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Abstract
Myanmar, the third largest global tin supplier, is an important component of the Southeast Asian tin province. 
We have conducted laser ablation-inductively coupled plasma-mass spectrometry U-Pb dating of cassiterite, 
wolframite, and zircon and Re-Os dating of molybdenite from six primary and two placer Sn deposits in 
Myanmar. A combination of our geochronological data with previous studies revealed that three episodes 
of Sn mineralization in the Western tin belt of Southeast Asia formed during the closure of multiple Tethys 
oceans, namely the Late Triassic (~218 Ma) mineralization in a collisional setting after closure of the Paleo-
Tethys, the Early Cretaceous (~124–107 Ma) mineralization during subduction of the Meso-Tethys, and the 
Late Cretaceous to Eocene (~90–42 Ma) mineralization related to the Neo-Tethys subduction. Recurrent 
Sn mineralization is recorded not only in the Western tin belt but also in the Central and Eastern tin belts 
in Southeast Asia. Compilation of currently available cassiterite U-Pb ages from all over the world revealed 
that durations of regional Sn mineralization events are typically in the range of ~5–30 m.y., whereas the 
Neo-Tethys subduction in Southeast Asia generated prolonged Sn mineralization lasting up to ~50 m.y. The 
Southeast Asian tin province, as a whole, has the longest cumulative episodes of mineralization, compared to 
other Sn provinces. The Sn mineralization ceased in the late Eocene when the tectonic setting changed from 
Neo-Tethys subduction to dextral motion along a series of strike-slip faults and extrusion of the Indochina 
block in Southeast Asia.

Introduction
Tin (Sn) was one of the first metals used by humankind, and 
it is still playing a critical role in modern industry (Schulz et 
al., 2017). The abundance of Sn in the bulk continental crust 
is only ~1.7 ppm (Rudnick and Gao, 2014), but this metal can 
form large metallogenic provinces with great economic sig-
nificance (Taylor, 1979; Lehmann, 1990). For example, ~85% 
of the historical tin production was mined from the Southeast 
Asian (40~45%), South China (20%), Central Andean (14%), 
and Cornwall (7%) tin provinces (Lehmann, 2021). These 
tin provinces still provide ~85% of the current global tin 
production and two-thirds of the tin reserves (USGS, 2020). 
The Southeast Asian tin province is a 3,500-km-long belt that 
extends from western Yunnan through Myanmar and Thai-
land to Peninsular Malaysia and the Indonesian tin islands 
(Mitchell, 1977, 1979, 2018; Beckinsale, 1979; Schwartz et al., 
1995). Myanmar is the third global tin supplier after China and 
Indonesia, accounting for ~17% of the world’s annual produc-
tion in recent years (Lehmann, 2021). Scientific research on 
Sn mineralization in Myanmar has been conducted since the 
1930s, with respect to the geologic setting, magma evolution, 
mineralization age, and ore-forming mechanism (Chhibber, 
1934; Clegg, 1944a, b; Mitchell, 1977, 1979, 1986; Hutchi-
son and Taylor, 1978; Bender, 1983; Gardiner et al., 2014a, b, 
2015a, 2016a, 2017, 2018; Jiang et al., 2017, 2019; Zaw, 2017; 

Li, J.X., et al., 2018, 2019; Mao et al., 2020; Mitchell et al., 
2021; Myint et al., 2021).

Ages of Sn mineralization are critical to linking the forma-
tion of resources to tectonic and magmatic evolution (e.g., 
Mitchell et al., 2012; Mao et al., 2013; Romer and Kroner, 
2016; Zhang et al., 2017a). Previous geochronology studies in 
Myanmar mainly focused on ore-forming granites with con-
ventional whole-rock/mineral Rb-Sr, Sm-Nd, K/Ar-Ar, and 
zircon U-Pb methods (e.g., Lehmann and Mahawat, 1989; 
Cobbing et al., 1992). However, the whole-rock and mineral 
Rb-Sr, Sm-Nd, and K/Ar-Ar systems have relatively low clo-
sure temperature and are apt to be disturbed by later ther-
mal events (Romer et al., 2007; Ganguly and Tirone, 2009). 
Elevated U contents in zircon from highly fractionated gran-
ite may cause α-recoil damage, which disturbs the U-Pb 
system (Davis and Krogh, 2000; Romer, 2003). In contrast, 
ore minerals like cassiterite and wolframite may incorporate 
sufficiently high contents of U and low amounts of Pb, mak-
ing them suitable for U-Pb dating (Gulson and Jones, 1992; 
Yuan et al., 2008; Tang et al., 2020). The U-Pb system in cas-
siterite and wolframite has closure temperatures higher than 
those of Sn and W mineralization and therefore may remain 
stable during later hydrothermal events (Zhang et al., 2011; 
Yang, M., et al., 2020). In this study, we conducted in situ 
U-Pb dating of cassiterite and wolframite from six primary 
Sn deposits and two placer deposits in Myanmar, as well as 
zircon U-Pb dating and molybdenite Re-Os dating, and we 
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discuss the regional and global geologic significance of these 
geochronological results.

Geologic Background

Regional geologic setting

A series of tectonic boundaries were formed in Southeast 
Asia during the closure of multiple Tethys oceans and back-
arc basins from the Permian to the Cenozoic (Garson and 
Mitchell, 1970; Mitchell, 1977, 1979, 1986; Mitchell and Gar-
son, 1981; Metcalfe, 1984, 1996, 2011, 2013; Cobbing et al., 
1986; Sone and Metcalfe, 2008; Mitchell et al., 2015; Cong 
et al., 2021). The Paleo-Tethys represented by the Longmu 
Co-Shuanghu and Changning-Menglian sutures in China 
were connected to the Chiang Rai suture in Thailand and 
the Bentong-Raub suture in Malaysia (Fig. 1; Metcalfe, 2013, 
2021). However, the southward continuation of the Bangong-
Nujiang suture of the Meso-Tethys and Yarlung-Tsangpo 
suture of the Neo-Tethys from China to Myanmar remains 
controversial (Mitchell et al., 2015, 2021; Liu et al., 2016a, 
b; Metcalfe, 2021). The Kalaymyo and Myitkyina ophiolites 
were proposed to belong to a single suture that connected 
to the Yarlung-Tsangpo suture in Tibet and was displaced by 
the post-early Oligocene dextral Sagaing fault (Sengör et al., 
1988; Mitchell, 1993). However, geochronology of ophiolites 
by Liu et al. (2016a) suggested that the Myitkyina suture is 
the southern continuation of the Bangong-Nujiang suture, 
and the Kalaymyo suture connects to the Yarlung-Tsangpo 
suture. Metcalfe (1984, 1996) inferred that the Shan bound-
ary and the Myitkyina suture represent the Meso-Tethys in 
Myanmar. The Medial Myanmar zone was postulated to be 
a cryptic suture (Fig. 1; Mitchell et al., 2015; Ridd, 2016) but 
reinterpreted to be a dextral shear zone (Ridd, 2017; Ridd 
et al., 2019) or a narrow basin between the Myittha Chaung 
extensional fault and the Late Cretaceous Pan Laung fault 
(Mitchell et al., 2021).

Tin mineralization in the Southeast Asian tin province was 
divided into three main belts, based on the spatial distribu-
tion, tectonic setting, and mineralization ages (Fig. 1; Mitch-
ell, 1977, 1979, 2018; Mitchell and Garson, 1981; Cobbing et 
al., 1986; Schwartz et al., 1995; Sone and Metcalfe, 2008). The 
Eastern tin belt, mainly distributed in the eastern Peninsular 
Malaysia, was formed during the subduction of the Paleo-
Tethys from the Permian to the Triassic (Mitchell, 1977; Cob-
bing et al., 1986; Charusiri et al., 1993; Metcalfe, 1996). The 
Central tin belt hosts productive segments in the Indonesia 
tin islands and western Peninsular Malaysia and was formed 
after closure of the Paleo-Tethys in the Late Triassic (Mitch-
ell, 1977; Beckinsale, 1979; Mitchell and Garson, 1981; Searle 
et al., 2012; Ng et al., 2015). The Western tin belt extends 
from the western margin of the Shan states through Penin-
sular Myanmar to the Phuket Islands in Thailand (Mitchell, 
1977, 2018). It was formed during the subduction of the Neo-
Tethys from the Late Cretaceous to the Eocene (Mitchell, 
1977, 2018; Beckinsale, 1979; Mitchell and Garson, 1981; 
Bender, 1983; Gardiner et al., 2015a; Li, J.X., et al., 2018, 
2019; Mao et al., 2020). 

Over half of the historical and current Sn production in 
Southeast Asia was mined from placer deposits (Sainsbury, 
1969; Lehmann et al., 2020). The fortunate combination 

of deep tropical weathering and the Pliocene-Quaternary 
marine transgression in Southeast Asia caused trapping of 
alluvial sediments in flooded valleys (Chhibber, 1934; Beck-
insale, 1979; Schwartz et al., 1995; Mitchell, 2018). Abun-
dant placer Sn deposits were formed in Peninsular Myanmar 
when primary tin deposits exposed at surface were eroded 
and materials were carried to the alluvial flats (Penzer, 1922; 
Clegg, 1944a, b; Bender, 1983). 

Tin mineralization in Myanmar

Tin mineralization associated with all three tin belts has 
been discovered in Myanmar (Figs. 1−3; Htun et al., 2017; 
Mitchell, 2018). For example, the Wan Pon Sn occurrence in 
the easternmost corner of Myanmar is related to a granitoid 
pluton, which likely belongs to the Eastern granite province 
(Figs. 1, 3; Sone and Metcalfe, 2008; Htun et al., 2017; Cong 
et al., 2021), although geochronological studies of this min-
eralization are still unavailable. A surge of tin production in 
Myanmar since 2013 was mainly due to tin mining from the 
Man Makhsan tin deposits, Wa State, which elevated Myan-
mar to be the third largest global tin producer (Gardiner et 
al., 2015b). Geologic details of the Man Makhsan tin district 
are currently unavailable, but an adjacent granite pluton was 
inferred to belong to the north extension of the Central gran-
ite province in Thailand, formed in the Late Triassic (Htun et 
al., 2017; Mitchell, 2018). Numerous Sn deposits distributed 
in the Slate belt belong to the Western tin belt, which is con-
nected to Sn mineralization in the Tengchong block (Figs. 1, 
2, 4; Mitchell, 1977, 2018; Wang et al., 2014). 

This study mainly focuses on six primary Sn deposits—
from north to south, the Mong Kan Noi (20.62° N, 98.75° E), 
Padatchaung (19.66° N, 96.61° E), Mawchi (18.82°  N, 
97.16°  E), Hermyingyi (14.25° N, 98.35° E), Bwabin 
(14.16° N, 98.39° E), and Pagaye (14.09° N, 98.32° E) depos-
its—and two placer Sn deposits, including Ohnbinkwin 
(14°37' N, 98°00' E) and Bang-I-Tang (14°40' N, 98°16' E; 
Figs. 2, 3).

Primary deposits: The Mong Kan Noi deposit is located 
in the Mong Ton Township, Shan State (Figs. 2, 3). A total 
of 24 cassiterite- and wolframite-bearing quartz veins were 
observed in Mong Kan Noi. These veins are mainly hosted in 
highly weathered granite and are generally northwest trending 
with widths ranging from 20 cm to 2.5 m and dipping at angles 
varying from 65° to 85° (S.M.T.L. Paw and S.H. Doh, unpub. 
report, 2018). All the other primary deposits are located in 
the Slate belt (Fig. 2). The Padatchaung W (Sn) deposit is 
located ~40 km to the east of the Pyimana Township, Man-
dalay Division. The Mawchi mine, situated ~219 km to the 
southeast of Naypyitaw, is a world-class Sn-W deposit, with 
estimated ore reserves of 350,000 tonnes (Myint et al., 2018). 
The Bwabin, Hermyingyi, and Pagaye Sn deposits are located 
to the northeast of Dawei (Tavoy) City (Fig. 2). Tin and tung-
sten ores in these primary deposits generally occur near the 
granite boundary (Clegg, 1944a, b; Zaw, 1990; Gardiner et al., 
2014a, b; Jiang et al., 2017; Myint et al., 2017; Mitchell, 2018; 
Mao et al., 2020). The width of cassiterite- and wolframite-
bearing veins varies from centimeters to over 2 m (Fig. 5). 
All the veins dip steeply, and the lengths of individual veins 
can be over 200 m. Greisenization occurred in the granite 
on both sides of the quartz veins with alteration to muscovite 
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and quartz in all the studied primary deposits (Fig. 5B-D). 
Ore minerals are dominantly cassiterite and wolframite in the 
studied primary deposits, with minor molybdenite, pyrite, 
chalcopyrite, pyrrhotite, sphalerite, galena, arsenopyrite, bis-
muthinite, and bismuth (Fig. 5G-I). 

Placer deposits: The Dawei district hosts over 200 primary 
and placer tin mines in an area of 13,500 km2. Areas running 
along the Heinze Chaung (Heinze River) are very productive 
for placer tin ores (Figs. 6, 7). Cassiterite was mined from 
eluvial and alluvial placers up to 30 m thick. Tin content varies 
significantly, from several kilograms to a few grams per cubic 
meter, consistent with the heterogeneous nature of these 
placer deposits. The Ohnbinkwin deposit is located in the 

valley of the Heinze Chaung close to where the Ohnbinkwin 
Chaung merges into the main stream (Figs. 6, 7A). The Bang-
I-Tang deposit is located in a valley near the Thai-Myanmar 
border (Figs. 6, 7B).

Methods

Cathodoluminescence

Scanning electron microscopy-cathodoluminescence (SEM-
CL) images of zircon and cassiterite were obtained at the 
Beijing Geoanalysis Co., Ltd with a JEOL JSM6510 scanning 
electron microscope equipped with a Gatan CL detector. An 
acceleration voltage of 15 kV, a probe current of ~6 nA, and a 
magnification of ~250× were used for zircon. An acceleration 
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voltage of 15 kV, a probe current of ~6 nA, and a magnification 
of ~100× to 200× were used for cassiterite. 

Laser ablation-inductively coupled plasma-mass  
spectrometry (LA-ICP-MS) U-Pb dating

Zircon, cassiterite, and wolframite LA-ICP-MS U-Pb dating 
was conducted at the State Key Laboratory of Ore Deposit 
Geochemistry, Institute of Geochemistry, Chinese Academy 
of Sciences, Guiyang. The analytical system is composed of 
a GeoLas Pro 193-nm ArF excimer laser ablation system and 
an Agilent 7500× ICP-MS instrument. Helium was used as 
carrier gas and was mixed with argon via a T connector before 
entering the ICP-MS. Around six preablation pulses before 
each analysis were applied to remove surface contamination 
of cassiterite. Each analysis included 20 s of background read-
ing followed by 36 s of data acquisition. During laser ablation, 
fluid/mineral inclusions were occasionally ablated, resulting in 
anomalous spikes of signals. These analyses were terminated 
and replaced with new spots to ensure that none of the results 
were contaminated. The time dependent drift of U-Pb ratios 
was corrected by conventional standard-sample bracketing 
method. 

Zircon U-Pb analysis was carried out with a laser energy 
density of 5 J/cm2, a repetition rate of 5 Hz, and a spot size of 
32 μm. The zircon standard 91500 was used as external stan-
dard for zircon U-Pb dating (Wiedenbeck et al., 1995). The 
zircon standard Plešovice was analyzed as the unknown and 
returned a weighted average U-Pb age of 337.1 ± 2.4 Ma (n = 
9; mean square of weighted deviates [MSWD] = 0.01), which 
is identical to the recommended isotope dilution-thermal ion-
ization mass spectrometry (ID-TIMS) age of 337.13 ± 0.37 Ma 
(Sláma et al., 2008). Cassiterite U-Pb dating was conducted 
with a laser energy density of 8 J/cm2, a repetition rate of 7 Hz, 
and a spot size of 44 μm. An in-house cassiterite standard AY-4 
was used as external standard for cassiterite U-Pb dating. AY-4 
was collected from the Furong tin deposit in Hunan Province, 
South China and has an ID-TIMS U-Pb age of 158.2 ± 0.4 
Ma (Yuan et al., 2011). AY-4 was analyzed three to four times 
every eight to 10 analyses of unknown samples. A few of the 
AY-4 analyses were removed from the standard list during data 
reduction, as their signals demonstrated the presence of com-
mon lead. An in-house cassiterite standard from the Dachang 
Sn deposit was used for quality control and returned the age 
of 91.7 ± 2.2 Ma (n = 48; MSWD = 0.47), consistent with the 
age of 90.4 ± 1.8 Ma from Tang et al. (2020). Mao et al. (2020) 
reported that the current analytical precision of the U-Pb dat-
ing method on cassiterite cannot distinguish different genera-
tions of cassiterite in a single cassiterite grain, so in most cases 
(>80%) we performed one spot analysis on each grain, and in 
a few cases analyzed an individual cassiterite grain more than 
once. Wolframite U-Pb dating was conducted with a laser 
energy density of 5 J/cm2, a repetition rate of 6 Hz, and a spot 
size of 60 μm. NIST612 and an in-house wolframite standard 
MTM were used as external isotopic calibration standards. 
MTM was well constrained using the ID-TIMS method with 
a U-Pb age of 334.4 ± 1.7 Ma (Harlaux et al., 2018). Another 
in-house wolframite standard NM was used for quality control 
and yielded a lower intercept age of 140.0 ± 1.3 Ma (n = 10; 
MSWD = 0.13), consistent within error with the age of 142.3 
± 1.3 Ma by Tang et al. (2020). 

Off-line selection and integration of background and ana-
lyte signals, time-drift correction, and quantitative calibration 
for U-Pb dating were performed by the ICPMSDataCal pro-
gram (Liu et al., 2008, 2010) following the method of Yuan 
et al. (2008) and Tang et al. (2020). Concordia diagrams and 
weighted mean age calculations were made using the Isoplot 
program (Ludwig, 2003). Cassiterite and wolframite typically 
contain some common lead; therefore, the Tera-Wasserburg 
U-Pb concordia diagram was used to obtain a date from the 
lower intercept in this plot.

Molybdenite Re-Os dating

Molybdenite Re-Os dating was conducted at the State Key 
Laboratory of Isotope Geochemistry, Guangzhou Institute of 
Geochemistry, Chinese Academy of Sciences, Guangzhou. 
Samples, to which a 185Re spike and common Os standard 
were added, were loaded and sealed in Carius tubes and 
digested with aqua regia at 200°C for over 24 h. After cooling 
of the solution, Os was separated from Re by CCl4 extrac-
tion and purified by microdistillation. Rhenium was sepa-
rated from the major matrix elements (e.g., Mo, W, and Fe) 
by solvent extraction with N-benzoyl-N-phenylhydroxylamine 
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in chloroform solution (Du et al., 2004; Li et al., 2010). The 
purified Re and Os were then analyzed by negative-thermal 
ionization mass spectrometry (N-TIMS) on a Thermo-Finni-
gan Triton (Creaser et al., 1991). Procedural blanks are in 
average 4.5 ± 2.3 pg for Re, 0.52 ± 0.02 pg for Os, and 0.29 ± 
0.01 for 187Os/188Os (n = 3, 2sd). All data were corrected for 
the procedural blanks. The 187Re decay constant of 1.666 × 
10−11 year−1 (Smoliar et al., 1996) was used to calculate model 
ages. Molybdenite standard JDC was analyzed and returned 
the model age of 140.0 ± 0.76 Ma, which is identical to the 
recommended model age of 139.6 ± 3.8 Ma (Du et al., 2004). 

Results

Zircon U-Pb ages of granites

Many zircons of granites from the Hermyingyi deposit and 
the Mong Kan Noi deposit have irregular grain boundaries 
and show complex CL textures, indicating that they were 

modified by successive geologic processes. Therefore, we 
only analyzed zircon grains with euhedral crystal shapes and 
clear oscillatory zonation in CL images (Fig. 8). The LA-
ICP-MS U-Pb results of zircon analyses are presented in 
Appendix 1. Zircons from the Hermyingyi deposit have Th 
contents varying from 218 to 3,677 ppm, with an average 
of ~942 ppm, and uranium contents ranging from 303 to 
14,677 ppm, with an average of ~3,778 ppm. All analyti-
cal results cluster tightly on the concordia curve and yield a 
weighted mean 206Pb/238U age of 62.7 ± 0.7 Ma (MSWD = 
0.23; n = 10; Fig. 8A). Zircons from Mong Kan Noi have Th 
contents varying from 34 to 1,137 ppm, with an average of 
~531 ppm, and U contents ranging from 442 to 2,952 ppm, 
with an average of ~1,294 ppm. Analytical results cluster 
tightly on the concordia curve and yield a weighted mean 
206Pb/238U age of 216.9 ± 1.8 Ma (MSWD = 0.90; n = 17; 
Fig. 8B). 
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Cassiterite U-Pb ages of primary deposits

Cassiterite grains from the Pagaye, Bwabin, Hermyingyi, Maw-
chi, and Mong Kan Noi deposits typically show euhedral crystal 
shapes with up to 3 mm size in hand samples. Many of the cas-
siterite grains have dark-gray CL images with very clear and 
thin oscillatory zones parallel to the growth zones, and the CL 
intensity varies significantly in different grains (Fig. 9). 

Appendix 2 presents the analytical results of U and Pb 
isotope measurements and related parameters for cassiter-
ite from these deposits. Uranium contents in cassiterite vary 
from 1.81 to 60.1 ppm (avg ~23.8 ppm) for the Pagaye deposit, 
from 2.99 to 253 ppm (avg ~75.6 ppm) for the Bwabin deposit, 
from 2.13 to 20.2 ppm (avg ~8.17 ppm) for the Hermyingyi 
deposit, from 1.99 to 65.8 ppm (avg ~13.9 ppm) for the Maw-
chi deposit, and from 1.37 to 59.6 ppm (avg ~13.6 ppm) for 
the Mong Kan Noi deposit.

The lower intercept ages in the Tera-Wasserburg U-Pb con-
cordia diagrams are as follows: 71.5 ± 0.7 Ma (MSWD = 0.12; 
n = 30; Fig. 9A) for Pagaye; 63.3 ± 0.6 Ma (MSWD = 0.43; n = 
30; Fig. 9C) for Bwabin; 61.2 ± 1.3 Ma (MSWD = 0.10; n = 
29; Fig. 9D) for Hermyingyi; 43.1 ± 0.8 Ma (MSWD = 0.10; 
n = 42; Fig. 9E) for Mawchi; and 42.7 ± 0.7 Ma (MSWD = 
0.21; n = 30; Fig. 9F) for Mong Kan Noi.

Cassiterite U-Pb ages of placer deposits

Eighty-five cassiterite grains were analyzed for the Ohn-
binkwin deposit (App. 2). Uranium contents vary from 0.70 
to 36.2 ppm, with an average of ~9.57 ppm. The majority of 
the 238U/206Pb ratios are >80, and the lowest 238U/206Pb ratio 
is 12.5 (Fig. 10A). Except for some outliers, the majority of 
these analyses (n = 73, group 1 in App. 2) define a good linear 
correlation and yield a lower intercept age of 64.5 ± 0.6 Ma 
(MSWD = 0.63). The spot with the lowest 238U/206Pb ratio 
and highest 207Pb/206Pb ratio isolated from the rest of the data 
is used for the acquisition of the lower intercept, although 
removal of this spot makes negligible change to the final 
result (Fig. 10A). Twenty-five of these ages are concordant 
and yield a weighted mean 238U/206Pb age of 65.0 ± 0.9 Ma 

(MSWD = 0.37). Twelve spots (gray spots in Fig. 10A) deviat-
ing from the general trend are not used for the calculation of 
the lower intercept age, four of which are concordant (OKB-
52 at 72.6 ± 3.1 Ma, OBK-65 at 60.8 ± 2.8 Ma, OBK-79 at 
68.8 ± 3.2 Ma, OBK-81 at 68.9 ± 2.9 Ma). The histogram for 
concordant ages from all the analyses shows a notable peak at 
~65 Ma (Fig. 10C).

Seventy-five cassiterite grains were analyzed for the Bang-
I-Tang deposit (App. 2). Uranium contents vary from 0.24 to 
86.8 ppm, with an average of ~12.1 ppm. Except for some 
outliers, these analyses generally fall into two groups with 
good linear correlations (Fig. 10B). Twelve analyses from 
group 1 define a lower intercept age of 217.6 ± 5.9 Ma 
(MSWD = 0.09). Five of them are concordant ages and yield 
a weighted mean 238U/206Pb age of 217.2 ± 6.9 Ma (MSWD = 
0.09). Forty-nine analyses from group 2 define a lower inter-
cept age of 73.8 ± 0.7 Ma (MSWD = 0.17). Twenty of them 
are concordant and yield a weighted mean 238U/206Pb age of 
73.7 ± 0.9 Ma (MSWD = 0.19). Fourteen spots (gray spots in 
Fig. 10B) fall neither in group 1 nor group 2, six of which are 
concordant ages (BIT-25 at 66.8 ± 1.8 Ma; BIT-28 at 84.1 ± 
2.6 Ma; BIT-50 at 60.5 ± 2.3 Ma; BIT-54 at 60.9 ± 4.0 Ma; 
BIT-57 at 109.1 ± 9.7 Ma; BIT-64 at 78.8 ± 3.3 Ma). The his-
togram for concordant ages from all the analyses shows two 
notable peaks at 75–70 Ma and 220–215 Ma (Fig. 10D). 

Wolframite U-Pb age

Uranium contents in wolframite vary from 1.93 to 74.8 ppm 
(avg ~28.2 ppm) for the Padatchaung deposit (App. 3). 
Twenty-nine analyses yield a lower intercept age of 64.1 ± 
0.8  Ma in the Tera-Wasserburg U-Pb concordia diagram 
(MSWD = 0.77; Fig. 9B).

Molybdenite Re-Os ages

Analytical results of Re-Os isotopes of molybdenite are listed 
in Appendix 4. Rhenium contents of molybdenite from the 
Bwabin deposit vary from 179.9 to 1,214 ppb, with an average 
of ~642.2 ppb. Model ages of molybdenite range from 63.0 to 

0.006

0.008

0.010

0.012

0.014

0.04 0.05 0.06 0.07 0.08 0.09

50

60

70

80

2
0

6
2

3
8

P
b/

U

2
0

6
2

3
8

P
b/

U

207 235Pb/ U 207 235Pb/ U

61

62

63

64

65

Mean =
62.7 ± 0.7 Ma
MSWD = 0.23

n = 10

Mean =
216.9 ± 1.8 Ma
MSWD = 0.90

n = 17
0.022

0.026

0.030

0.034

0.038

0.042

0.046

0.14 0.18 0.22 0.26 0.30 0.34

150

170

190

210

230

250

270

290

208

216

224

232

Hermyingyi-Zircon MKN-Zircon
A B

50 µm 50 µm

Fig. 8. (A, B) Zircon cathodoluminescence images, U-Pb concordia, and weighted mean age diagrams for granites from the 
Hermyingyi and Mong Kan Noi (MKN) deposits. MSWD = mean square of weighted deviates.

Downloaded from http://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/117/6/1387/5644777/4927_mao_et_al.pdf
by Institute of Geochemistry Chinese Academy user
on 17 May 2023



	 SCIENTIFIC COMMUNICATIONS	 1395

0.0

0.2

0.4

0.6

0.8

0 20 40 60 80 100 120

Lower intercept at
61.2 ± 1.3 Ma
MSWD = 0.10

n =29 
2

0
7

2
0

6
P

b/
P

b

238 206U/ Pb

0.0

0.2

0.4

0.6

0.8

0 20 40 60 80 100 120
238 206U/ Pb

Lower intercept at
63.3 ± 0.6 Ma
MSWD = 0.43

n =30 

2
0

7
2

0
6

P
b/

P
b

0.0

0.2

0.4

0.6

0.8

0 20 40 60 80 100 120
238 206U/ Pb

2
0

7
2

0
6

P
b/

P
b

Lower intercept at
71.5 ± 0.7 Ma
MSWD = 0.12

n =30 

0.0

0.2

0.4

0.6

0.8

0 40 80 120 160 200
238 206U/ Pb

2
0

7
2

0
6

P
b/

P
b

Lower intercept at
42.7 ± 0.7 Ma
MSWD = 0.21

n =30 

0.0

0.2

0.4

0.6

0.8

0 20 40 60 80 100 120
238 206U/ Pb

2
0

7
2

0
6

P
b/

P
b

Lower intercept at
64.1 ± 0.8 Ma
MSWD = 0.77

n =29 

238 206U/ Pb

2
0

7
2

0
6

P
b/

P
b

Lower intercept at
43.1 ± 0.8 Ma
MSWD = 0.10

n =42 

0.0

0.2

0.4

0.6

0.8

0 40 80 120 160 200

Bwabin-Cassiterite

Padatchaung-WolframitePagaye-Cassiterite

MKN-CassiteriteMawchi-Cassiterite

Hermyingyi-Cassiterite

300 µm
300 µm

300 µm

300 µm300 µm

A B

D

FE

C

Fig. 9. (A-F) Tera-Wasserburg U-Pb concordia diagrams for cassiterites and wolframites from the Pagaye, Padatchaung, 
Bwabin, Hermyingyi, Mawchi, and Mong Kan Noi (MKN) deposits. MSWD = mean square of weighted deviates.

Downloaded from http://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/117/6/1387/5644777/4927_mao_et_al.pdf
by Institute of Geochemistry Chinese Academy user
on 17 May 2023



1396	 SCIENTIFIC COMMUNICATIONS

57.6 Ma for the Bwabin deposit and from 65.0 to 57.7 Ma for 
the Hermyingyi deposit. 

Discussion

Tin mineralization ages in Myanmar

Htun et al. (2017) reported a zircon U-Pb age of 214 ± 1.5 Ma 
for the altered biotite granite at the Mong Kan Noi deposit in 
the Shan Plateau (Figs. 2, 3). Our zircon U-Pb age (216.9 ± 
1.8 Ma) of the granite is consistent with their data. However, 
the cassiterite U-Pb age (42.7 ± 0.7 Ma) shows that Sn min-
eralization in Mong Kan Noi occurred in the Eocene and 
that the Triassic granite is the ore-hosting and not the ore-
forming granite. Geochronology of zircon, molybdenite, and 
muscovite indicates that the Mawchi mineralization formed 
at ~43 to 40 Ma (Myint et al., 2018). Our cassiterite U-Pb 
age of 43.1 ± 0.8 Ma confirms that the Mawchi deposit was 
formed in the Eocene. Together with the Yadanabon deposit 
(~50.3 Ma) in southernmost Myanmar, the Lailishan deposit 
(~52.0 and 47.2 Ma) in western Yunnan and the Samoeng 

deposit (~49  Ma) in northwest Thailand, they record the 
Eocene Sn mineralization event, which is not only distributed 
in the Western tin belt, but also extends to the Central tin 
province (Fig. 2; App. 5). 

Cassiterite U-Pb dating reveals that the Pagaye deposit was 
formed in the Late Cretaceous (71.5 ± 0.7 Ma). J.X. Li et al. 
(2018) reported cassiterite U-Pb ages of 62.5 ± 1.0 and 60.7 ± 
3.9 Ma for the Bwabin (Bawapin) deposit, which are consistent 
within errors with our cassiterite U-Pb age of 63.3 ± 0.6 Ma 
for Bwabin. Lehmann and Mahawat (1989) reported a Rb-Sr 
isochron age of 59.5 ± 1.4 Ma for the Hermyingyi stock. H. Li 
et al. (2018) reported a zircon U-Pb age of 61.4 ± 0.6 Ma for 
the Hermyingyi granite. Our zircon U-Pb age (62.7 ± 0.7 Ma) 
and cassiterite U-Pb age (61.2 ± 1.3 Ma) are in good agree-
ment with the above studies for the Hermyingyi deposit. 
However, Jiang et al. (2017) reported a zircon U-Pb age of 
70.0 ± 0.4 Ma for the Hermyingyi monzogranite, and Jiang et 
al. (2019) reported a Re-Os age of 68.4 ± 2.5 Ma for molyb-
denite from the Hermyingyi deposit, which suggest that there 
were multiple episodes of mineralization in the Hermyingyi 

0
0.0 0.0

0.2 0.2

0.4 0.4

0.6 0.6

0.8 0.8

020

Lower intercept at
64.5 ± 0.6 Ma
MSWD= 0.63

n = 73

Mean = 65.0 ± 0.9 Ma
MSWD= 0.37  n = 25

Mean = 73.7 ± 0.9 Ma
MSWD= 0.19  n = 20

Lower intercept at
217.6 ± 5.9 Ma

MSWD= 0.09
n = 12

Lower intercept at
73.8 ± 0.7 Ma
MSWD= 0.17

n = 49

2040 4060 6080 80100 100120 120
238 206U/ Pb

2
0

7
2

0
6

P
b/

P
b

2
0

7
2

0
6

P
b/

P
b

238 206U/ Pb

A B

Fig. 10. (A-E) Tera-Wasserburg U-Pb concordia diagrams, weighted mean 238U/206Pb ages, and histograms for cassiterites 
from the Ohnbinkwin and Bang-I-Tang deposits. Histograms were constructed with concordant ages from all the analyses of 
each deposit. MSWD = mean square of weighted deviates.

Downloaded from http://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/117/6/1387/5644777/4927_mao_et_al.pdf
by Institute of Geochemistry Chinese Academy user
on 17 May 2023



	 SCIENTIFIC COMMUNICATIONS	 1397

deposit. The wide ranges of molybdenite Re-Os model ages in 
Hermyingyi and Bwabin indicate that these molybdenite sam-
ples record a prolonged mineralization in the Paleocene in the 
Dawei area. Brook and Snelling (1976) obtained an Rb-Sr age 
of 56 ± 2 Ma and a K-Ar age of 55 ± 1 Ma for the mineralized 
granite in the Padatchaung deposit. However, the Rb-Sr and 
K-Ar systems are apt to be disturbed by later thermal events. 
Our wolframite U-Pb dating shows that W (Sn) mineralization 
in the Padatchaung deposit occurred at 64.1 ± 0.8 Ma. 

Sources of placer Sn deposits

In contrast to zircon, which can be transported by water to 
over 1,000 km from its origin (Rainbird et al., 1992), placer 
tin deposits, with cassiterite as the dominant ore mineral, 
are always found in close proximity to their primary sources 
(Chhibber, 1934; Mitchell, 2018; Lehmann, 2021). The possi-
bility remains that a placer deposit may have multiple sources, 
especially if abundant primary deposits cluster in an area like 
the Dawei district (Fig. 2).

Geochronology of the Ohnbinkwin deposit reveals one 
dominant source of cassiterite grains with the primary ore-
forming age of 64.5 ± 0.6 Ma (Fig. 10A). Geochronology in 
the Bang-I-Tang deposit shows at least two sources of cas-
siterite grains. One dominant source (~80%) has the primary 
ore-forming age of 73.8 ± 0.7 Ma, and the other, less impor-
tant source (~20%) has the primary age of 217.6 ± 5.9 Ma 
(Fig. 10B). Both the Ohnbinkwin and Bang-I-Tang deposits 
are modern alluvial placers; therefore, transportation of mate-
rials into these deposits is constrained by the local drainage 
system. Charusiri et al. (1993) obtained Ar-Ar ages of ~74.4 
and ~76.5 Ma for muscovite from wolframite- and cassiter-
ite-bearing veins in the Pilok mine. Although these ages, if 
not disturbed by later hydrothermal events, are similar to the 
group 2 age in Bang-I-Tang, the Pilok mine is not likely the 
major source of the Bang-I-Tang placer deposit, because it is 
~10 km to the east and the Thai-Myanmar border serves as 
the drainage divide to prevent transportation of detrital mate-
rials from Pilok to Bang-I-Tang (Figs. 6, 7B). The primary Sn 
sources are very likely in the Bang-I-Tang valley. Granites in 
the Slate belt are dominantly Cretaceous to Cenozoic, and the 
Late Triassic granite nearest to Bang-I-Tang is ~50 km to the 
northeast, based on previous geologic investigations (Fig. 6). 
However, recent studies revealed several Late Triassic gran-
ites in the Slate belt (Dew et al., 2018; Gardiner et al., 2018; 
Lin et al., 2019a). Therefore, we infer that there are both Late 
Triassic and Late Cretaceous magmatism and Sn mineraliza-
tion in the Bang-I-Tang valley (Fig. 10B).

Aside from the major groups of ages, there are many out-
liers, and some of them are concordant ages (Fig. 10; App. 
2). These concordant ages may indicate other potential pri-
mary sources and may have geologic significance. For exam-
ple, spot BIT-57 (109.1 ± 9.7 Ma) may represent the Early 
Cretaceous Sn mineralization in Myanmar, which was rarely 
reported (see discussion below). The other concordant outli-
ers (84.1–60.5 Ma) lie within the Late Cretaceous to Eocene 
Sn mineralization event in Southern Myanmar (Fig. 2). 
However, caution should be taken in identifying sources of 
placer deposits by single spot age, because single spot ages 
may be affected by large errors. In addition, the ablation of 
microscale Pb-rich mineral inclusions may also affect the 

accuracy of single spot ages. Therefore, unless the analytical 
method can be improved or a larger data set can be obtained, 
whether the concordant outliers represent contribution from 
other primary sources remains ambiguous.

Tectonic evolution and Sn mineralization in Myanmar

Our new geochronological data allow us to refine existing 
models on the tectonic evolution and associated Sn miner-
alization in Myanmar. Granites in the easternmost corner of 
Myanmar were formed during subduction of the Paleo-Tethys 
(Gardiner et al., 2016b; Cong et al., 2021). After closure of 
the Paleo-Tethys, granites and Sn mineralization were formed 
in the Shan Plateau east of the Salween River in a collisional 
setting in the Late Triassic (Mitchell, 1977, 2018; Gardiner et 
al., 2016b; Cong et al., 2021). For example, the ore-forming 
granite of the Mong Hsat Sn deposit has a zircon U-Pb age 
of 214 ± 1.5 Ma (Fig. 3; Htun et al., 2014). Our zircon U-Pb 
age of ~216.9 ± 1.8 Ma for the granite from the Mong Kan 
Noi deposit confirms the Late Triassic magmatism in this 
area. Dew et al. (2018) reported two granite rocks located 
~135 km northeast of Myeik, which belongs to the Slate belt 
in Thailand, with zircon U-Pb ages of ~214 Ma. Gardiner et 
al. (2018) reported a zircon U-Pb age of 218.9 ± 2.5 Ma for a 
granite from Payangazu located ~130 km north of Naypyitaw. 
Together with our cassiterite U-Pb age of 217.6 ± 5.9 Ma from 
the Bang-I-Tang placer deposit, we confirm a Late Triassic age 
for magmatism and Sn mineralization in the Western tin belt, 
which belongs to the west extension of the Central tin belt.

An Early Cretaceous Mondaung arc with a zircon U-Pb age 
range of 128–113 Ma has been recognized in and east of the 
Shan scarps between Mandalay and Naypyitaw (Mitchell et 
al., 2012, 2020a, b, 2021; Lin et al., 2019b). It is connected 
to the Early Cretaceous granites in the Tengchong block in 
the north (Fig. 4) and granites in the Mawpalaw Taung area 
south of Moulmein (Fig. 2). The Early Cretaceous granites 
were formed during eastward subduction of the Meso-Tethys 
(Bangong-Nujiang Tethys; Li, J.X., et al., 2018, 2019; Lin et 
al., 2019a; Mitchell et al., 2021). A series of Early Cretaceous 
Sn deposits have been reported in the Tengchong block (Fig. 
4; App. 5), but the only Early Cretaceous Sn mineralization 
reported in southern Myanmar is the Mawpalaw Taung tin-
bearing pegmatites (106.8 ± 1.6 Ma; Paik, 2017), and no Sn 
mineralization related to the Mondaung arc has been identi-
fied so far (Mitchell et al., 2021). 

Most of the granites and related Sn mineralization in the 
Western tin belt were formed in an Andean-type subduction 
zone analogous to the Bolivian tin belt (Mitchell and Garson 
1981; Mitchell et al., 2012, 2021; Gardiner et al., 2015a; Li, 
J.X., et al., 2018). Mitchell (1977) inferred a shallow-dipping 
subduction zone from the Cretaceous to the Eocene along the 
Andaman trench (Fig. 1). The flat slab reached beneath the 
Sibumasu terrane at ~90 Ma and generated magmatism and 
Sn mineralization to form the Kuntabin Sn deposit in south-
ern Myanmar (Mao et al., 2020). Mitchell (1979) suggested 
that tin granites were generated during crustal thickening and 
shear heating along the thrust at depth. Alternatively, back-
arc extension, induced by slab rollback, was proposed for the 
generation of the Late Cretaceous to Paleocene tin granites 
in recent studies (Sanematsu et al., 2014; Jiang et al., 2017; Li 
et al., 2019). 
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The initial collision between the Indian and Eurasia conti-
nents occurred in Tibet at ~65–63 Ma, then the Neo-Tethys 
Ocean sutured diachronously both to the west and east (Searle 
et al., 2007; Royden et al., 2008; Ding et al., 2014). The col-
lision reached western Yunnan before the Eocene, so that 
the Lailishan deposit was formed in a postcollisional setting 
(~52.0 and 47.2 Ma; Chen et al., 2014). In contrast, the Neo-
Tethys subduction continued in Myanmar through the Late 
Eocene to form the Shangalon porphyry Cu-Au deposit in the 
West Burma terrane (~38 Ma; Htut et al., 2020). Although 
magmatism decreased notably from ~50 to 40 Ma (Fig. 11), 
Sn mineralization continued in Southeast Asia with continu-
ous subduction of the Neo-Tethys slab to form a series of 
Eocene Sn deposits (Figs. 2, 4, 11, 12). 

The tectonic setting varied significantly since the Permian 
to form present-day Southeast Asia, and Sn mineralization 
occurred repeatedly in both collisional and subduction set-
tings to form the world’s largest tin province (Figs. 11, 12). 
The reduced granites crop out in all three belts of the South-
east Asian tin province, indicating that the basement hosted 
very thick pelitic sedimentary sequences for the generation 
of reduced melts (Lehmann, 1982, 2021). The reduced tin 
granites were generated either by melting of the lower crust 
metasedimentary rocks or by ascent of subduction-related 
magma through sedimentary rocks and assimilation of carbon 
(Sanematsu et al., 2014).

Magmatic activity became very weak after ~40 Ma in the 
Southeast Asian tin province, and Sn mineralization ceased 
since then (Fig. 11). The India-Eurasia collision has produced 
eastward and southeastward extrusion of the lithosphere in 
Southeast Asia (Tapponnier et al., 1990; Royden et al., 2008). 

Lacassin et al. (1997) revealed that the earliest strike-slip fault, 
the Three Pagodas fault, was activated in the late Eocene (Fig. 
1). Xu et al. (2015) proposed that extrusion of the lithosphere 
and clockwise rotation of the Tengchong block occurred since 
the late Eocene. Therefore, although the Neo-Tethys subduc-
tion continued to generate magmatism and Cu mineralization 
in the West Burma terrane (Mitchell et al., 2011, 2021), we 
infer that dextral motion along a series of strike-slip faults and 
extrusion of the lithosphere after ~40 Ma are responsible for 
the weakened magmatic activity and terminated Sn mineral-
ization in the Southeast Asian tin province.

Comparison with other world-class tin provinces

Cassiterite U-Pb dating revealed that the earliest Sn min-
eralization occurred in Archean Sn pegmatite (~2.8 Ga) in 
Western Australia (Denholm et al., 2021). Proterozoic Sn 
mineralization has also been reported in South Africa, Brazil, 
Russia, Rwanda, South China, and Saudi Arabia (Gulson and 
Jones, 1992; Zhang, R., et al., 2017b; Neymark et al., 2018, 
2021; Zhang, S., et al., 2019; Rizvanova and Kuznetsov, 2020); 
however, pre-Cambrian Sn mineralization is comparatively 
rare, and the most important Sn provinces all formed during 
the Phanerozoic (Fig. 12). 

Areas of mineralization: Most tin provinces form linear 
belts along continental margins or major orogenic belts in 
which granite magma was generated (Sainsbury, 1969). The 
Cornwall tin province is 200 km in length (Moscati and Ney-
mark, 2020). The Central Andean tin belt stretches for about 
900 km (Gemmrich et al., 2021). The South China tin province 
consists of the 400-km-long Nanling belt, the 250-km-long 
Southeast Coastal belt, and the 900-km-long belt extending 
from eastern Yunnan through Guangxi to western Guangdong 
Province (Yun-Guang belt; Mao et al., 2013). The Southeast 
Asian tin province hosts the 500-km-long Eastern belt, the over 
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Fig. 12. Compiled cassiterite U-Pb ages (with minor zircon U-Pb and molyb-
denite Re-Os ages) for Sn mineralization in global tin provinces. Data are 
from Yuan et al. (2008, 2011), Chen et al. (2014), Li et al. (2016), Qiu et al. 
(2017), Zhang, R., et al. (2017b), Carr (2018), Li, J.X., et al. (2018), Neymark 
et al. (2018, 2021), Zhang, S., et al., (2019), Cao et al. (2020), Du et al. (2020), 
Mao et al. (2020), Moscati and Neymark (2020), Yang, J.H., et al. (2020), 
Denholm et al. (2021), Gemmrich et al. (2021), Hu et al. (2021), and refer-
ences therein.

Fig. 11. (A) Igneous rock zircon U-Pb ages from the Sibumasu and 
Tengchong terranes. (B) Sn (W) mineralization ages in the Western tin belt 
(App. 5). Magmatism and Sn mineralization in the Sibumasu-Tengchong ter-
rane generally fall into two groups. The Early Cretaceous magmatism and 
Sn mineralization is comparatively weak. After the gap between 105 and 90 
Ma, significant magmatism and mineralization occurred to form abundant 
Sn deposits in the Western tin belt. Extent of magmatism decreased notably 
from 50 to 40 Ma, while Sn mineralization continued. Data from Barley et 
al. (2003), Searle et al. (2007), Mitchell et al. (2012), Dong et al. (2013), Yu 
et al. (2014), Gardiner et al. (2014a, b, 2015a, 2016a, b, 2017, 2018), Xie et 
al. (2016), Cao et al. (2017), Crow and Zaw (2017), Jiang et al. (2017), Dew 
et al. (2018), Li, H., et al. (2018), Li, J.X., et al. (2018), Lin et al. (2019a, b), 
and references therein.
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3,000-km-long Central belt, and the 2,000-km-long Western 
belt, including western Yunnan (Fig. 1; Mitchell, 1977, 2018). 
The length of mineralization belts is generally proportional to 
the historical tin production in these tin provinces.

Duration of mineralization events: A particular tectonic set-
ting (e.g., subduction) and related magmatism may prevail 
for over 100 m.y., but mineralization events typically occur in 
much shorter periods (Bissig et al., 2008; Sillitoe, 2012). Cas-
siterite U-Pb geochronology studies have generally revealed 
shorter durations for Sn mineralization events than previously 
reported by conventional methods. For example, granite mag-
matism and related Sn mineralization in the Erzgebirge tin 
province were grouped into two periods (330–320 and 310–
290 Ma) in previous studies. However, systematic U-Pb dat-
ing of cassiterite from the Erzgebirge tin province revealed 
a short mineralization period of ~6 m.y. (326–320 Ma; Fig. 
12; Zhang et al., 2017a). Geochronology of granites by con-
ventional methods in the Cornwall tin province constrained 
magmatic activity to 295–270 Ma, but cassiterite U-Pb dating 
slightly narrowed the duration of mineralization to ~17 m.y. 
(292–275 Ma; Moscati and Neymark, 2020). Figure 12 reveals 
that durations of regional Sn mineralization events are typi-
cally in the range of ~5–30 m.y. Our new data suggest a similar 
to even longer duration of up to ~50 m.y. for Sn mineraliza-
tion in Southeast Asia associated with Neo-Tethys subduction. 
(Figs. 11, 12). 

Recurrent Sn mineralization: Recurrent Sn mineraliza-
tion had long been noticed (Schuiling, 1967) and revealed 
in many tin provinces by conventional methods (e.g., Taylor, 
1979; Lehmann, 1990; Schwartz et al., 1995; Breiter et al., 
1999; Searle et al., 2012). Cassiterite U-Pb dating has allowed 
a better temporal resolution of diachronous Sn mineraliza-
tion (Fig. 12). The Erzgebirge and Cornwall tin provinces 
both belong to the Acadian-Variscan-Appalachian orogen but 
were formed in distinct time intervals (Romer and Kroner, 
2016). The Eastern Australia tin province, which hosts ~9% 
of the global tin reserves (USGS, 2020), extends for over 
2,000 km and varies in age from Silurian to Triassic (Solomon 
and Groves, 1994). Cassiterite U-Pb dating revealed three Sn 
mineralization episodes: ~420–413 Ma in the Lachlan orogen 
(Carr, 2018), ~391–359 Ma in the Tasmania Islands (Denholm 
et al., 2021), and ~252–244 Ma in the Mole granite system 
(Carr, 2018). The South China tin province mainly contains 
three mineralization belts distinct in space and time: the Nan-
ling belt (~165–150 Ma; Mao et al., 2007, 2013; Yuan et al., 
2008, 2011), the Southeast Coastal belt (145–135 Ma; Qiu et 
al., 2017; Liu et al., 2018), and the Yun-Guang belt (~100–75 
Ma; Cheng et al., 2016; Hu et al., 2021). Cassiterite U-Pb dat-
ing revealed that Sn mineralization in the Southeast Asian 
tin province occurred repeatedly in four periods: Permian 
(~285–265 Ma), Triassic (~239–213  Ma), Early Cretaceous 
(~124–107 Ma), and Late Cretaceous to Eocene (~90–42 Ma; 
Figs. 11, 12).

Superimposition of Sn mineralization: Superimposition 
of Sn mineralization is also well documented in many tin 
provinces. For example, the Late Cretaceous Sn miner-
alization in the Guangxi Province is superimposed on the 
Neo-Proterozoic and Late Triassic Sn mineralization in 
South China (Feng et al., 2013; Zhang et al., 2019). The 
Central Andean tin province is genetically related to two 

major periods of magmatism (Fig. 12). The late Oligocene 
(~20–13 Ma) mineralization is superimposed on the Late 
Triassic (~240–220 Ma) mineralization in the northern part 
of the Central Andean tin province (Lehmann et al., 1990; 
Gemmrich et al., 2021; Lehmann, 2021). In Southeast Asia, 
the Eastern tin belt hosts the Late Triassic magmatism and 
Sn mineralization in eastern Malaysia (Ng et al., 2015; Searle 
et al., 2016; Liu et al., 2020; Yang, J.H., et al., 2020). The 
Bulangshan and Mengsong Sn occurrences, located east of 
the Changning-Mengliang suture in western Yunnan, are 
related to the Late Triassic granites (Wang et al., 2015). The 
Central tin belt in eastern Myanmar hosts the Eocene Mong 
Kan Noi deposit (Figs. 2, 3). The Western tin belt contains 
the Late Triassic and Early Cretaceous Sn mineralization 
(Figs. 2, 4), although the economic significance of these ear-
lier mineralization events is negligible compared to the Late 
Cretaceous to Eocene Sn mineralization. 

The fortunate combination of the length of tin mineraliza-
tion episodes between the Permian and Eocene, the largest 
surface extension of mineralization, the deep tropical weath-
ering, and the Pliocene-Quaternary marine transgression in 
Southeast Asia were probably all factors contributing to the 
formation of the world’s largest tin province.

Conclusions
1.	 Combination of our geochronology work with previous 

studies has revealed three episodes of Sn mineralization in 
the Western tin belt of Southeast Asia, including the Late 
Triassic (~218 Ma), the Early Cretaceous (~124–107 Ma), 
and the Late Cretaceous to Eocene (~90–42 Ma). The 
majority of the Sn deposits in this belt were formed during 
the last mineralization event.

2.	 Global data compilation reveals that durations of regional 
Sn mineralization events are typically in the range of ~5–30 
m.y. and that the Neo-Tethys subduction in Southeast Asia 
generated a prolonged Sn mineralization event up to ~50 
m.y. 

3.	 The tectonic setting varied significantly in Southeast Asia 
during the closure of multiple Tethys oceans and back-
arc basins, while Sn mineralization occurred recurrently 
in both subduction and collisional settings. The tectonic 
setting changed from Neo-Tethys subduction to dextral 
motion along a series of strike-slip faults in the late Eocene 
and terminated Sn mineralization in Southeast Asia.

4.	 The overall length of tin mineralization episodes in South-
east Asia from the Permian to Eocene exceeds that of any 
other tin province globally and was one of the most impor-
tant factors in the formation of the exceptional Sn endow-
ments of the Southeast Asian tin province.
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