yidun 
Terrane (this study); (e) Lower Paleozoic 
clastic rocks in the Yangtze Block (Wang 
et al., 2010; Duan et al., 2011; Zhou et al., 
2018); (f) Lower Paleozoic clastic rocks in the 
Songpan-Ganze Terrane (Chen et al., 2016, 
2018a); (g) Lower Paleozoic clastic rocks in 
the eastern Kunlun Terrane (Jin et al., 2015; 
Peng et al., 2017; Yan et al., 2017).   
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the western Yangtze Block (Fig. 10b). Moreover, the sedimentary rock 
types (e.g., algae dolomite) and fossils (e.g., Balios pinguensis, Paleo-
microcystis, Tortifimbria) of the upper Neoproterozoic Yidun Terrane and 
Yangtze Block are comparable (Du, 1986), suggesting a close linkage 
between these two terranes until then. Besides, provenance analysis 
shows that detritus of the upper Neoproterozoic sandstone in the Yidun 
Terrane were mainly sourced from the nearby South China Block, 
further supporting that the Yidun Terrane was part of the Yangtze Block 
in the late Neoproterozoic. 

Detrital zircons from lower Paleozoic sedimentary rock in the Yidun 
and eastern Kunlun terranes show overall comparable age distributions, 
but there are still noticeable differences. For instance, the Yidun Terrane 
has a major age peak at ~ 974 Ma and two subordinate peaks at ~ 554 
Ma and ~ 822 Ma (Fig. 10d), whereas the eastern Kunlun Terrane 
contains the main age peak at ~ 491 Ma and subordinate peaks at ~ 967 
Ma and ~ 897 Ma (Fig. 10g). By contrast, the Yidun Terrane has more 
similar detrital zircon age spectra to coeval rocks in the Yangtze Block 

(Fig. 10e), suggesting a potential tectonic affinity between them. Such 
an inference is further supported by the following observations. (1) In 
the early Paleozoic, the eastern Kunlun Terrane have experienced 
extensive subduction- accretionary orogeny and formed plenty of 
subduction-related igneous rocks, such as diorite (408 – 447 Ma), 
granodiorite (439 – 441 Ma), and adakitic intrusions (454 – 402 Ma) 
(Song et al., 2013; Zhang et al., 2014a; Dong et al., 2018. and references 
therein). This is in good agreement with the presence of abundant early 
Paleozoic detrital zircons in eastern Kunlun Terrane lower Paleozoic 
sediments. However, early Paleozoic magmatism is absent within the 
Yidun Terrane, as well as in the neighboring Songpan-Ganze Terrane 
and Yangtze Block. (2) The eastern Kunlun Terrane had undergone 
amphibolite-to granulite- (locally eclogite-) facies metamorphism in the 
early Paleozoic, due to the deep-subduction of the Kunlun Ocean (Liu 
et al., 2005; Meng et al., 2013; Dong et al., 2018). In contrast, the lower 
Paleozoic strata in the Yidun Terrane only experienced greenschist- 
facies metamorphism (Tian et al., 2018a, 2018b), similar to coeval 
strata in the western Yangtze Block (BGMRSP, 1991; Yan et al., 2008). 
(3) Lower Paleozoic sedimentary rocks in the eastern Kunlun Terrane 
were formed in an active continental margin setting (Chen et al., 2014c; 
Dong et al., 2018), whereas in the Yidun Terrane and western Yangtze 
Block were deposited in a passive continent margin setting (BGMRSP, 
1991; Tian, 2020). (4) Detrital zircons from lower Paleozoic sedimen-
tary rocks in both the Yidun Terrane and Yangtze Block have similar εHf 

(t) values (Fig. 7a and c), demonstrating that they shared a uniform 
detrital provenance. Based on the above considerations, we suggest that 
the Yidun Terrane still has a close tectonic affinity to the Yangtze Block 
in the early Paleozoic, rather than the eastern Kunlun Terrane. 

5.4. Paleogeographic position of the Yidun Terrane in East Gondwana 

As above mentioned, most terranes in the Tibetan Plateau were 
separated from the East Gondwana, yet any tectonic link between the 
Yidun Terrane and Gondwana remains enigmatic. In this study, our early 
Paleozoic samples have prominent end-Mesoproterozoic to earliest 
Neoproterozoic (ca. 1100 – 900 Ma) and late Neoproterozoic to 
Cambrian (ca. 690 – 480 Ma) detrital zircon age populations, indicating 
a spatial link between the Yidun Terrane and East Gondwana. To further 
constrain the paleogeographic position of Yidun Terrane in the East 
Gondwana, detrital zircons from age-equivalent sequences in South 
Qiangtang Terrane, northeastern India (including the Tethyan-, Greater- 
, and Lesser Himalaya), northwestern India, Lhasa Terrane, East 
Antarctica, and western/NE/SE Australia are compiled for comparison 
(Fig. 12). The results show that detrital zircons from East Antarctica, 
Australia, and Lhasa Terrane show prominent age peaks at ~ 1040 – 
1170 Ma (Fig. 12h-k), which are absent in our lower Paleozoic sedi-
mentary rocks. This difference suggests that the Yidun Terrane was not 
likely connected to Australia, East Antarctica, or Lhasa Terrane, where 
abundant late Mesoproterozoic magmatic rocks are emplaced along the 
Namaqyua-Natal Orogen (1090 – 1030 Ma) and the Wilkes-Albany- 
Fraser Orogen (1330 – 1130 Ma) (Fig. 13). If the Yidun Terrane was 
located next to Australia or Antarctica, distinct ~ 1040 – 1170 Ma age 
peaks would be present in the Yidun Terrane detrital zircon age spectra. 
The presence of pronounced 1700 – 1800 Ma detrital zircon age peaks in 
the lower Paleozoic strata in the Lesser Himalaya and northwestern 
India (but absent in the Yidun Terrane) (Fig. 12e and f) implies that the 
Yidun Terrane was not located next to these terranes either. In contrast, 
the distinctive 974 Ma detrital zircon age peak is found in both the Yidun 
Terrane and similar-aged siliciclastic rocks from the South Qiangtang, 
Tethyan Himalaya, and Greater Himalaya terranes (Fig. 12a–d). sug-
gesting that they were proximal to each other and shared a common 
detrital provenance in the early Paleozoic. Accordingly, we consider that 
the Yidun Terrane was geographically close to the northeastern India 
(Tethyan- and Greater Himalaya) and the Qiangtang Terrane in the early 
Paleozoic. This interpretation is further supported by that the detrital 
zircons from both places have nearly identical εHf(t) values (Fig. 7c). 

Fig. 11. Detrital zircon U-Pb age probability plots for the Paleo-/Meso-prote-
rozoic, and lower/middle Neoproterozoic siliciclastic rocks in the Yidun and 
Songpan-Ganze terranes, and Yangtze Block. All detrital zircon U-Pb ages are 
within 90% concordance. Data source: Paleo-/Meso-Proterozoic rocks are from 
Greentree and Li. (2008), Zhao et al. (2010b), Chen et al. (2013), and Wang and 
Zhou. (2014), lower Neoproterozoic rocks are from Sun et al. (2009), middle 
Neoproterozoic rocks are from Sun et al. (2009), Chen et al. (2016), Zhu et al. 
(2018), and Tian. (2020). 
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Recently, lines of evidence (including geologic, paleomagnetic, and 
faunal data) support that the South China Block (including the Yangtze 
and Cathaysia blocks) was also located on the northern margin of East 
Gondwana in the early Paleozoic (Cawood et al., 2013; Xu et al., 2013; 
Chen et al., 2016, 2018a, 2021b; Wang et al., 2021). Such paleogeo-
graphic reconstruction is consistent with the provenance discrimination 
that both South China Block and East Gondwana supplied detritus to the 
Yidun Terrane during the deposition of lower Paleozoic sediments. 

5.5. Tectonic evolution for the late Neoproterozoic to late Paleozoic Yidun 
Terrane 

As shown in Fig. 10, the upper Neoproterozoic-lower Paleozoic 
sedimentary rocks in both the Yangtze Block and Yidun-Songpan-Ganze 
terranes have comparable detrital zircon age populations, indicating 

that they were connected to each other and experienced similar tectonic 
evolution during late Neoproterozoic to early Paleozoic periods. Prov-
enance analysis further suggests that upper Neoproterozoic siliciclastic 
rocks in both the Yidun-Songpan-Ganze terranes, as well as Yangtze 
Block, were sourced from the interior of South China (Zhou et al., 2018; 
Su et al., 2019; Chen et al., 2021b; this study). Such a self-sufficient 
sedimentary operation is accordant with paleogeographic reconstruc-
tion that South China Block was isolated in the Proto-Tethys Ocean 
during late Cryogenian to early Ediacaran (~700 – 600 Ma) (Zhao et al., 
2018). However, abundant Greenville and Pan-African detrital zircons 
from the East Gondwana were imported into the early Paleozoic sedi-
mentary rocks in the Yidun-Songpan-Ganze terranes and Yangtze Block 
(Fig. 10). This shift of sediment provenance indicates significant tectonic 
and paleogeographic location change of the Yidun-Songpan-Ganze ter-
ranes and Yangtze Block, which could be best ascribed to the collision 

Fig. 12. Relative probability plots of 
detrital zircon U-Pb age from the lower 
Paleozoic sedimentary rocks in the (a) 
Yidun Terrane (this study), (b) South 
Qiangtang Terrane (Pullen et al., 2008; 
Dong et al., 2011; Zhu et al., 2011a), (c) 
Tethyan Himalaya (Myrow et al., 2009, 
2010; Hughes et al., 2011; McQuarrie 
et al., 2013), (d) Greater Himalaya 
(Gehrels et al., 2006a, 2006b; McQuar-
rie et al., 2013), (e) Lesser Himalaya 
(McQuarrie et al., 2008, 2013; Myrow 
et al., 2010; Hofmann et al., 2011; Long 
et al., 2011), (f) northwestern India 
Craton (Turner et al., 2014; Wang et al., 
2019), (g) Lhasa Terrane (Zhang et al., 
2008; Dong et al., 2009, 2010), (h) East 
Antarctica (Goodge et al., 2002, 2004a, 
2004b), (i) western Australia (Cawood 
and Nemchin, 2000; Markwitz et al., 
2017), (j) northeastern Australia (Fer-
gusson et al., 2001, 2007), and (k) 
southeastern Australia (Ireland et al., 
1998; Berry et al., 2001).   
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between Yidun-Songpan-Ganze terranes, Yangtze Block, and East 
Gondwana in the late Neoproterozoic-early Cambrian (ca. 570 – 520 
Ma). A possible collision between Yidun and Songpan-Ganze terranes, 
Yangtze Block, and East Gondwana is supported by the following evi-
dence: (1) the Yidun Terrane experienced regional metamorphism dur-
ing ca. 570 – 520 Ma (Su et al., 2019. and references therein), and coeval 
metamorphism was also recorded in the Tethyan Himalaya (monazite 
208Pb/232Th ages: 588 – 423 Ma) (Webb et al., 2011); These meta-
morphic events are consistent with the estimated collision timing (ca. 
580 – 540 Ma) between South China Block and the East Gondwana (Yao 
et al., 2014b; Yang et al., 2020). (2) the western Yangtze Block develops 
Cambrian molasse-like sediments, and its detrital provenance was 
mainly derived from the ~ 580 – 500 Ma Cadomian arc along the 
northern margin of East Gondwana (Chen et al., 2021b). (3) voluminous 
870 – 730 Ma igneous rocks in the western and northern margin of the 
Yangtze Block were submerged or buried at depth in the late Neo-
proterozoic, but then exhumed and eroded to provide detritus materials 
for the lower Paleozoic siliciclastic rocks (Yang et al., 2020; this study). 
This indicates that the margin of Yangtze Block experienced extensive 
tectonic uplift during the late Neoproterozoic to early Paleozoic transi-
tion period, possibly related to the collision of Yidun-Songpan-Ganze 
terranes and Yangtze Block with East Gondwana. 

Integrating published data with our discussion above, we proposed 
the following model for the tectonic evolution of the late 
Neoproterozoic-early Paleozoic Yidun Terrane: 

(1) After the Rodinia supercontinent breakup at ~ 720 Ma (Li et al., 
2013c), the rifted Yidun-Songpan-Ganze terranes and Yangtze Block 
may be isolated in the Proto-Tethys Ocean, which blocked the detrital 
input from other cratons (e.g., India), and consequently received 
detritus only from their uplifted denudation zone (Fig. 13a). Meantime, 
the three terranes/block drifted from medium-high to low latitude (Li 
et al., 2013c; Zhou et al., 2018; Su et al., 2019; Tian, 2020), gradually 
approaching the northern margin of East Gondwana (Fig. 13a). 

(2) At ~ 570 – 520 Ma, the Yidun-Songpan-Ganze terranes and 
Yangtze Block started to collide with the northern margin of Gondwana 
and receive abundant detritus from the E Ghats-Rayner, Kuunga, and 
Prydz-Darling orogens in the East Gondwana (Fig. 13b). Given that the 
Cambrian (ca. 532 – 485 Ma) and Ordovician-Silurian (ca. 456 – 419 
Ma) sedimentary rocks have nearly identical detrital zircon age spectra, 
we suggest that these lower Paleozoic strata in the Yidun Terrane have 
largely the same provenance during their deposition. It is likely that the 
Yidun Terrane was not separated from the East Gondwana before the 
late Silurian. The Yidun Terrane and South China Block may have then 
rotated clockwise relative to the East Gondwana, leading to the final 

Fig. 13. Schematic tectonic evolution model of Yidun Terrane during (a) late Cryogenian-early Ediacaran, (b) late Ediacaran-Silurian, and (c) early Devonian periods 
(modified after Fitzsimons, 2000; Boger et al., 2001; Xu et al., 2013; Wang et al., 2021). Locations of South Qiangtang and Lhasa terranes are from Zhu et al. (2011) 
and Zhao et al. (2017), respectively. The inferred pathway of sediments is from Myrow et al. (2010) and Chen et al. (2018). CB: Cathaysia Block; GH: Greater 
Himalaya; LH: Lesser Himalaya; SQT: South Qiangtang Terrane; TH: Tethyan Himalaya; YB: Yangtze Block; YT: Yidun Terrane. Terrane outlines are not to scale. 
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Proto-Tethys closure (in a scissor-like pattern) and the formation of 
North India Orogen (ca. 530 – 470 Ma) along the northern margin of 
India Craton (Fig. 13b) (Cawood et al., 2007). 

(3) Due to the late Silurian to early Devonian opening of the Paleo- 
Tethyan Jinshajiang-Ailaoshan oceans, the Yidun-Songpan-Ganze ter-
ranes and Yangtze Block were rifted away from the East Gondwana, and 
then drifted northward toward the southern Eurasian margin (Metcalfe, 
2013, 2021; Lai et al., 2014a; Xia et al., 2016; Liu et al., 2018) (Fig. 13c). 
This is supported by the presence of late Early Devonian to middle 
Devonian deep-water radiolarian-bearing rocks in the Yidun Terrane 
(Zhang et al., 2000; Yang et al., 2010), and by the 383 – 362 Ma and 344 
– 340 Ma ophiolites within the Jinshajiang and Ailaoshan ophiolitic 
mélanges, respectively (Wang et al., 2000; Jian et al., 2009). Tillites and 
glaciomarine faunas are developed in the upper Paleozoic strata of the 
Lhasa and Qiangtang terranes, and East Gondwana, but absent in the 
Yidun Terrane, Songpan-Ganze Terrane, and Yangtze Block. This also 
demonstrates that the Yidun-Songpan-Ganze terranes-Yangtze Block 
had separated from the East Gondwana at that time. 

6. Conclusions 

Based on detrital zircon U-Pb age and Hf isotopic data, we draw the 
following conclusions:  

(1) The Qiasi Group (4th member) was deposited in the late 
Ordovician-Silurian (ca. 456 – 419 Ma), rather than the 
previously-believed age of Paleoproterozoic. The previously- 
assigned Cambrian strata in the eastern Yidun Terrane may 
have deposited in the late Neoproterozoic (after 637 Ma). 

(2) Detritus for the upper Neoproterozoic clastic rocks were domi-
nantly sourced from the nearby South China Block, whereas those 
for the lower Paleozoic clastic rocks were likely derived from Pan- 
African and Grenville-age provinces (e.g., Kuunga, Prydz- 
Darling, and E Ghats-Rayner orogens) in the East Gondwana, in 
addition to the Songpan-Ganze Terrane and South China Block.  

(3) The Yidun Terrane has close tectonic affinity with the Yangtze 
Block during the late Neoproterozoic to early Paleozoic. In the 
early Paleozoic, the Yidun Terrane and Yangtze Block were 
located on the northern margin of East Gondwana, close to the 
Qiangtang, Tethyan Himalaya, and Greater Himalaya terranes. 
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