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Abstract: As a dominant water carrier, hydrous silicate minerals and rocks are widespread throughout
the representative regions of the mid-lower crust, upper mantle, and subduction zone of the deep
Earth interior. Owing to the high sensitivity of electrical conductivity on the variation of water content,
high-pressure laboratory-based electrical characterizations for hydrous silicate minerals and rocks
have been paid more attention to by many researchers. With the improvement and development
of experimental technique and measurement method for electrical conductivity, there are many
related results to be reported on the electrical conductivity of hydrous silicate minerals and rocks
at high-temperature and high-pressure conditions in the last several years. In this review paper,
we concentrated on some recently reported electrical conductivity results for four typical hydrous
silicate minerals (e.g., hydrous Ti-bearing olivine, epidote, amphibole, and kaolinite) investigated by
the multi-anvil press and diamond anvil cell under conditions of high temperatures and pressures.
Particularly, four potential influence factors including titanium-bearing content, dehydration effect,
oxidation−dehydrogenation effect, and structural phase transition on the high-pressure electrical
conductivity of these hydrous silicate minerals are deeply explored. Finally, some comprehensive
remarks on the possible future research aspects are discussed in detail.

Keywords: electrical conductivity; impedance spectroscopy; water; titanium-bearing olivine; epidote;
amphibole; kaolinite; high pressure

1. Introduction

As an important volatile matter, water is widely exists in the mid-lower crust, upper
mantle, and subduction zone of the deep Earth interior, which is present as two main species
in the water-bearing silicate minerals: (i) molecular water (H2O) and structural hydroxyl
(OH) [1]. For the existence of water as molecular water (H2O), some typical minerals (e.g.,
chlorite, epidote, amphibole, kaolinite, et al.) are included, which are crucial to affect
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the water circulation in these regions of mid-lower crust, upper mantle, and subduction
zones. As for some nominally anhydrous minerals (NAMs) (e.g., feldspar, quartz, olivine,
clinopyroxene, orthopyroxene, garnet, wadsleyite, ringwoodite), most of them belong to a
type of crucial silicate rock-forming minerals of the Earth’s interior, in which the existence
of water is as a form of the point defect of structural hydroxyl (OH) in the hydrous minerals.
As usual, it is well known that the hydrous minerals and rocks are the major carrier of water
in the subducted geotectonic environment and NAMs can carry trace amounts of water into
the deep uppermost mantle. Since the first theoretical calculations of electrical conductivity
on hydrous olivine from Karato (1990) based on the proton diffusion of Nernst–Einstein
equation, there are a large quantity of electrical conductivity results to be reported from the
laboratory-based electrical conductivity experiments, theoretical calculations of molecular
dynamics, and filed geophysical observation of magnetotellurics (or electromagnetic depth
soundings) [2–8]. Furthermore, by virtue of these acquired high-pressure laboratory-based
conductivity results, we can extrapolate the water content, distribution state, storage form,
and migration mechanism of water in the deep Earth interior.

Recently, some available research found that the presence of water, either the trace
molecular water (H2O) or the structural hydroxyl (OH) in hydrous mineral, plays a crucial
role in many pressure-dependent physicochemical properties and their corresponding
transport processes of deep Earth interior, such as electrical conductivity [9,10], elastic wave
dispersion and its attenuation [11,12], grain–growth kinetics [13,14], elemental diffusion
coefficient [15,16], dislocation creep [17,18], and dynamic recrystallization [19,20]. Whereas,
the electrical conductivity of hydrous silicate minerals and rocks are highly sensitive to
temperature, pressure, oxygen fugacity, crystallographic anisotropy, water-bearing content,
dehydration effect, iron content, trace element of titanium-bearing content, oxidation–
dehydrogenation effect, structural phase transition, etc. As pointed out by Karato (1990) [2],
Huang et al. (2005a, b; 2017) [21–23], Wang et al. (2006) [24], Dai and Karato (2009a, b,
c; 2014a, b, c, d; 2020) [25–31], Karato and Dai (2009) [32], Hu et al. (2017, 2018) [33,34],
Dai et al. (2020) [35], and He et al. (2021) [36], water content is one of most important
influential factor on the electrical properties of minerals and rocks at high-temperature and
high-pressure conditions. Water can enhance several orders of magnitude in the electrical
conductivity of hydrous minerals and rocks, and its effect is substantial.

With the improvement and development of high-pressure experimental techniques
and measurement methods for electrical conductivity, more and more conductivity results
were obtained in order to systematically investigate the mineralogical composition, the
electrical conductivity—depth profile, and discontinuity of cycle-layered structure of Earth
interior in the globally and regionally geotectonic units. In the last several decades, the
electrical conductivity of hydrous minerals and rocks have been performed by virtue of
electrochemical alternating current (AC) impedance spectroscopy using all of these available
high-pressure pieces of equipment, including autoclave, piston-cylinder, multi-anvil press,
and diamond anvil cell. In this work, we focused some of the most recent developments in
electrical conductivity of hydrous minerals in the multi-anvil press and diamond anvil cell.
In this review paper, some potential influence ingredients from the titanium-bearing content,
dehydration effect, oxidation−dehydrogenation effect, and structural phase transition on
the electrical conductivity of hydrous minerals are discussed in detail.

2. High-Pressure Apparatus for the EC Measurements and FT-IR Observation

In the last several decades, in order to realize the electrical conductivity measure-
ments of hydrous minerals and rocks at HP-HT conditions, many researchers have already
designed and developed their high-pressure experimental platforms, such as autoclave,
piston-cylinder, multi-anvil press, and diamond anvil cell.

Recently, Shan et al. (2021) from the Key Laboratory of High-Temperature and High-
Pressure Study of the Earth’s Interior (HTHPSEI), Institute of Geochemistry, Chinese
Academy of Sciences, successfully designed and developed one new high-pressure experi-
mental platform for the measurement of electrical conductivity for water-bearing porous
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rocks using autoclave, which can be widely applied to a shallow Earth crustal environ-
ments under conditions of high temperature, high pressure, and controlling the liquid
water saturation [37]. In order to test its accuracy and precision, the electrical conductivity
of water-bearing sandstone were performed under controlled temperature ranges from
303 to 423 K and the fixed saturation degree ranges from 36 to 100% in the liquid water at
2.0 MPa. Shan et al. (2021) found that the electrical characterization technique under the
relatively lower-temperature and lower-pressure conditions is widely applicable to a series
of high porosity-containing hydrous rocks in the geothermal/oil research.

Early in 2009, Dai and his collaborators have already set up one high-pressure plat-
form of high-pressure electrical conductivity measurement in order to check the influence
of oxygen fugacity on the grain boundary electrical conductivity of rocks using YJ-3000t
multi-anvil high-pressure apparatus in HTHPSEI, at the Institute of Geochemistry, Chinese
Academy of Sciences [38]. In their designed experimental method, as an example of dry
peridotite, the grain interior, grain boundary, and total electrical conductivities for dry
synthetic peridotite were performed by virtue of the electrochemical AC impedance spec-
troscopy technique at high temperature, high pressure, and controlled oxygen fugacities.
To efficiently adjust and control the oxygen fugacity during the process of electrical con-
ductivity measurements in the sample chamber, five typical solid buffers were employed,
i.e., Fe3O4 + Fe2O3, Ni + NiO, Fe + Fe3O4, Fe + FeO, and Mo + MoO2. With the rise of
oxygen fugacity, the grain boundary electrical conductivity of dry peridotite will increase,
accordingly. Further, the functional relationship between the grain boundary electrical
conductivity of dry peridotite and oxygen fugacity was successfully established under
conditions of fixed pressure of 2.0 GPa and temperature of 1173 K. One detailed experi-
mental measurement platform was displayed in Figure 1, which is adopted to measure
the electrical conductivity of minerals and rocks in HTHPSEI, conducted at the Institute
of Geochemistry, Chinese Academy of Sciences, in HP-HT conditions. For this represen-
tative conductivity measurement platform, there are three dominant pieces of equipment
to be used. The high-temperature and high-pressure environments were realized by the
YJ-3000t multi-anvil press, as shown in Figure 1a. Figure 1b stands for our Solartron-
1260 impedance/gain-phase analyzer, which is also in conjunction with Solartron-1296
impedance spectroscopy analyzer interface in order to enhance the measurement range of
sample resistance up to 1012 Ohm. As usual, the variation of water content is checked for
the initial and recovered samples before and after each electrical conductivity experiments,
and thus, the Vertex-70V vacuum high-resolution and high-precision Fourier-transform
infrared spectroscopy (FT-IR) analyzer will be employed to efficiently determine the trace
structural water in minerals and rocks, as displayed in Figure 1c.

It is well known that many high-pressure mineral physiochemical properties for
minerals and rocks are extremely sensitive to the variation of trace structural water at
HP-HT conditions. To precisely check the water content in the sample, the high-resolution
and high-precision FT-IR measurement is indispensable to outline it. During each electrical
conductivity measurement, the FT-IR analysis is performed within the wide wavenumber
ranging from 600 to 8000 cm−1. In this FT-IR measurement platform, it consists of two
corresponding pieces of the vacuum Vertex-70V spectrometer and the high-resolution
Hyperion-1000 infrared microscope. For each representative FT-IR measurement, the
sample must be cut thinner and polished enough so as to assure enough of the transmitted
light across the experimental sample. Thus, the thickness in the sample was determined
according to the different transparency of each corresponding mineral, whose magnitude
is also determined by the high-precision Olympus microscope. The water content of
sample was acquired using the unpolarized radiation of mid-IR light source with the
IR absorption mode. Then, the square of IR aperture is adjusted to the magnitude of
100 × 100 µm2, which is equipped with a high-performance infrared detector composed
of a MCT (Mercury-Cadmium-Telluride) pseudobinary alloy semiconducting material.
In the stage of the Hyperion-1000 infrared microscope, one circular slice of white and
transparent calcium fluoride (CaF2) or potassium bromide (KBr) with its diameter of 5 cm
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and thickness of 1 mm was installed as the beam splitter in our IR measurement. In order
to efficiently avoid the inevitable effect from the heterogeneity of water distribution in the
sample, at least five sets of FT-IR spectra were gathered from different selected positions in
each corresponding mineral surface, and then the water content is precisely determined
according to the averaging value. For a selected total absorbance of OH groups between
wavenumber ranges of 3000–3800 cm−1, each FT-IR spectroscopy of mineral was conducted
at a predetermined 64, 128, 256, and 512 scans accumulated for each sample surface. Except
for high-pressure electrical conductivity measurements, the ultrasonic elastic wave velocity
and synchrotron X-ray diffraction of hydrous mineral are also determined the water content
before and after high-temperature and high-pressure experiments, as illustrated in detail by
Gwanmesia et al. (2020) for hydrous wadsleyite using our FT-IR experimental platform [39].
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Figure 1. High-pressure experimental platform for the measurements of electrical properties of
minerals and rocks using the electrochemical AC impedance spectroscopy in HTHPSEI, Institute of
Geochemistry, Chinese Academy of Sciences. In here, (a) stands for the YJ-3000t multi-anvil apparatus,
(b) stands for the combined interface of Solartron-1260 and Solatron-1296 Impedance/Gain-phase an-
alyzers, and (c) stands for the Vertex-70V vacuum high-resolution and high-precision FT-IR analyzer,
respectively.

Figure 2 shows the representative FT-IR spectra for hot-pressed sintering polycrys-
talline olivine aggregates within the wavenumber range from 3000 to 3800 cm−1. According
to the detailed calculating method of water content for hydrous olivine single crystals and
hot-pressed sintering polycrystalline aggregates from Dai and Karato (2014a, b, c, d),
some hydrogen-related defects are displayed at the wavenumber ranges from 3000 to
3750 cm−1 [28–31]. Therefore, the integration of FT-IR spectroscopy is conducted at a given
wavenumber range, and the water content in the hot-pressed sintering polycrystalline
olivine aggregates was determined using an equation proposed by Paterson (1982) [40],

COH =
Bi

150ξ

∫ K(ν)
(3780− ν)

dν (1)

where, COH is the molar concentration of the OH group (its correspondent unit is the
ppm wt% or H/106 Si of water), Bi is the density factor (4.39 × 104 cm H/106 Si), ξ is the
orientation factor (In case of the hot-pressed sintering polycrystalline aggregates or rock
sample, the value is assigned as 1/3; Whereas, in case of mineral single crystal sample, the
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value is assigned as 1/2), and K(ν) is the absorption coefficient in cm−1 at the wavenumber
ν (cm−1). The integration was conducted over the wavenumber ranges from 3100 to 3750
cm−1. The measurement error of water content is less than 10%, which is mainly originated
from the uncertainty of sample thickness measurement and the inevitable heterogeneity
of each averaging FTIR spectroscopy of a standard water content calibration for hydrous
hot-pressed sintering polycrystalline olivine aggregates.
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Figure 2. Representative FTIR spectra for hot-pressed sintering polycrystalline olivine aggregates
within the wavenumber range from 3000 to 3800 cm−1. Here, (a) displays a series of Ti-poor
sample with three different water contents (552, 241, and 70 ppm wt); (b) displays a series of Ti-rich
sample with four different water contents (529, 214, 76, and 13 ppm wt). The titanium content in
polycrystalline olivine aggregates (200 and 683 ppm wt) was precisely checked by the inductively
coupled plasma mass spectrometry (ICP-MS) analysis in the Department of Earth and Planetary
Sciences, Yale University (reproduced with permission from the reference of Dai and Karato [9];
published by the American Geophysical Union, 2020).

In the last several years, many electrical conductivity results of hydrous minerals
and rocks (e.g., Fe-bearing amphibole, epidote, garnet, gabbro, basalt, mudstone, phyllite,
et al.) in the mid-lower Earth crust and subduction zone have already investigated on this
YJ-3000t multi-anvil high-pressure apparatus in conjunction with the electrochemical AC
impedance spectroscopy and FT-IR spectroscopy measurements at high temperatures and
high pressures [34,35,41–45]. The influences of dehydration effect and dehydrogenation
effect on hydrous minerals and rocks were explored in detail, for which, all of them were
widely applied to disclose the high conductivity anomalies in the regions of subduction
zone and stable continental crust. Except for all of these acquired electrical conductivities of
hydrous minerals and rocks, a series of electrical conductivities of dry geological specimens
from the Earth’s crust and upper mantle were paid much attention at high temperature
and high pressure, such as albite, K-feldspar, alkali feldspar solid solutions, anorthite,
olivine, orthopyroxene, diopside, almandine-rich garnet, peridotite, lherzolite, pyroxenite,
pyroxene andesite, quartz andesite, granite, carbonaceous slate, schist, granulite, gneiss,
eclogite, etc., in this multi-anvil high-pressure apparatus [46–71]. All of these influential
factors (e.g., frequency, temperature, oxygen partial pressure, pressure, water-bearing
content, iron-bearing content, anisotropy of crystallographic axis, segregation effect of
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grain boundary, content of alkali metallic ion, salinity-bearing, water-bearing fluids, etc.)
have systematically been investigated on the basis of this in-situ multi-anvil high-pressure
apparatus.

In addition, in order to realize the electrical conductivity measurements at much
higher pressure conditions, we successfully designed and constructed a new experimental
platform of electrical conductivity using diamond anvil cell in HTHPSEI, at the Institute
of Geochemistry, Chinese Academy of Sciences. A detailed experimental setup and its
corresponding cross-sectional assembly diagram of diamond anvil cell for high-pressure
electrical conductivity measurements, as displayed in detail in Figure 3. A detailed ex-
perimental method and measurement procedure is presented in Dai et al. (2019) [72].
Furthermore, we well combined this in-situ high-pressure EC measurement system with
other crucial research means, including high-pressure Raman spectroscopy, high-resolution
transmission electron microscopy, atomic force microscopy, and first-principles theoretical
calculations in order to check high-pressure electrical transport, vibrational, and structural
properties. Some representative pressure mediums including the mixture of volume ra-
tio (4:1) for the methanol and ethanol, liquid argon, liquid helium, etc., were selected to
realize different hydrostatic environments in the sample chamber of diamond anvil cell.
To note, more detailed high-pressure research was deeply explored during the process
of both compression and decompression. By virtue of these electrical, spectroscopic, and
theoretically calculating studies, a series of physiochemical behaviors of the pressure-
induced structural phase transformation and dehydration effect on the hydrous minerals
(e.g., kaolinite, epsomite, goethite, chalcanthite, gypsum, etc.) have already studied from
Dai Lidong’s high-pressure research group in HTHPSEI, at the Institute of Geochemistry,
Chinese Academy of Sciences [73–77]. In addition, some important semiconducting materi-
als including the binary metallic oxides, AB-type structural layered metallic compounds,
AB2-type structural transition-metal dichalcogenides (TMDs), and ABO3-type structural
perovskite compounds are paid attention in regards to their structural phase transition,
amorphization, and metallization, and investigated under conditions of HP-HT conditions
in detail [78–97].
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Figure 3. Measurement assemblage of sample for electrical conductivity measurements in the
diamond anvil cell (DAC) at high pressure. In here, (a) stands for a detailed configuration for
two symmetric plate electrodes integrated between upper and lower blocks of diamond anvils;
(b) stands for the cross-sectional diagram of the DAC used for high-pressure impedance spectroscopy
measurements.

3. Experimental Theory and Measurement Methods

It is well known that the electrochemical AC impedance spectroscopy method is one
of most efficient technique to measure the electrical conductivity of hydrous minerals
and rocks at conditions of high temperatures and high pressures [98–106]. Before we
launched a complex impedance spectroscopy measurement, the AC signal voltage ranges
from 10 mV to 3 V and the scanning frequency ranges from 10−5 Hz to 3.2 × 107 Hz need
to be predesignated by virtue of Z-Plot program in the complex impedance spectroscopy
analyzer. The measurement mode of controlling signal voltage and scanning frequency
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was selected to obtain the complex impedance spectroscopy of sample. As usual, for a
typical single-crystal mineral, the acquired complex impedance spectroscopy consisted of
one semi-circular arc of grain interior, as well as the electric transport process of sample—
electrode interface polarization. However, for a special polycrystalline aggregates or rock,
the acquired complex impedance spectroscopy consists of one semi-circular arc of grain
interior, one semi-circular arc of grain boundary, as well as the electric transport process
of sample—electrode interface polarization. Accordingly, by fitting all of these acquired
complex impedance spectra using the appropriate equivalent electric circuit, the grain
interior electrical conductivity, grain boundary electrical conductivity and the sample—
electrode interface polarization resistance will be successfully obtained in turns. For each
individual complex impedance spectroscopy, four characteristic parameters including
the real part (Z′), the imaginary part (Z”), magnitude (|Z|), and phase angel (θ) will be
obtained at the same time. The relationship between the real part, the imaginary part,
magnitude, and phase angel can be expressed as,

θ =
∣∣∣tan−1(Z′′/Z′) (2)

|Z| =
[
(Z′)2

+ (Z′′ )2
]1/2

(3)

Representative complex impedance spectra for natural hydrous Fe-bearing amphibole
single crystals from Sichuan province of southwest China at conditions of 1.0 GPa, 623–1173
K, and frequency range of 10−1–106 Hz before and after the occurrence of the oxidation–
dehydrogenation reactions, which are illustrated in Figure 4 in detail.

More detailed descriptions on experimental theory and measurement methods for the
impedance spectroscopy are presented in our previous review paper [35]. The equivalent
electric circuit was selected to fit the impedance spectroscopy of sample, which is composed
of some fundamental electronic elements (e.g., resistor, capacitor, inductor, constant phase
element (CPE), gerischer element, Warburg element, etc.) [107–109]. After that, the electrical
conductivity of sample was obtained, and the calculating formula is expressed as,

σ =
1
ρ
=

L
(R× S)

(4)

Here, σ stands for the electrical conductivity (S/m), ρ stands for the electrical resistivity
(m/S), L stands for the sample height (m), and S stands for the cross-sectional area of sample
(m2). As usual, the relationship between the electrical conductivity of hydrous mineral
and temperature satisfied with an Arrhenius relation, i.e., with the rise of temperature,
and the electrical conductivity of sample will be increased, accordingly. As noted from a
modified Arrhenius relation reported by Dai and Karato (2020) [9], the influences of water
content and oxygen fugacity on the electrical conductivity of dry and hydrous Ti-doped
polycrystalline olivine aggregates can be expressed as,

σ = σ0(Dry)

(
fO2

fO20

)qDry

exp
(
−

∆HDry

kT

)
+ σ0(Hydrous)

(
CW

CW0

)r( fO2

fO20

)qHydrous

exp
(
−

∆HHydrous

kT

)
(5)

where σ0(Dry) and σ0(Dry) stand for the pre-exponential factor of dry and hydrous Ti-bearing
olivine aggregates (S/m), respectively; ∆HDry and ∆HHydrous stands for the activation
enthalpy of dry and hydrous titanium-bearing olivine aggregates (eV), respectively; fO2

stands for the oxygen fugacity as a standardized oxygen buffer ( fO20); qDry and qHydrous
stands for the exponential factor characterizing the dependence of oxygen fugacity on the
electrical conductivity of dry and hydrous Ti-bearing olivine aggregates, respectively; Cw
stands for the water content as the standardized reference water-bearing content (Cw0); r
stands for the exponential factor of water content; T stands for the absolute temperature
(Kelvin); and k stands for the Boltzmann constant.
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Figure 4. Representative complex impedance spectra for natural hydrous Fe-bearing amphibole
single crystals from Sichuan province of southwest China at conditions of 1.0 GPa, 623–1173 K and the
frequency ranges from 10−1 to 106 Hz. Here, (a,b) represent complex impedance spectra during the
1st heating cycle before the dehydrogenation process, respectively; (c,d) represent complex impedance
spectra during the equivalent state of 3rd cooling cycle after the oxidation−dehydrogenation reaction,
respectively. It is clear that the variation of impedance semi-circular arc from the inductive loop
to normally “standardized” small tail within the low frequency regime of ~10−1−103 Hz at the
critical temperature of ~873 K reveals the occurrence of an oxidation−dehydrogenation reaction. The
equivalent circuit composed of two individually parallel resistance and constant phase element in the
series connection was chosen to fit these impedance arcs for (a,c,d), respectively; the equivalent circuit
composed of two individually parallel resistance and inductive reactance in the series connection
was chosen to fit these impedance arcs for (b) (reproduced with permission from the reference of Hu
et al. [34]; published by Elsevier, 2018).

4. Electrical Conductivity of Hydrous Minerals

In this section, recently reported results of the EC of Ti-bearing hydrous olivine
aggregates from the KIWI 1000-ton Kawai-type multi-anvil apparatus in the Karato High-
pressure Laboratory, Department of Earth and Planetary Sciences, Yale University, by Dai
and Karato (2020) were chosen as examples to investigate the effect of structural hydroxyl
(OH) and transition metallic element of titanium on the electrical conductivity hydrous
minerals at high temperatures and high pressures [9]. By virtue of YJ-3000t multi-anvil
press and Solartron-1260 impedance analyzer in HTHPSEI, Institute of Geochemistry, Chi-
nese Academy of Sciences, the EC measurements of epidote and amphibole by Hu et al.
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(2017; 2018) were performed in order to study the influences of dehydration effect and
oxidation−dehydrogenation effect from the molecular structural water (H2O) on the elec-
trical conductivity of hydrous minerals at HP-HT conditions [33,34]. In the end, Hong et al.
(2022) conducted the electrical conductivity of hydrous kaolinite in conjunction with in-situ
high-temperature and high-pressure electrochemical AC impedance spectroscopy and Ra-
man scattering results using the diamond anvil cell in HTHPSEI, Institute of Geochemistry,
Chinese Academy of Sciences, and the pressure-induced structural phase transition for
hydrous minerals was explored in detail [73].

4.1. Electrical Conductivity of Ti-Bearing Hydrous Olivine

As major rock-forming NAMs, silicate mineral of olivine’s volume proportion occupies
approximately up to 60% in a representative upper-mantle mineralogical composition.
Thus, a large number of previously available reported electrical transport characterization—
depth profiles were successfully established on the base of the laboratory-based electrical
conductivity of olivine results at conditions of high temperature and high pressure. In
recent decades, all of those potential influence factors including frequency, temperature,
oxygen partial pressure, pressure, segregation effect of grain boundary, interconnected
high conductive impurity phases (e.g., magnetite, chromite, etc.), salinity-bearing fluid, Ti-
bearing content, water-bearing content, iron-bearing content, anisotropy of crystallographic
axis, etc. have been paid more attention in regards to natural preferred olivine single crystal,
polycrystalline olivine aggregates, and hot-pressed sintering synthetic olivine aggregates.
According to these acquired electrical conductivity results on the EC of hydrous olivine,
the cause of high conductivity anomaly in some typical regions of asthenosphere of Earth
mantle and subduction zone was explored in detail.

Hydrogen as a form of point defect dissolved in the crystalline structure of olivine can
enhance several magnitude of orders in the electrical conductivity by virtue of the diffusion
of some hydrogen-related defects [30]. Due to the complexity of the concentration and its
corresponding mobility in the electric charge carrying species for these hydrogen-related
defects, the electrical conductivity of hydrous single crystals along with [100], [010], and
[001] of three main crystallographic orientations exists as an obvious anisotropy when
the experimental temperature is higher than 1000 K at the given pressure of 4.0 GPa [28].
However, recent research results on the redox-influenced elastic wave velocity of upper-
mantle mineral reported by Cline et al. (2018) find that some anionic impurities of transition
metallic elements including the charged tetravalent titanium (Ti4+) and trivalent chromium
(Cr3+) dissolved in the hydrous olivine are possibly responsible for low-velocity or high-
attenuation behaviors in the upper mantle under conditions of the confining pressure of
200 MPa and temperatures up to 1473 K [110]. As pointed out from the experimental results
of water solubility at 3.0 GPa and 1323 K reported by Tollan et al. (2017), the defect reaction
of dissolved titanium as a rutile form, and hydrogen in olivine can be expressed as [111],

TiO2+H2O + Olivine =
[
Ti••M + (2H)′′Si

]
Olivine + Mg2Si2O6 (6)

where the mark signal of
[
Ti••M + (2H)′′Si

]
Olivine stands for two titanium electrons on the

lattice of metallic site in olivine and two hydrogen vacancies on the lattice of silicon site
in olivine. If this defect reaction occurs, the interaction between titanium and hydrogen
becomes stronger, and the mobility and concentration of hydrogen in olivine will be
reduced, accordingly. Thus, Dai and Karato (2020) firstly synthesized the high-purity
polycrystalline olivine aggregates with two different TiO2-bearing contents of 200 and
683 ppm wt using the Ar + H2/CO2 mixed gas controlling oxygen fugacity at the high-
temperature furnace [9]. Then, the mixtures of brucite and talc with its correspondent
weight ratio of 1:6 as the water source were employed to perform a hot-pressed sintering in
the KIWI 1000-ton Kawai-type multi-anvil apparatus at conditions of 4.0 GPa and 1373 K
for 3 hrs. A series of initial polycrystalline olivine aggregates with different water-bearing
and titanium-bearing contents were successfully synthesized. Electrical conductivities
of water-poor and water-rich polycrystalline olivine aggregates with two different TiO2-
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bearing contents of 200 ppm wt and 683 ppm wt were performed under conditions of 4 GPa,
873–1273 K, and the Ni–NiO oxygen buffer, respectively. The influence of water contents on
the electrical conductivity of polycrystalline olivine aggregates with its correspondent TiO2-
bearing content of 200 ppm wt are shown in Figure 5a,b, and the influence of water contents
on the electrical conductivity of polycrystalline olivine aggregates with its correspondent
TiO2-bearing content of 683 ppm wt were displayed in Figure 5c,d, respectively.

All of these obtained electrical conductivity result dependencies on the water content
and oxygen fugacity for Ti-doped polycrystalline olivine aggregates were fitted by virtue
of Equation (5). The exponential factors between the electrical conductivity along with
the variation of water content for Ti-poor and Ti-rich samples (r) were determined as 0.51
± 0.18 and 0.98 ± 0.21, respectively. In comprehensive considerations with previously
available electrical conductivity results with different water contents from the natural
San Carlos olivine reported by Wang et al. (2006) [24], as well as hot-pressed sintering
titanium-free olivine aggregates reported by Dai and Karato (2014d) [31], the effect of
titanium content on the electrical conductivity of dry polycrystalline olivine aggregates is
very larger, and whereas, the effect of titanium content on the electrical conductivity of
hydrous polycrystalline olivine aggregates becomes extremely feeble.

On the other hand, Dai and Karato (2020) also performed the EC measurements for
the anhydrous and hydrous polycrystalline olivine aggregates with a fixed TiO2 content
of 683 ppm wt under conditions of 4.0 GPa, 873–1273 K and different oxygen fugacities,
as illustrated in detail in Figure 6 [9]. The water contents in the anhydrous and hydrous
olivines are 13 and 458 ppm wt, respectively. Three representative solid oxygen buffers
including Re–ReO2, Ni–NiO, and Mo–MoO2 were selected in order to control oxygen
fugacity in the sample chamber during the process of electrical conductivity measurements.
Completely different dependence relations of water-free and water-rich electrical conduc-
tivity in the Ti-rich polycrystalline aggregate olivines on the variation of oxygen fugacity
were observed. In the case of anhydrous condition, the electrical conductivity of sample
increased with the rise of oxygen fugacity. On the contrary, the electrical conductivity of the
sample reduced with the rise of oxygen fugacity under hydrous condition. Furthermore,
the average exponential factor values for the electrical conductivity of anhydrous and
hydrous polycrystalline olivine aggregates along with the variation of oxygen fugacity (q)
are determined as 0.097 ± 0.008 and -0.089 ± 0.006, respectively.

In addition, in order to reasonably explain all of the above-mentioned high-pressure
electrical conductivity results, it is the first time for some titanium-related defects (such as
Ti•M, Ti••M , etc. Here, Ti•M denotes the trivalent titanium ion of metallic site in the olivine
crystalline lattice, Ti••M denotes the tetravalent titanium ion of metallic site in the olivine
crystalline lattice) and hydrogen-related defects (such as (3H)′Si, (4H)”Si, etc. Here, (3H)′Si
denotes three hydrogen vacancies of silicon site in the olivine crystalline lattice, (4H)′′Si
denotes four hydrogen vacancies of silicon site in the olivine crystalline lattice) in Ti-doped
and hydrogen-doped olivine aggregates, as put forward by Dai and Karato (2020) [9].
All of these available positive and negative dependence relations of oxygen fugacity on
the electrical conductivity Ti-bearing olivine aggregates with different water contents are
resulted in the distinction of electrical transport conduction, which is in consistent with the
previously reported electrical conductivity results for San Carlos olivine, orthopyroxene,
diopside, pyrope-rich garnet, and almandine-rich garnet in the upper mantle, as well as for
wadsleyite in the mantle transition zone [25,27,41,51,58,59].
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Figure 5. Electrical conductivity of hot-pressed polycrystalline olivine aggregates with different
TiO2 contents under conditions of 4 GPa, 873−1273 K, and the Ni–NiO oxygen buffer. Here, (a,c)
stand for the dependence of electrical conductivity on the inverse temperature for olivines with its
correspondent TiO2 contents of 200 and 683 ppm wt, respectively; (b,d) stand for the dependence of
electrical conductivity on the water content for olivine samples with its correspondent TiO2 contents
of 200 and 683 ppm wt, respectively. The exponential factors between the electrical conductivity for
Ti-poor and Ti-rich olivines along with the variation of water content were determined as 0.51 ± 0.18
and 0.98 ± 0.21, respectively (reproduced with permission from the reference of Dai and Karato [9];
published by the American Geophysical Union, 2020).
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Figure 6. The electrical conductivity of dry (13 ppm wt) and hydrous (458 ppm wt) polycrystalline
olivine aggregates with the correspondent TiO2 content of 683 ppm wt as a function of the variation
of oxygen fugacity at 4.0 GPa, temperatures range from 873 to 1273 K and controlled different oxygen
fugacities. In here, (a) stands for the high Ti-doped hydrous sample, and as well as (b) stands for
the high Ti-doped dry sample, respectively. The oxygen fugacity is efficiently controlled by three
solid oxygen buffers including the rehnium and rehnium dioxide (Re–ReO2), nickel and nickel oxide
(Ni–NiO), and molybdenum and molybdenum dioxide (Mo–MoO2). The FTIR measurement results
indicated that the water contents of dry and hydrous polycrystalline olivine aggregates are 13 and
458 ppm wt, respectively (reproduced with permission from the reference of Dai and Karato [9];
published by the American Geophysical Union, 2020).

4.2. Electrical Conductivity of Hydrous Epidote

As a typical hydrous rock-forming mineral, the episode belongs to a nesosilicate
structural epidote family with the Ca−rich and Al−rich complex chemical compositions,
whose corresponding chemical molecular formula can be expressed as Ca2Al3−xFexSi3O13H
(The value of x is fell in between the range from 0 to 1.0). As usual, hydrous epidote is of
the dominant reaction product during the process of the phase transformation between
greenschist to blueschist facies among the regional metamorphism process. At the same
time, the abundance of epidote will be progressively increased with the rise of pressure,
and its volume percentage of highest abundance can reach up to 35%, occurring in epidote-
blueschist facies. At a depth higher than 80 km in the region of subducting oceanic crust, the
hydrous epidote is still stabilized, which was considered as an important water reservoir to
be responsible for the fluid flux within the depth ranges of 100−120 km of the deep mantle
wedge region [112]. Thus, the released water-bearing fluid from the dehydration effect of
epidote is crucial to reasonably explain the high conductivity anomaly in the region of the
deep mantle wedge.

Hu et al. (2017) measured the electrical conductivity of hydrous epidote at the pressure
ranges from 0.5 to 1.5 GPa and temperatures ranges from 573 to 1273 K, as displayed in
detail in Figure 7 [33]. A relatively feeble pressure effect on the electrical conductivity of
hydrous epidote was observed in comparison with the experimental temperature. The
occurrence on the dehydration reaction of sample was well confirmed by virtue of the
moderate discontinuity at the critical temperature point of ~1073 K. The dehydration
of hydrous epidote results in the breakdown of sample and the increase of electrical
conductivity up to 1 S/m when the experimental temperature was enhanced to 1273 K.
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Such a high electrical conductivity value (1 S/m) is owing to the released water-bearing
fluid during the process of initial dehydration reaction of epidote. After the dehydration
of hydrous epidote was thoroughly completed, a remarkable reduction in the electrical
conductivity of the sample is highly related to the appearance of newly coexisting multi-
phase mineralogical assemblage (grossular garnet, anorthite, quartz, and hematite) with a
high electrical resistivity, as well as the escape of water-bearing fluid from the dehydration
product of residual epidote.
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Figure 7. Pressure dependent electrical conductivity of hydrous epidote at the pressure ranges
from 0.5 to 1.5 GPa and temperatures ranges from 573 to 1273 K. The dehydration reaction of
hydrous epidote occurred at the critical temperature point of ~1073 K. The electrical conductivity
of hydrous epidote is well reproducible before and after the occurrence of dehydration reaction at
given pressure ranges from 0.5 to 1.5 GPa. Previously, acquired electrical conductivity results on
the hot-pressed sintering polycrystalline quartz from Bagdassarov and Delépine (2004) [113], the
synthetic polycrystalline anorthite from Hu et al. (2015) [60], as well as the pure aqueous fluid with
the 5% of weight percentage of sodium chloride from Sinmyo and Keppler (2017) [114] are also
compared in detail (reproduced with permission from the reference of Hu et al. [33]; published by
the American Geophysical Union, 2017).

At the same time, Hu et al. (2017) also found that the electrical conductivity of hydrous
epidote is well reproducible before and after the occurrence of dehydration reaction at given
pressure ranges from 0.5 to 1.5 GPa [33]. In comprehensive comparisons with previously
acquired electrical conductivity results on the hot-pressed sintering polycrystalline quartz
reported by Bagdassarov and Delépine (2004) [113], synthetic polycrystalline anorthite
reported by Hu et al. (2015) [60], as well as the pure aqueous fluid of sodium chloride
with the 5% of weight percentage reported by Sinmyo and Keppler (2017) [114], one new
origin for the explanation of high conductivity anomaly at the depth ranges from 70 to 120
km was put forward on the base of the released water-bearing fluid during the process of
epidote dehydration at high temperature and high pressure. Furthermore, some recently
reported electrical conductivity and elastic wave velocity results on hydrous halogen-
bearing amphibole, glaucophane, Liebermannite, chlorite, and lawsonite from Manthilake
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et al. [98–102] also confirmed that the dehydration of hydrous minerals will release a
large amount of the water-bearing fluids, which can be used to reasonably explain the
anomalously seismic and electrical transport behaviors in the region of hot subduction of
deep mantle wedges.

4.3. Electrical Conductivity of Hydrous Amphibole

Global magnetotelluric (MT) results confirmed that the phenomenon of anomalously
high electrical conductivity with its correspondent values of 10−2−1 S/m is widely present
in the regions of stable mid-lower Earth crust, the forearc of subduction zone, as well as the
back arc of subduction zone. To interpret for the regionally anomalously high conductivity,
several causes of formation models have already been presented, such as the salinity-
bearing (or water-bearing) fluid, partial melting, graphite film in the grain boundary, as
well as the impurity of high conductive mineral. Among them, the salinity-bearing (or
water-bearing) fluid, as the most potential candidate, is mainly originated the released fluid
phases during the process of the dehydration of hydrous minerals at high temperatures
and pressures. Amphibole is of the most representative chain-structural silicate minerals,
which can be stably existed the continental mid-crust region with its volume content of
mineralogical composition up to 35–40% at the depth ranges from 15 to 30 km. Likewise,
it is one of the crucial carriers for water transport with the volume percentage of highest
abundance up to 50% outcropped at some epidote-amphibolite and amphibolite facies of
the subduction zone [115].

Previous available investigations on the high-temperature 57Fe Mossbauer spectra
for the Fe-bearing calcic amphiboles observed that the amphibole dehydration occurred
at the temperature ranges from 573 to 1073 K, which was accompanied by the loss of
molecular structural hydroxyl as a form of either the hydrogen gas or molecular water [116].
Some researchers think that the high-temperature dehydration-induced hydrogen gas in
Fe-bearing amphibole is produced at atmospheric pressure condition by virtue of the
occurrence of the oxidation–dehydrogenation reaction (i.e., the electron jump between the
ferrous ion and neighboring hydroxyl in the crystalline structure of hydrous amphibole),

2Fe2++2(OH)− → 2Fe3++2O2−+H2 (7)

However, on the contrary, other researchers think that the high-temperature dehydra-
tion in Fe-bearing amphibole was resulted in the molecular water at atmospheric pressure
condition originated from the heating in an oxidizing atmosphere results in a reaction at
the sample surface, i.e., the dehydrogenation reaction,

2
[
Fe2++(OH)−

]
+ O2 → 4

[
Fe3++O2−

]
+2H2O (8)

In order to systematically reveal the dehydration process of hydrous mineral, the
electrical conductivity of iron-bearing amphibole was performed by Hu et al. (2018) at the
temperature ranges from 623 to 1173 K and pressure ranges from 0.5 to 2.0 GPa within
the frequency ranges of 10−1 to 106 Hz, as illustrated in detail in Figure 8 [34]. When the
experimental temperature is lower than 873 K, a linear increase between the logarithmic
electrical conductivity of iron-bearing amphibole and temperature was observed. Subse-
quently, one moderate electrical conductivity of sample with pressure is confirmed, and
an available discontinuous change of activation enthalpy before and after the dehydration
reaction at the temperature around 873 K. Combined with the FT-IR measurements on the
initial samples and recovered products, the dehydration temperature points of hydrous
amphibole were verified as 843 ± 20 K. Thus, the electrical transport conduction of sample
for the oxidation–dehydrogenation behavior was characterized by the variation of activa-
tion enthalpy in the Arrhenius equation before and after the dehydration reaction at high
temperatures and pressures.

On the other hand, in comprehensive considerations of a relatively feeble discontinuity
between the electrical conductivity of iron-bearing amphibole along with the temperature
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as well as some microscopic observations from the FT-IR measurement, optical microscope,
and scanning electronic microscopy results before and after the electrical conductivity
experiments, it is the first time that Hu et al. (2018) put forward that the dehydration
reaction belongs to a oxidation–dehydrogenation process according to our obtained in-
situ high-pressure electrical conductivity results [34]. Resembling previous temperature-
induced dehydrogenation at the atmospheric pressure [117], the occurrence of oxidation–
dehydrogenation reaction in hydrous amphibole can be described as,

Fe2+ + OH− = Fe3+ + O2− +
1
2

H2 (9)

In light of the oxidation–dehydrogenation reaction of Equation (9), the high-temperature
dehydration-induced hydrogen gas in Fe-bearing amphibole was produced by the electron
jump between the ferrous ion and neighboring hydroxyl in the crystalline structure of sample
rather than the loss of molecular water at high pressure. Comparing these presently acquired
measurement results, four previous high-pressure electrical conductivity data for iron-bearing
amphibole from Glover and Vine (1994) [118]; Schmidbauer et al. (2000) [116]; Zhou et al.
(2011) [119]; and Wang et al. (2012) [120] are also listed in Figure 8. Obviously, it makes clear
that the electrical conductivity of hydrous Fe-bearing amphibole will increase with the rise
of total iron content at HP-HT conditions (Figure 9). It is also observed that some available
discrepancies between the previous and present electrical conductivity results may be originated
from the different iron contents of Fe-bearing hydrous amphibole during the process of the
occurrence of oxidation–dehydrogenation at high temperature and pressure.
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Figure 8. Comparisons between the acquired electrical conductivity of Fe-bearing hydrous amphibole
electrical conductivity of amphibole and four previous high-pressure electrical conductivity data for
iron-bearing amphibole from Glover and Vine (1994) [118]; Schmidbauer et al. (2000) [116]; Zhou
et al. (2011) [119]; and Wang et al. (2012) [120]. The numbers represent the weight percentage (wt
%) total ferrous and ferric iron in amphibole (reproduced with permission from the reference of Hu
et al. [34]; published by Elsevier, 2018).
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Figure 9. The electrical conductivity–depth profile according to these presently obtained electrical
conductivity results on the Fe-bearing hydrous amphibole within the depth ranges from 20 to 40 km
(a), and at the same time, several electrical conductivity results of some dominant hydrous minerals
(e.g., NaCl-bearing saturated amphibole, antigorite, talc, brucite, and chlorite) in the subduction
zone are also comprehensively compared (b). Data resource: the electrical conductivity of saturated
amphibole with 0.5 sodium chloride from Glover and Vine (1994) [118], antigorite from Reynard et al.
(2011) [121]; talc from Wang and Karato (2013) [122]; brucite from Guo and Yoshino (2014) [123], and
chlorite from Manthilake et al. (2016) [101] (reproduced with permission from the reference of Hu
et al. [34]; published by Elsevier, 2018).

4.4. Electrical Conductivity of Hydrous Kaolinite

As a typical aluminosilicate clay mineral, the hydrous kaolinite (its correspondent
chemical molecular formula can be expressed as Al2Si2O5(OH)4) is widespread outcropped
in the surface of Earth, as well as many different geological bodies and deep geodynamic
processes, such as the kaolinization of hydrothermal mineral deposit, the natural alternation
of representative rock-forming mineral (e.g., feldspar, et al.) and Meso-Cenozoic sedimen-
tation basins. In the oceanic sedimentary products, kaolinite is one of the most important
constituent compositions of water-bearing mineral, and its highest mineralogical content
can reach up to 60%, which is possibly carrying a large amount of water to migrate in the
subduction zone and resulting in the water cycle of the Earth interior [124,125]. Therefore, a
systematic investigation on the physiochemical properties on the natural hydrous kaolinite
at HP-HT conditions are crucial to deeply disclose its phase structure, storage state, and
migration mechanism in the deep Earth interior.

Recently, Hong et al. (2022) performed the electrical conductivity and Raman spec-
troscopy experiments on natural hydrous kaolinite and its high-pressure polymorphs in
order to explore the high-pressure phase structure and its phase stability during the process
of compression and decompression under conditions of temperature ranges of 293–673
K and pressure ranges of 0.4–10.0 GPa [73]. By virtue of diamond anvil cell, the detailed
experimental procedure and measurement method for the in-situ high-pressure electrical
transport, structural and vibrational characterizations are previously displayed in the ref-
erence of Dai et al. (2019) [72]. Based on the acquired HP-HT electrical conductivity and
Raman scattering results, the phase diagram was established at conditions of 2.3–6.5 GPa
and 293–673 K within a depth range of 38–200 km, as detailed illustrated in Figure 10.
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Figure 10. The temperature–pressure phase boundary based on the acquired high-pressure electrical
conductivity and Raman scattering results on natural hydrous kaolinite at conditions of pressure
ranges of 2.3–6.5 GPa, temperature ranges of 293–673 K, and depth ranges of 38–200 km. In here,
two representative geothermal gradients of 5 and 10 K/km are selected to model the cold and
hot subduction, respectively (reproduced with permission from the reference of Hong et al. [73];
published by Geoscience World, 2022).

In this present study, the initial sample is nominated as the kaolinite I phase at ambient
conditions. With increasing pressure up to 2.9 GPa, another new phase of kaolinite II
appeared, and subsequently, the phase transformation from kaolinite II to kaolinite III
phases occurred at the critical pressure point of 6.5 GPa at atmospheric temperature. Upon
decompression, a direct phase transformation of sample from kaolinite III to kaolinite
I phases was occurred at the pressure point of 0.8 GPa rather than a continuous phase
transition from kaolinite III to kaolinite II to kaolinite I phases. An obvious hysteresis
effect of the structural phase transformation is also observed during the decompressed
process. All of these available structural phase transformations in hydrous kaolinite upon
compression and decompression were well characterized by the pressure-induced from
those obviously discontinuous variations in the electrical conductivity and Raman shift at
room temperature.

High-temperature and high pressure electrical conductivity and Raman spectroscopy
results also confirmed that the critical pressure points of structural phase transition for natural
hydrous kaolinite are strongly dependent on the experimental temperature. With increasing
temperature, the pressure points of structural phase transformation for natural hydrous
kaolinite gradually reduced. Further, it is the first time that the temperature–pressure phase
boundary based on the acquired high-pressure electrical conductivity and Raman scattering
results on natural hydrous kaolinite was successfully constructed at conditions of pressure
ranges of 2.3–6.5 GPa, temperature ranges of 293–673 K, and depth ranges of 38–200 km. In
addition, the fitted results for the structural phase transitions between the respective kaolinite
I–II and kaolinite II–III phase boundaries can be expressed as,

P (GPa) = 4.298− 0.00462T (K) (10)
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P (GPa) = 8.895− 0.00799T (K) (11)

By virtue of the obtained phase diagram, the high-pressure phase structure and
its stability for natural hydrous kaolinite and its high-pressure polymorphs was well
extrapolated by the laboratory-based electrical conductivity and Raman spectroscopy
results within the depth range of 200 km under HP-HT conditions. Two representative
geothermal gradients of 5 and 10 K/km are selected to model the corresponding cold and
hot subduction environments, and it can provide a crucial constraint on the high-pressure
behaviors of other kaolin-group minerals.

5. Concluding Remarks

In the past of several decades, with the rapid development of experimental techniques
in the electrical conductivity measurement and high-pressure equipment, there are more
and more electrical conductivity results to be reported on the hydrous silicate minerals in
the Earth crust, upper mantle, and subduction zone at conditions of high temperatures
and high pressures. In particular, some recent productions paid more attention on the
investigations on electrical conductivity of nominally anhydrous and hydrous minerals at
high temperature and high pressure. Two dominant presence species of molecular water
and structural hydroxyl influence on the electrical conductivity of hydrous minerals are of
the research point in the field of high-pressure mineral physics. In conjunction with those
acquired experimental results from the laboratory-based high-pressure electrical conduc-
tivity, first-principle theoretical calculations and the observation of the field experimental
rock, it can be efficiently applied to disclose the reason of high electrical conductivity
from the global and regional field observations of magnetotelluric and geomagnetic deep
sounding data.

For the main conduction mechanism, several typical electrical transport models oc-
cupying the position of crystalline lattice, such as hydrogen-related defects, iron-related
defects, titanium-related defects, alkali-related defects, vacancy of interstitial ion, etc. have
been already put forward on the base of high-temperature and high-pressure electrical
conductivity on the hydrous silicate minerals. Owing to the presence of these complicated
intrinsic crystalline defects, the dependence of the electrical conductivity of hydrous silicate
minerals on the variations of influential factors (e.g., temperature, pressure, oxygen fugacity,
structural phase transition, water content, dehydration effect, oxidation–dehydrogenation
effect, crystallographic orientation, trace element of titanium content, iron content, alkali
ion content, etc.) are overall working out. On the other hand, some external influential
factors also possibly play a crucial role on the electrical conductivity of hydrous silicate
minerals under conditions of high temperatures and high pressures, such as graphite layer
of grain boundary, the impurity of magnetite, the impurity of chromite, the presence of
some sulfide-bearing compounds, as well as salinity-bearing (or water-bearing) fluids in
hydrous minerals. In addition, more and more attention has been paid to the electrical
conductivity of hydrous minerals in the lower mantle, core-mantle boundary and Earth
core using the diamond anvil cell in order to disclose the water cycling in the deep Earth
interior.

In summary, in order to explore high conductivity anomaly in the deep Earth interior,
we need to comprehensively consider all of these potential influential factors on the elec-
trical conductivity of hydrous minerals at high temperature and high pressure, as well as
geological background of a really regionally geotectonic unit. For example, just as pointed
out by Dai and Karato (2020) [9], when we applied the laboratory-based electrical conduc-
tivity results from titanium-rich hydrous upper-mantle minerals to the titanium-poor real
Earth (The titanium content is only ~50 ppm wt% in the upper mantle), it needs to be made
with great care.
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