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In computational mathematics, the iterative method is a mathematical procedure. )is method uses an initial value to generate a
sequence of improving approximate solutions for a class of problems, in which the n-th approximation is derived from the
previous ones.)e iterative method is widely used to solve complex problems in engineering. In this paper, the iterative method is
applied to inverse the subsurface interface with the gravity anomaly. First, the classical Parker-Oldenburg interface inversion
formula was introduced and analogized to the downward continuation formula. )en, combined with the regular-integral
downward continuation method, the iterative inversion formula of the gravity interface is derived. )e iterative mode of the
improved method suppresses high-frequency signals effectively. At the same time, there is no need to perform forward cal-
culations in the iterative process. )e model test shows that the proposed method can accurately calculate the depth of the
interface. Finally, the proposed interface inversion method is applied to the Qinghai-Tibet Plateau, and the calculated Moho
interface provides some geophysical data support for the geological interpretation of the area in the future.

1. Introduction

)e iteration method is a mathematical process to solve the
problem by finding a sequence of approximate solutions
from an initial value. In contrast, direct methods attempt to
solve the problem by a finite sequence of operations. In
general, a direct method is always preferred if possible.
However, when we encounter nonlinear equations or linear
problems involving many variables, iterative methods are
often the only choice. Some researchers [1] use iterative
methods to solve a considerable number of mathematical
engineering problems. Liu et al. [2] presented a comparative
study of direct and iterative inversion methods to recon-
struct the shear modulus distribution of linearly elastic
solids. Mei et al. [3] solved the inverse problem in elasticity
with an iterative method.

It is one of the classical problems in engineering geo-
physics to know the geometry of a density interface. )e

gravity anomaly is a comprehensive reflection of the un-
dulations of various physical interfaces underground and the
unevenness of lithology. In general, the nonuniformity of
underground rock density is often related to the variation in
some geological structures or the distribution of some
minerals. )erefore, the study of crustal density interfaces
using gravity data is of great practical significance for un-
derstanding the internal structure of the crust, studying
regional geology, and detecting metal and nonmetal min-
erals. )e inversion of the Moho surface and density
basement is a typical application [4–7].

)ere are many different techniques to compute the
geometry of a density interface related to a known gravity
anomaly [8, 9]. )e Parker-Oldenburg method is one of the
most popular interface inversion methods. Parker [10] in-
troduced the fast Fourier transform (FFT) in the forward
calculation of the potential field interface. Oldenburg [11]
proposed an iterative inversion method based on Parker’s
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interface forward method. Many improved algorithms
[12–14] for the Parker-Oldenburg method have been pre-
sented in recent decades. To suppress the high-frequency
amplification factor in the Parker-Oldenburg inversion,
Reamer and Ferguson [15] proposed a linear variable-
density interface inversion method. Guspi [16, 17] improved
the Taylor series high-order term coefficients in Oldenburg
inversion and proposed a noniterative and nonlinear gravity
anomaly inversion method that improved the calculation
speed. Fedi [18] proposed a method in the frequency do-
main, which has a fast calculation speed and a small amount
of calculation. However, some of these methods [19–21] may
make the inversion density interface too smooth and deviate
from the real underground interface fluctuation due to the
removal of useful high-frequency information. In some
methods, the inversion process is still divergent due to the
improper selection of filter factors. )ese methods do not
fundamentally meet the accuracy and convergence required
by density interface inversion. )is paper presents an im-
proved iterative algorithm for classical Oldenburg inversion.
)e divergent term in Parker-Oldenburg’s algorithm is
equivalent to the downward continuation factor in the
Fourier domain [20]. We derive an iterative inversion for-
mula to calculate the density interface based on the Parker-
Oldenburg interface inversion method and regular-integral
downward continuation method. )e algorithm does not
need to perform forward calculation in the iterative process

and can suppress high-frequency signals well, which pro-
vides better results.

2. Method

2.1. Parker-Oldenburg Forward Principle. A substance in-
terface S underground is shown in Figure 1. It is assumed
that the residual density ρ in the upper part of the interface S
is 0. )e gravitational field produced by the volume element
dv at Q (ξ, η, ζ) under the S plane to the observation point P
(x, y, 0) is dΔ g. )e z axis is vertical downward:

dΔg � GKρdv. (1)

K � ζ/[(x − ξ)2 + (y − η)2 + (z − ζ)2]3/2 and G is the
gravitational constant.

)e average depth of interface S is z0, and the function K
is expanded by the Taylor series at ζ � z0:

K(x − ξ, y − η, ζ) � 􏽘
∞

n�0

K
(n)

x − ξ, y − η, z0( 􏼁

n!
ζ − z0( 􏼁

n
. (2)

K(n)(x − ξ, y − η, z0) is the n-th derivative of ζ, and
using the above formula, we integrate K with ζ from
(z0 +Δh) to z0, where Δh is the distance between the S in-
terface and z0. Δh above ζ � z0 is negative and below ζ � z0
is positive. Δh is a function of (ξ, η).
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(3)

Assuming that ρ is only a function of (ξ, η), the gravity
anomaly produced by all the residual materials below S to
point P is
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∞

−∞
􏽚
∞

−∞
Gρ(ξ, η)dξ dη􏽚

h

h+Δh
K x − ξ, y − η, z0( 􏼁dζ

� −G 􏽚
∞

−∞
􏽚
∞

−∞
􏽘

∞

n�1

K
(n− 1)

x − ξ, y − η, z0( 􏼁

n!
Δhn
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(4)

According to the convolution theorem, let ρ(ξ, η) and
M(ξ, η) be constants, and the spectrum expression of Δg is
obtained:

F(Δg) � −2πGe−z0kρ 􏽘
∞

n�1

(−k)
n−1

n!
F Δhn

( 􏼁. (5)
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u2 + v2

√
; u and v are the wavenumbers in the x and y

directions, respectively. Formula (5) is the interface forward
formula of the gravity anomaly in the frequency domain.

Parker-Oldenburg interface inversion and steps:
Using formula (5), we obtained

F(Δh) � −
ez0k

2πGρ
F(Δg) − 􏽘

∞

n�2

k
n−1

n!
F h

n
( 􏼁. (6)

Formula (6) is the interface inversion calculation for-
mula of the frequency domain.

)e iterative inversion process is as follows:

(1) We ignore the summation term at the right end of
formula (6), and F(Δg) is obtained by Fourier
transform of the observed gravity anomaly. F(Δg) is
substituted into the formula, and by inverse Fourier
transform, we calculate the initial value Δh0 of the
depth Δh:

Δh0 � F
−1

−
ez0k

2πGρ
Δg􏼠 􏼡. (7)

(2) We bring the initial depth value to the forward
formula (5) and obtain the initial spectrum F(Δg).
)e first-order spectral difference is obtained by
making a difference with the spectrum F(Δg0) of the
measured gravity anomaly in the first step, and the
first-order spectral difference is obtained as follows:

F zΔ g1( 􏼁 � F(Δg) − F Δg0( 􏼁. (8)

(3) )e first-order spectral difference is introduced into
inversion formula (6), and then the first-order re-
sidual value of Δh is calculated according to step 1:

Δ zh1 � F
− 1

−
ez0k

2πGρ
F zΔ g1( 􏼁􏼠 􏼡. (9)

(4) Δh1 � Δh0 + Δ zh1 is the first-order approximate
value of the undulating depth Δh. )en, the second-
order spectral difference and the second-order

residual value ofΔh are calculated according to step 2
and step 3, respectively. )e n-order approximate
value Δhn of Δh can be obtained by repeating steps 2
and 3.

Δhn � Δh0 + 􏽘
n

i�1
Δ zhn. (10)

Until the n-order spectrum difference F(zΔ gn) is less
than the specified iteration cutoff constant ε or the
number of interations n reaches the specified iteration
number, ε is a small positive number. )e flowchart is
shown as Figure 2.

2.2. Regular-Integral Downward Continuation Method.
)e formulas of the upward and downward continuation in
wavenumber domain are

F Δgup􏼐 􏼑 � F(Δg)e
−z0k

, (11)

F Δgdown( 􏼁 � F(Δg)e
z0k

. (12)

F(Δgup) and F(Δgdown) are the results of upward and
downward continuation in the frequency domain, and z0 is
the height of continuation.

Zeng et al. [22] proposed the wavenumber domain
regular-integral iterative method for downward continua-
tion. )e expression of the regular-integral iterative method
in the wavenumber domain is

F Δg(1)
down􏼐 􏼑 � RλF(Δg),

F Δg(n+1)
down􏼐 􏼑 � F Δg(n)

down􏼐 􏼑 + Rλ F(Δg) −ΦF Δg(n)
down􏼐 􏼑􏼐 􏼑.

⎧⎪⎨

⎪⎩

(13)

Rλ � Φ/Φ2 + λ, Φ � ez0k, and λ is a regular parameter.
)is method improves the accuracy, stability, and conver-
gence speed of the algorithm.

S

P (x,y,0)

dv

Q (ξ,η,ζ)

-∆h

∆h

z0

z

x

ρ≠0

ρ=0

Figure 1: )e schematic diagram of interface S.
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2.3. Improved Parker-Oldenburg Method Based on the Reg-
ular-Integral Downward Continuation Method. )e expo-
nential amplification factor ez0k in the interface inversion
expression (formula (6)) is the same as the downward
continuation factor in formula (12). )e characteristics of
high-pass filtering ez0k will slow down the inversion con-
vergence or make the convergence diverge.

Analogous to the upward continuation formula (11),
formula (5) can also be written in another form:

F(Δg) � F −2πGρ 􏽘
∞

n�1

(−k)
n−1

n!
Δhn⎛⎝ ⎞⎠e−z0k

. (14)

)en, we have

F −2πGρ 􏽘
∞

n�1

(−k)
n− 1

n!
Δhn⎛⎝ ⎞⎠ � F(Δg)ez0k

. (15)

Its form is similar to the downward continuation for-
mula (F(Δgdown) � F(Δg)ez0k); we make the following
analogy: ‘∼’ is the analogical symbol.

−2πGρ 􏽘

∞

n�1

(−k)
n− 1

n!
Δhn ∼ Δgdown. (16)

By analogy with the downward continuation formula
(13), the regular-integral downward continuation method is
suitable for the Parker-Oldenburg interface inversion
method.)e following gravity inversion formula is obtained:

Input the measured gravity anomaly Δg
for Fourier transform

Inverse Fourier transform after 
inversion with formula 6, 

obtain the inversion results h

Bring h into formula 5 for 
forward modeling to obtain the 
fitted gravity anomaly spectrum

Calculate the spectrum difference 
between the fitted gravity anomaly and

the measured gravity anomaly by fomula 8

Output h

<ε or the iteration reaches
the specified iteration number

else Use formula 9 to forward the 
spectrum difference to obtain 

the corrected value Δh of h

h = h + Δh

Figure 2: Flowchart of the iterative inversion process.
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And the formula of interface fluctuation is
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When the number of iterations m at the right end of
formula (19) tends to be infinite, the following formula is
obtained:

F −2πGρ 􏽘
∞
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−kn− 1(
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m
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z0k
. (20)

)e above formula shows that when m⟶∞, formula
(20) is equal to formula (15), and the spectrum of the m-th
iteration tends to the spectrum in the original inversion
formula, indicating that the iteration method converges.

For the selection of regular parameters, we use the L
curve method.

2.4. $e Selection of Regularization Parameters. )ere are
two ways to select regularization parameters: a priori and a
posteriori. It is based on whether the noise level of the
original data needs to be estimated in advance. It is difficult
to give the noise level of the original data in advance.
)erefore, the posteriori method is more practical. )e most
commonly used criteria are the generalized cross-check
(GCV) criterion and the L curve criterion.)is paper mainly
uses the L curve criterion method to select Tikhonov reg-
ularization parameters.

2.4.1. $e generalized Cross-Check (GCV) [23, 24]. )e basic
idea of cross-checking is as follows: if any point yi of the
measurement data is removed, the selected regular pa-
rameter should be able to predict the change caused by the
removed item. Although ordinary cross-checking depends
on the specific ordering of the data, generalized cross-
checking is invariant to the orthogonal transformation of the
data vector y. )e generalized cross function to be mini-
mized in this method is defined as

G(λ) �
‖Kx(α) − y‖

2
2

trace I − KK(α)
I

􏼐 􏼑􏼐 􏼑
2, (21)

where K(α)I is an arbitrary matrix mapping y to the solution
x(α), and trace represents the sum of the principal diagonal
elements in the matrix.

Although GCV can solve many problems, it is difficult to
find a good regularization parameter in some cases. One
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problem mentioned in the related literature [25] is that the
GCV function may get a very flat minimum value, it is
difficult to determine the minimum numerically. Another
problem is that GCV sometimes mistakes noise for useful
signals. GCV is quite effective for the nonuniformity of
square error and non-Gaussian error. However, if the errors
are highly correlated, the methodmay not obtain satisfactory
results.

2.4.2. L Curve Criterion [26–28]. Taking log-log as the scale,
(‖Kx(α) − y‖2, ‖x(α)‖2) forms a monotonously decreasing
curve, as shown in Figure 3(a). Since the shape of this curve
is similar to the letter ‘L’, it is called the L curve.

In the vertical part of the L curve, the regularization
parameter and ‖Kx(α) − y‖2 are small, and the regularized
solution is in good agreement with the measured signal data.
However, ‖x(α)‖2 is more sensitive to the change in the
regularization parameter, and the vertical part belongs to the
underregularization state. In the horizontal part of the L
curve, the regularization parameter is relatively large, and
the regularization error is dominant. With the increase in α,
‖Kx(α) − y‖2 increases correspondingly. While ‖x(α)‖2
almost does not change, the horizontal part belongs to
the overregularization state. )erefore, to balance under
regularization and overregularization, the regularization
parameter is selected at the corner of the L curve u(α) (the
angle between the vertical part and horizontal part). Usually,
people choose the point with the greatest curvature k(α) (in
Figure 3(b)) on the L curve as the corner of the L curve.

u(α) � log‖Kx(α) − y‖2,

v(α) � log‖x(α)‖.
(22)

)en, the curvature function of the L curve with α as the
parameter is

k(α) �
u′v′′u′′v′

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

u′( 􏼁
2

+ v′( 􏼁
2

􏽨 􏽩
3/2, (23)

′ represents the derivation of α. )rough the parametric
expression of the L curve, that is, the exact expression of
functions u(α) and v(α), the maximum curvature function
can be directly calculated, and the corresponding regulari-
zation parameters can be obtained.

3. Examples

To verify the accuracy of the inversion method and show the
inversion effect clearly, a two-dimensional V-shaped density
interface is established for the experiment. )e V-shaped
density interface is a kind of common density interface, such
as the ocean trench, half graben, andMoho surface beneath a
subduction zone. It is of great significance to describe the
density interface shape by gravity data for regional structure
research, oil and gas exploration, and physical oceanogra-
phy.)e location of the two-dimensional model with simple
morphology is shown in Figure 4(a). )e density interface is
composed of a V-shaped depression, and the density dif-
ference between the upper and lower interfaces is 0.3 kg/cm3.

)e gravity anomaly generated by this interface is shown in
Figure 4(b). λ is 0.06, and the number of iterations is 50.
)en, we obtain the inverse interface through the proposed
method in Figure 5.We can see that the shape of the inversed
interface is close to the real model.

We have also designed a gravity interface with a density
contrast of 0.3 kg/cm3 on both sides, and the range of the
model is 50 ∗ 50 km. It is composed of two bulges and a
depression, as shown in Figure 6. Figure 6(a) is the interface
depth map, and Figure 6(b) is the gravity anomaly caused by
the interface. )e minimum value of the gravity anomaly is
−0.473mGal, and the maximum value is 1.947mGal. )e
shallow depths of the two points (positions A and B in
Figure 6) are 1.8829 km and 1.7992 km, respectively, and the
coordinates are (21 km, 35 km) and (35 km, 25.5 km); the
largest depression (position C in Figure 6) is 2.0774 km, and
its coordinates are (19 km, 14 km). Figures 7(a) and 7(b)
show the L curve and the curve of the curvature function.
)e calculated regular parameter is 0.4824, substituted into
formula (19), and the iteration time is 10. )e result of the
calculated interface inversion depth is shown in Figure 8(b).
Figure 8(a) is the result of the classic Parker-Oldenburg
method. Table 1 is a comparison table of the inversion results
of the two methods.

Comparing the inversion results of Figure 8, both the
Parker-Oldenburg method and the method proposed in this
paper can invert the approximate depth of the interface, and
the morphology is similar to the real interface. From Table 1,
for the inversion depth of point A, the improved method is
closer to the theoretical value than the result of the Parker-
Oldenburg method. )e coordinate position (21 km, 35 km)
calculated by the improved method is the same as the co-
ordinates of the real position. )e coordinate result calcu-
lated by Parker-Oldenburg method is (21 km, 34.5 km). For
point B, the coordinate positions calculated by the two
methods are the same, but the proposed method calculates
that the depth is closer to the true depth than the Parker
method. )e same situation is for point C. It can be con-
sidered that the inversion results of the improved Parker-
Oldenburg method are closer to the depth of the real in-
terface than the results of the classical Parker-Oldenburg
inversion method.

Since there is a certain amount of noise in the mea-
sured data, we add Gaussian white noise with an average
value of 0mGal and a standard deviation of 0.1 mGal to
the gravity anomaly, which is shown in Figure 9. )e
regular parameter calculated from the L curve method in
Figure 10 is 1.2174. )e inversion result after 15 iterations
is shown in Figure 11(b), and Figure 11(a) is the calcu-
lation result of the classical Parker-Oldenburg inversion
method. Table 2 is the comparison of the inversion results
in the case of adding noise. It can be seen from the table
that the improved Parker-Oldenburg iterative inversion
method is closer to the true depth of the model for point A
and point B. Although the calculation results for the depth
of point C are not as good as the classical Parker-Old-
enburg inversion method, the root mean square error is
0.0015 km, less than 0.0027 km calculated by the classical
Parker-Oldenburg inversion method.
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Figure 3: Schematic diagram of the L curve: (a) Schematic diagram of the L curve. (b) Curve of the curvature function.
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)e theoreticalmodel tests preliminarily determine that the
Parker-Oldenburgmethod based on the wave-domain regular-
integral iterative downward continue method can quickly
invert the anomaly interface. )e method could preserve the
true shape of the interface and has a strong ability against noise.
)is shows that this method can solve the problem of interface
morphology in geophysical engineering, and it can be applied
to actual data processing. Next, we will proceed with the actual
data processing with the iterative method.

4. Real Data

4.1. Geological Background. )e collision and convergence
between the Indian plate and the Asian plate in the Cenozoic

created the present main structure of the Qinghai-Tibet Pla-
teau.)e formation and upliftmechanism of theQinghai-Tibet
Plateau is a very complex problem [29]. )e plateau is not a
homogeneous as a whole but is composed of several blocks
with different development histories [30]. From south to north
(Figure 12), the Himalayan, Lhasa, Qiangtang, Songpan-Ganzi,
and Kunlun-Qaidam terranes were formed, which were sep-
arated by a series of nearly E-W trending suture zones [31–33].
Geophysical exploration has supported this view. It is specu-
lated that the different terranes in the Qinghai-Tibet Plateau
were uplifted unevenly in the process of amalgamation. )e
process of terrane amalgamation also leads to variations in
crustal thickness between different terranes [34]. However, due
to the limitation of the accuracy of the exploration and the
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Figure 6: (a) )e depth of the model and (b) the gravity anomaly.
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combination process of terranes, the variation of the crustal
thickness between different terranes and the shape of theMoho
surface has not been accurately revealed.

4.2. Using Gravity Data to Invert the Moho Depth. Moho
depth (crustal thickness) is one of the most important pa-
rameters to characterize the structure of the Earth.)e crust of

the Qinghai-Tibet Plateau is the thickest in the world. )e
location of the study area is 74–105° E, 26–40° N, which is the
main part of the Qinghai-Tibet Plateau. Geophysicists have
studied the deep structure of the Qinghai-Tibet Plateau for
more than 60 years. One of the important studies is to explore
the Moho depth of the Tibetan Plateau. It is mainly revealed by
seismic methods, magnetotelluric methods, gravity, and
magnetic exploration methods. Although the seismic method
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Figure 8: )e inversion results: (a) Parker-Oldenburg inversion calculation results, (b) the results of the improved method in this paper.

Table 1: )e comparison of inversion results in the model.

Bulge A (km) Bulge B (km) Depression C (km)
Root mean square error (km)

Coordinate Depth Coordinate Depth Coordinate Depth
Model (21, 35) 1.8829 (35, 25.5) 1.7992 (19, 14) 2.0774
Parker-Oldenburg method (21, 34.5) 1.8240 (35, 25.5) 1.7891 (19, 14) 2.0731 0.0027
Improved method (21, 35) 1.8279 (35, 25.5) 1.7956 (19, 14) 2.0751 0.0015
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can well describe the shape of the Moho, the seismic profile
data are limited, so it is impossible to fully describe the fluc-
tuation of the Moho surface in the whole Qinghai-Tibetan
Plateau. )erefore, the depth of the Moho should be inversed
by the gravity anomaly. First, the gravity anomaly [35] is shown
in Figure 13. It can be seen from the figure that the gravity

anomaly in the central part of the study area is low, and the
amplitude of the gravity anomaly varies from −550mGal to
200mGal. Such a large negative value reflects the existence of
an extremely thick crust in this area.)e variation in the gravity
gradient at the suture zone is also relatively large, which is
related to the drastic change in crustal thickness in this area.
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Figure 11: )e inversion results: (a) Parker-Oldenburg inversion calculation results; (b) the results of the improved method in this paper.

Table 2: )e comparison of inversion results in the model with noise.

Bulge A (km) Bulge B (km) Depression C (km)
Root mean square error (km)

Coordinate Depth Coordinate Depth Coordinate Depth
Model (21, 35) 1.8829 (35, 25.5) 1.7992 (19, 14) 2.0774
Parker-Oldenburg method (21, 34.5) 1.8236 (35, 25.5) 1.7894 (19, 14) 2.0734 0.0027
Improved method (21, 35) 1.8306 (35, 25.5) 1.7993 (19, 14) 2.0723 0.0015
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)e seismic profile data show that the crustal thickness
of the Qinghai-Tibet Plateau changes greatly, and there are
some faults on the Moho surface near the plate suture
zone. From the Moho inversion results in Figure 14, it can
be seen that the Moho inversed by this method is con-
sistent with the seismic data. It can be seen from the figure
that the Moho depth is between 50 and 76 km, the depth
on the southern and northern margins of the plateau is
relatively shallow, deepening to the interior of the plateau,
and there are different degrees of dislocation on both sides
of the main suture zone. For the whole plateau, the
thickness of the plateau’s crust seems to be a dustpan with
thin sides and thick inside. )e results show that the

crustal mantle structure of the Qinghai-Tibet Plateau is
obviously heterogeneous, with a thick crust and a thin
lithosphere. )e thickness of the crust is approximately
75 km in the interior of the Qinghai-Tibet Plateau and
54–64 km in the periphery.

To analyze the north–south and east–west Moho dis-
tribution characteristics of the Qinghai-Tibet Plateau, the
north–south profile AB and the east–west profile CD are
intercepted with blue lines in Figure 14. )e Moho depth of
north-south profile AB is as follows.

From Figure 15, it can be seen that the Moho depths of
the Lhasa terrane, Qiangtang terrane, and Kunlun-Qaidam
terrane in the central Qinghai-Tibet Plateau are the deepest
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[36, 37], ranging from 70 to 75 km, and the Moho surface
near the suture zone has been faulted. )e Moho depth on
both sides of the profile gradually uplifted, and in the south,
the depth was shallower than that in the north, reaching
54 km.

)e Moho depth of the east–west profile CD is shown in
Figure 16.

It can be seen from the above figure that the depth of the
Moho depth reaches its lowest point at 79°E, the Moho depth
continues to 74 km eastward until 85°E, and then it rises to
the shallowest depth of 64 km. It can be inferred that the
depth of theMoho in the east–west direction of the Qinghai-
Tibet Plateau starts at 79°E, gradually rises eastward and
rapidly rises to 65 km westward [38, 39].
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5. Conclusion

In this paper, the downward continuation of the regularized
integral iteration method is used to improve the Parker-
Oldenburg interface inversion method of the gravity in-
terface. At the same time, the reliability of the inversion
interface is proven by model tests. Finally, the actual data are
processed, and the Moho depth of the Qinghai-Tibet Plateau
is inversed. We draw the following conclusions:

(1) )rough the derivation of the iterative mode, the
final iterative scheme can be obtained. )e scheme is
simple and easy to operate, and the inversion results
can be controlled by the number of iterations.

(2) )e interface inversion formula is compared with the
downward continuation formula, and the regulari-
zation coefficient is used to suppress the noise in the
inversion process.)is method reduces the influence
of noise and makes the inversion interface smoother.

(3) )e model tests verified the feasibility of the method.
In the real data application, the inversion of the
Moho surface in the Qinghai-Tibet Plateau is con-
sistent with previous studies. It is proven that the
iterative Parker-Oldenburg interface inversion
method based on regular integrals is an effective
method to calculate the gravity interface fluctuation,
which can solve actual engineering geological
problems.
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