
Vol.:(0123456789)1 3

Environmental Earth Sciences (2022) 81:482 
https://doi.org/10.1007/s12665-022-10595-3

THEMATIC ISSUE

Remediation via biochar and potential health risk of heavy metal 
contaminated soils

Wei Hu1,2 · Weichang Gao3 · Yuan Tang1 · Qinghai Zhang1 · ChengLong Tu1 · Jianzhong Cheng1,2 

Received: 14 May 2022 / Accepted: 18 September 2022 / Published online: 3 October 2022 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
The serious damage to human health caused by soil heavy metals (HMs) pollution has always been a major problem in the 
field of public health. Although HMs pollution of soils has been efficiently remediated using biochar, the potential specific 
human health risks and their pathogeny during production and application are not known. The review provides a compre-
hensive summary of the current status, sources, and human health hazards of HMs contaminated soils; the physicochemical 
properties of biochar and its effects on the bioavailability of soil HMs; and the mechanisms and potential human health 
risks in using biochar for soil remediation. The results show that the interaction mechanisms between the biochar and soil 
HMs depend on the feedstock of biochar and pyrolysis temperature; biochar applications can directly or indirectly affect 
the bioavailability of HMs; several potential specific health risks such as dust pneumoconiosis, cytotoxicity, and respiratory 
diseases may be caused in the processes of biochar preparation and soil HMs remediation; additional recommendations are 
proposed for future research in areas, where significant knowledge gaps exist. This information can provide a meaningful 
reference for health management departments to formulate soil health prevention strategies.
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Introduction

Soil is the source of food needed for human survival, the 
core of the terrestrial ecosystem, and the root of the food 
chain. However, many heavy metals (HMs) are easily pro-
cessed and stored in the soil (Proshad et al. 2020; Cetin et al. 
2022). Currently, soil HMs pollution has become more and 
more serious and frequent disease-causing incidents are 

occurring. HMs have been determined to result in many 
disorders in humans such as cancer, cardiovascular dis-
ease, chronic anemia, cognitive impairment, nervous sys-
tem depression, kidney damage, and skin and bone-related 
illnesses (Solenkova et al. 2014; Khalid et al. 2017; Shen 
et al. 2019; Zhang et al. 2020b). Because the large amount 
of cultivated land has been contaminated by HMs, dietary 
exposure has become the most important way for people to 
be exposed to HMs (Xiong et al. 2014). Therefore, the reme-
diation of HM-contaminated soil has gradually attracted 
people’s attention and become a research hotspot in the field 
of soil and environment.

Recently, based on the severely HM-contaminated soil 
situation, several remediation measures have been applied, 
including chemical remediation (immobilization techniques 
and soil washing), bioremediation (phytoremediation and 
microbial assisted), and physical remediation (soil replace-
ment, soil isolation, vitrification, and electrokinetic) (Liu 
et al. 2018; Wang et al. 2020). Nevertheless, these methods 
have deficiencies or limitations, such as complex mecha-
nisms, low efficiency, high costs, poor realization, a short 
duration, and a high risk of secondary pollution (Lahori et al. 
2017; Buaisha et al. 2020). Currently, biochar amendment is 
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considered to be one of the more promising in-situ remedia-
tion techniques. It causes less damage to the environment 
and may offer an available solution to the problem of soil 
pollution (Palansooriya et al. 2020).

Biochar is a type of fine-grained porous carbon-contain-
ing solid material, which is synthesized from waste biomass 
in a closed container through pyrolysis under oxygen-limited 
conditions (Qin et al. 2020). As a new type of environmen-
tally functional material, biochar has multiple uses, includ-
ing soil improvement, soil carbon sequestration, greenhouse 
gas emission reduction, environmental pollution restoration, 
and pathogen resistance (Zhang et al. 2013; Ye et al. 2017). 
Thus, biochar is the best choice for remediating HM-con-
taminated soil, and it can reduce the biological activity and 
toxicity of HMs such as Lead (Pb), Cadmium (Cd), and Cop-
per (Cu) (Ndirangu et al. 2019; Panahi et al. 2020). However, 
compared with the advantages of biochar in the remediation 
of HMs contaminated soils, there are few in-depth studies on 
potential specific health risks. Although some studies have 
also revealed the negative effects of pollutant residues (e.g., 
HMs, polycyclic aromatic hydrocarbons (PAHs), cresols, 
formaldehyde, xylenols and acrolein) in biochar, remedia-
tion via biochar and potential specific health risk of HMs 
contaminated soils are rarely reported (Keiluweit et al. 2012; 
El-Naggar et al. 2019; He et al. 2019). Therefore, this review 
aims to clarify the mechanism, bioavailability, potential spe-
cific health risks and influencing factors of biochar remedia-
tion of HMs contaminated soil, which will provide a basis 
for health management departments to formulate soil health 
prevention strategies.

The objectives of this review were to summarize (1) the 
sources, current status, and health hazards of HMs in soil; 
(2) the effects of feedstock and pyrolysis temperature on the 
characteristics of biochar; (3) the effects of biochar on reme-
diation mechanism and bioavailability of soil HMs; and (4) 
the potential health risks and pathogeny factors in biochar 
preparation and remediation.

Sources, current status, and health hazards 
of HM‑contaminated soil

Sources and current status of HM‑contaminated soil

Originating from natural and anthropogenic sources, HMs 
pose potential risks to ecosystems and human health due to 
their acute and chronic toxicity, environmental persistence, 
and bioaccumulation (Lv et al. 2014; Wu et al. 2018). 
Among them, the primary anthropogenic sources include 
industrial, agricultural, domestic, traffic, and e-waste pol-
lution. Recently, with the rapid continuous development 
of industrialization and urbanization, and human activi-
ties such as industrial and agricultural activities, mining 

and smelting of minerals, urban garbage disposal, sew-
age irrigation, unreasonable application of pesticides 
and fertilizers, and discharge of motor vehicle exhaust, 
a lot of HMs have entered the soil in various forms (e.g., 
gas, water, and solid waste type) (Yang et al. 2018; Cetin 
and Jawed 2022). Li et al. (2015, 2016, 2022) confirmed 
that the sources of HM pollution were industrial activi-
ties, agricultural and natural sources. However, different 
sources of pollution lead to different types of HMs con-
taminated soils. For instance, coal-fired power plants can 
easily cause soil mercury (Hg) pollution (Rai et al. 2019), 
while HM components from electronic waste and highway 
traffic are complex, including Pb, Cd, Chromium (Cr), Iron 
(Fe), Manganese (Mn), Nickel (Ni), Hg, Arsenic (As), Cu, 
Zinc (Zn), Aluminum (Al), and Cobalt (Co) (Zeng et al. 
2016; Abderrahmane et al. 2021). Moreover, the natural 
source is caused by the high content of HMs in the par-
ent material itself, which is also called high geological 
background region and mainly distributed in karst areas 
such as southwestern and central-southern China (Kong 
et al. 2018; Wen et al. 2020). This phenomenon causes the 
source of the HMs in the karst soil to exhibit a superposi-
tion effect, and the pollution is the most serious in these 
areas. Besides, some natural disasters may also cause HM 
pollution in soil. For example, HMs from rich depositional 
zones migrate into the soil due to weathering and decom-
position of minerals (Grantcharova and Fernández-Caliani 
2021). According to all sources of HMs, approximately 
22,000 tons of Cd, 939,000 tons of Cu, 783,000 tons of 
Pb, and 1,350,000 tons of Zn are released annually around 
the world, respectively (Oves et al. 2012).

Soil contaminated by HMs is a major environmental con-
cern. There are approximately 6000, 2500, and 100,000  km2 
of HM-contaminated soil sites in the United States, Europe, 
and China, respectively (Teng et al. 2010). Pb, Cd, Hg, and 
Ni are the most common HM pollutants in contaminated 
soils worldwide (Jaskulak et al. 2020). According to the Bul-
letin of the National Survey of Soil Pollution by the Ministry 
of Environmental Protection of China, the total excess rate 
of soil points in China is 16.1%. Moreover, the over-standard 
rates of Pb, Cd, Cu, and Zn were 0.9%, 2.1%, 7.0%, and 
1.5%, respectively (Cui et al. 2019). Among them, Cd and 
Hg are the main pollutants in vegetables, and their mean 
concentrations are 177.63% and 100.50% of those of the 
natural background values, respectively (Sawut et al. 2018). 
Similar studies have also shown that fruits and vegetables 
in many regions contain high levels of Cd, and Cd-carrying 
rice and maize are the most dangerous foods for human 
health (Zheng et  al. 2020). Because HM-contaminated 
soils are characterized by concealment, hysteresis, long-
term, irreversibility, and complexity, they pose a risk to 
the environment and human well-being (Gong et al. 2018). 
Therefore, there is an urgent need for timely and effective 
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implementation of remediation measures for HM-contami-
nated soils to promote public health and well-being.

Health hazards of HM‑contaminated soil

HM-contaminated soil is a worldwide issue for human health 
and nourishment. Currently, approximately 19% of arable 
agricultural land has been polluted by HMs and metalloids 
in China (Zhao et al. 2015). HMs can cause various types 
of damage to creatures and plants. In general, the HMs in 
agricultural soil easily accumulate in food and vegetables, 
so residents will experience chronic toxicity and disorders 
after long-term exposure to low doses (Xiong et al. 2016), 
which will result in serious public health effects.

HMs has the characteristics of toxicity, bioenrichment, 
concealment, and biodegradation resistant in the natural 
environment (Wu et al. 2016). For instance, Pb, Hg, Cd, 
Cr and As are the “five toxic elements” that pose a great 
threat to human health even at low concentrations (Costa 
et al. 2020). Many toxic HMs continuously increase and 
amplify their toxicity through enrichment in the food chain 
(Walker et al. 2004). In addition, most toxic HMs can invade 
the human body through drinking water, food, skin con-
tact, and other pathways to threaten human health directly 
or indirectly (Cheng et al. 2020; Zhao et al. 2022). When 
the amount of HMs in the body exceeds the safe dosage, 
they can cause serious damage to the human liver, kidneys, 
digestive system, and nervous system, even leading to a 
higher risk of cancer in humans (Chungu et al. 2019). For 
example, Wang et al. (2011) reported that long-term envi-
ronmental exposure to Cd and Pb may increase the risk of 
death from all types of cancer, including stomach, esopha-
geal, and lung cancer. A previous study also indicated that 
the damaging effects of persistent Hg exposure within the 
US population may cause a significant increase over time 

in the proportion of related neurodevelopmental and neuro-
degenerative diseases (Laks 2009). According to the World 
Health Organization (WHO), 494,550 deaths and 9.3 mil-
lion disability-adjusted life years were lost due to long-term 
human exposure to Pb in 2015 (Forsyth et al. 2019). The 
world-famous Itai–Itai Disease and Minamata Disease are 
two of the four major public health hazards in Japan, and 
they are caused by Cd and Hg pollution, respectively (Inaba 
et al. 2005; Eto et al. 2010). Methylmercury (Me–Hg) is an 
organic form of Hg that mainly affects the central nervous 
system (Tchounwou et al. 2003). Its bioaccumulation and 
toxicity are much higher than those of inorganic forms of 
Hg. The specific damage to tissues and organs caused by 
each HM is listed in Table 1.

Characteristics of biochar used for HM remediation

Recently, biochar remediation of HM-contaminated soil has 
become a research hotspot. Biochar can effectively adsorb 
and immobilize HMs, which make it difficult for them to 
migrate and transform. Due to the differences in the actual 
uses of biochar, the different characteristics of biochar are 
controlled to varying degrees by the pyrolysis temperature 
and the types of feedstocks (Das et al. 2021). Pyrolysis is 
an essential process in the preparation of biochar. With the 
development of biochar application, distinctive sorts of 
pyrolysis techniques have been steadily developed, includ-
ing slow pyrolysis, fast pyrolysis, flash pyrolysis, micro-
wave-assisted pyrolysis, vacuum pyrolysis, gasification, 
hydropyrolysis, and intermediate pyrolysis (Tripathi et al. 
2016). Each method differs in terms of the reaction tem-
perature, residence time, and heating rates in the reactor. 
The pyrolysis technique is usually selected according to the 
intended use of the biochar, and the pyrolysis temperature 
is closely associated with the changes in the structure and 

Table 1  Specific damage to tissues and organs caused by each HM

Heavy metals Health effects References

Cu Wilson’s disease and Indian childhood cirrhosis, Chronic copper toxicity, primarily 
affects the liver

Stern et al. (2007)

Pb Lead encephalopathy, lead poisoning (including toxicity of the nervous, hematopoi-
etic, renal, endocrine, and skeletal systems, with the CNS as the primary target 
organ); impairment of cognitive functions (especially in children)

Marjorie et al. (2014)

Cd Kidney damage, skeletal damage, Itai-Itai disease, cardiovascular diseases (e.g., coro-
nary artery disease), emphysema, anemia, chronic pulmonary diseases, osteoporosis 
and fractures, metabolic disorders, teratogenic, carcinogenic, and mutagenic diseases

Jarup(2003), and Solenkova et al. (2014)

As Skin cancer, kidney damage, carcinoma of the bladder, lung cancer, hyperpigmenta-
tion, keratosis and vascular disease

Jarup (2003), and Marjorie et al. (2014)

Cr Carcinogenic, allergic dermatitis or eczema, mutagenic, carcinogenic, and teratogenic Zhang et al. (2020b)
Hg Central nervous system defects, cardiovascular disease, kidney damage, lung damage, 

genotoxic, erethism, carcinogenic and teratogenic. The consequences of mercury 
poisoning include mental retardation, cerebral palsy, seizures and ultimately death

Tchounwou et al. (2003)

Zn Affects the immune system, anemia, emaciation, and anorexia Shen et al. (2019)
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physicochemical properties of the biochar (Tomczyk et al. 
2020). Among them, slow pyrolysis is the most common 
used and economic type of pyrolysis. Fast pyrolysis is the 
most effective method of producing biofuels. In addition, 
gasification is a direct oxidation process, the primary prod-
ucts of which include combustible gases such as hydrogen, 
carbon monoxide, and methane (Kambo and Dutta 2015).

The feedstock used for biochar production has a wide 
range of sources, including various straw crops (corn, wheat, 
barley and rice straw), organic waste, sewage sludge, ani-
mal manure (swine, dairy and cattle manure), plant residues 
(peanut, pecan, switchgrass, coconut coir, hazelnut shells 
and sugarcane bagasse), and brewery byproducts (Mano-
likaki and Diamadopoulos 2020). These feedstocks include 
components such as lignin, cellulose, hemicellulose, and 
inorganic minerals. The quality of the feedstock is one of 
the primary factors that affect the final performance of the 
biochar. For example, compared with biochar produced 
from plants, animal manure biochar has a stronger ability to 
adsorb HMs (Higashikawa et al. 2016). In general, the feed-
stock type and pyrolysis temperature are the main factors 
that determine the physicochemical properties of the bio-
char, which can lead to differences in the composition ratio 
of the elements, richness of the functional groups (FGs), pH, 
specific surface area (SSA), cation exchange capacity (CEC), 
stability, and adsorption properties. In addition, these prop-
erties (primary and secondary properties) also influence the 
capacity of the biochar to remediate HM-contaminated soil 
(Fig. 1).

Remediation of HM‑contaminated soil using 
biochar

Interaction mechanisms of biochar and HMs in soil

The diversity of feedstocks and pyrolysis conditions are the 
fundamental reasons that directly lead to the differences 
in the mechanisms by which biochar and HMs interact. 
In general, adsorption and immobilization are the major 
mechanisms by which biochar removes HMs (Ndirangu 
et al. 2019). Specifically, the mechanism combines with 
and adsorbs the HMs through physical (physisorption and 
electrostatic attraction) and chemical (precipitation, ion 
exchange, the complexation of oxygen-containing FGs with 
π electrons, and reducing forms) reactions (Fig. 2) (Zhang 
et al. 2013; Cheng et al. 2020). Compared with activated 
carbon, the characteristics of biochar are very similar to 
those of natural soil. Hence, the ability of biochar to adsorb 
or immobilize HMs is essentially affected by its physico-
chemical properties, for example, its large SSA, abundant 
FGs, high pH, and large pore size (Higashikawa et al. 2016). 
Moreover, the application of biochar can increase the pH of 
the soil, so that the HMs can be effectively immobilized in 
the soil, which is one of the important mechanisms of bio-
char remediation of HMs (Houben et al. 2013b).

Physical mechanism

Physical mechanism is the basic mechanism of biochar 
remediation of HMs contaminated soil, which includes 
physical adsorption and electrostatic attraction. Since physi-
cal adsorption is controlled by intermolecular forces, it is 
usually reversible. The physical adsorption of Cd by biochar 
is mainly determined by its SSA and pore size distribution 

Fig. 1  Effects of biochar 
properties on the remediation of 
HM-contaminated soil
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(Yang et al. 2019). Electrostatic attraction is largely driven 
by the surface charges of biochar and promotes the sorption 
of HMs on sites with hetero-charges (Zheng et al. 2021). 
Uchimiya et al. (2011) believed that the main mechanism of 
soil Cu immobilization is the electrostatic attraction between 
the heterogeneously charged Cu and biochar. For instance, 
the more negative surface charge of double-low canola straw 
biochar leads to more electrostatic adsorption of Cu(II), and 
the less negative zeta potential on the Cu(II)-adsorbed bio-
char results in the Cu(II) being solely adsorbed via the for-
mation of surface complexes (Tong et al. 2011). Similarly, 
Li et al. (2017) also emphasized that electrostatic interaction 
is an important mechanism for As and Cr(III) removal using 
biochar. However, Xu and Zhao (2013) reported that both 
electrostatic and non-electrostatic mechanisms contribute to 
the enhanced Cd(II), Pb(II), and Cu(II) sorption of biochar, 
but the increase in the percentage of Cd(II) sorption caused 
by biochar was much greater than those of the Cu(II) and 
Pb(II) sorption. Therefore, it is particularly important to 
investigate the remediation mechanism of different biochars 
for different HMs.

Chemical mechanism

Ion exchange, complexation, precipitation, and reducing 
forms play an important part in HM contaminated soils for 
remediation by biochar (Lian and Xing 2017). Cao et al. 
(2011) reported that the passivation of HMs via biochar may 
be dominated by ion exchange and surface complexation. 
Negatively charged sites substituted by cations  (Na+,  K+, 
 Ca2+,  Mg2+, etc.) are considered ion-exchange locations for 
HMs on biochar, and the CEC is considered as the main 
indicator of chemisorption HMs (Gholizadeh and Hu 2021). 
High CEC can improve the ion exchange between biochar 

and HMs cations. However, the CEC gradually decreased 
with the increase in temperature. When the pyrolysis tem-
perature was 250–300 °C, the CEC of biochar showed a 
maximum value (Lee et al. 2010). The surface of biochar 
with oxygen-containing FGs (e.g., –COOH, –COH, –OH, 
etc.) are abundant, which form stable complexes with HM 
ions (Park et al. 2011). For example, Samsuri et al. (2013) 
confirmed that the complexation of As with oxygen-contain-
ing FGs controlled the adsorption of As on biochar. Simi-
larly, biochar binds to Pb through complexation and cation 
exchange (Jiang et al. 2012). Dong et al. (2011) found that 
complexation is the key mechanism of Cr immobilization 
using biochar amendment.

The alkaline substances contained in biochar (e.g.,  CO3
2−, 

 PO4
3−and  OH− etc.) are easily co-precipitated with HM cati-

ons (Pb(II) and Cd(II)) to form insoluble phosphates and 
carbonates (Cheng et al. 2020). In particular, soil pH and 
biomass feedstocks are key factors controlling the concen-
tration of Cd and Pb in a soil solution (Wang et al. 2018b, 
2019b). For instance, the soil pH increased from 5.11 to 7.51 
under the application of chicken manure biochar, and the 
Cd was precipitated as  CdCO3 within this pH range (Park 
et al. 2011). Moreover, biochar derived from dairy manure 
is rich in  PO4

3− ions, which easily react with Pb to produce 
a stable precipitate  [Pb5(PO4)3(OH)] (Cao et al. 2011). Xu 
et al. (2013) also indicated that the precipitation reaction of 
phosphate or carbonate with Pb, Cu, Zn, and Cd is the mech-
anism of biochar adsorption of HMs. In addition, the mecha-
nism of biochar stabilization of mercury is controlled by the 
fact that FGs such as carboxyl, thiol, and sulfoxide groups, 
can react with  Hg+ to form precipitate complexes and enable 
the retention/filtration of particulate Hg in the porous struc-
ture of biochar (Wang et al. 2019a). Due to the variability of 
the valence state in the environmental medium, As is prone 

Fig. 2  Interaction mechanisms 
of biochar particles and HMs 
in soil
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to chemical reduction reaction. Wang et al. (2017) found that 
the application of biochar increases the abundance of Fe-
reducing bacteria, and the As(V) adsorbed on Fe oxides is 
reduced to As(III), thereby enhancing the mobility and toxic-
ity of the As in the soil. Similarly, the FGs on the surfaces 
of biochar can provide π-electrons to promote the reduction 
of As(V) to As(III), which ultimately enhances the mobil-
ity and toxicity of As (Choppala et al. 2016). Furthermore, 
the mobility of As increases with increasing soil pH, and 
the application of alkaline biochar increases the soil pH, 
which has raised some concerns and challenges concerning 
the application of biochar in As-contaminated soil (Beesley 
et al. 2011). However, it has been documented that modified 
biochar can effectively immobilize As and reduce its mobil-
ity. For example, Fe-biochar and Mn-biochar can oxidize 
and adsorb As (Yin et al. 2017). Therefore, the properties 
of different HMs should be fully considered to achieve the 
best biochar restoration effect.

Effect of biochar on bioavailability of HMs in soil

The bioavailability of HMs is defined as the number of HMs 
in the soil able to interact with the organisms that inhabit 
the soil environment. After biochar is applied to the soil, 
it mainly affects the occurrence form of the HMs in the 
soil through direct sorption or indirectly by changing the 
composition and properties of the soil, thereby affecting 
the bioavailability and mobility of the HMs in the soil. The 
bioavailability of HMs is greatly affected by many factors, 
including the soil pH, type of biochar, aging time of the 
biochar, rhizosphere environment, and microbial biomass 
(Katayama et al. 2010). At present, there is a great deal of 
evidence that increasing the soil pH by applying biochar can 
effectively reduce the bioavailability of HMs. For example, 
Huang et al. (2020) found that biochar increased the soil pH 
by 0.31, and reduced the diethylenetriaminepentaacetic acid 
(DTPA) extractable Pb, Cd, Zn, and Cu contents by 23.8%, 
11.9%, 5.27%, and 14.3%, respectively. Biochar mainly 
reduces the bioavailability of soil HMs through its superior 
sorption capacity, immobilization, and rapid physical and 
chemical reactions (Park et al. 2011). However, the effect 
of biochar on the immobilization of HMs is reduced under 
the effects of long-term biological factors, which cause a 
reversible reaction to occur regarding the bioavailability of 
HMs (Wang et al. 2021a). In addition, the bioavailability of 
HMs decreases as the application level of biochar increases. 
For example, Houben et al. (2013a) reported that the incor-
poration of 1% biochar reduced the extractable Cd, Zn, and 
Pb concentrations by 14, 15% and 29%, respectively. The 
reductions reached 44%, 52%, and 76% in the presence of 
5% biochar, and 71%, 87%, and 92% in the presence of 10% 
biochar for Cd, Zn, and Pb, respectively. Similarly, the pres-
ence of biochar can improve the plant root environment and 

enhance the soil water retention capacity to promote plant 
growth and nutrient absorption. The roots are the first metal 
barrier, stabilizing the metals on the cell wall and the extra-
cellular carbohydrates of the rhizosphere, thereby avoiding 
the Cd and Zn toxicity of plants (Cheng et al. 2020).

Potential health risks of and protective 
measures using biochar for remediation 
of HM‑contaminated soil

Although biochar has been applied widely to the soil to 
remove HMs and other contaminants, the strong sorption 
of biochar may have some disadvantages due to no selec-
tivity to pollutants (Ye et al. 2017). For example, biochar 
also easily adsorbs toxic and hazardous chemicals such as 
pesticides and herbicides, and it may cause secondary pol-
lution (Safaei Khorram et al. 2016). Even though the huge 
SSA of biochar makes it an efficient adsorbent of various 
organic and inorganic pollutants (Xie et al. 2015), biochar 
is affected by its environmental media conditions to produce 
chemical, physical and biological changes, which can reduce 
the affinity of biochar for pollutants and release them into 
the environment, thereby increasing the risk of exposure 
of organisms (Godlewska et al. 2021). Zhang et al. (2013) 
found that the interactions between organic and inorganic 
substances at the adsorption sites of biochar cause the avail-
able sites to be blocked and reduce the number of pollutants 
adsorbed. Moreover, biochar can only change the form of 
HMs in the soil when they are amended, but the total amount 
remains unchanged. Therefore, biochar ages over time and 
releases some of the absorbed HMs, which enter the body 
through the food chain, inhalation, and skin contact. Among 
them, digestive exposure through the consumption of veg-
etables, fruits, rice, and other foods is the major pathway 
(> 90%), which will inevitably increase the potential health 
risks (Xiong et al. 2014; Wang et al. 2021a, b).

In general, the potential health risks associated with 
biochar remediation are closely related to its production 
(feedstock and pyrolysis temperature), packaging, storage, 
transportation, distribution, and application (Table 2). At 
the same time, the toxic substances adsorbed by each pro-
cess have a cumulative effect, which ultimately exacerbates 
the harmful effects on the human body. For example, Buss 
and Masek (2016) found that the content of volatile organic 
compounds is high in the process of biochar pyrolysis, and 
its initial release exceeds the occupational exposure limit. 
Moreover, the toxins contained in the feedstock may cause 
biochar to become harmful under pyrolysis conditions (Kei-
luweit et al. 2012). Meanwhile, biochar prepared at high 
temperature is more likely to release adsorbed HMs dur-
ing the aging process, which becomes a source of second-
ary pollution and a high potential environmental risk and 
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ecotoxicity (Zhang et al. 2020a). Therefore, controlling 
carbonization temperature is a necessary means to prevent 
biochar from producing large amounts of toxic substances. 
Ni et al. (2021) indicated that the residue of PAHs in rhizos-
phere soil amended by corn straw-derived biochar at 300 °C 
was the lowest.

In addition, biochar is mainly added to soil in the form 
of powder or particles, which causes the release of biochar 
dust when the soil is weathered and eroded. Meanwhile, bio-
char dust carrying toxic contaminants may migrate from the 
soil to other environmental media, such as groundwater or 
atmosphere, resulting in the expansion of the pollution range 
(Maienza et al. 2017). Ravi et al. (2020) revealed that at low 
wind speeds, the applied biochar particles are more likely to be 
worn by sand particles and transported out of the soil system 
by the wind, which results in higher fine particle emissions, 
deterioration of the air quality, and human health risks. Fur-
thermore, biomass waste contains high levels of toxic pollut-
ants, such as HMs, polycyclic aromatic hydrocarbons, diox-
ins, polychlorinated biphenyls, persistent organic pollutants, 
and pathogens (Ndirangu et al. 2019). These toxic substances 
are enriched during the preparation of biochar and are easily 
inhaled by the body along with the emitted fine biochar parti-
cles. In addition, the low density of biochar is prone to produce 
dust particles. These dust particles absorb toxic substances 
and are easily released into the air, thereby increasing the risk 
of human exposure to these pollutants through inhalation, 
ingestion and skin (He et al. 2019). Gabriel Sigmund et al. 
(2017) have also confirmed that biochar dust particles were 
cytotoxic to mouse fibroblast cells. Therefore, to reduce the 

risk of exposure, workers should take dust prevention meas-
ures to avoid secondary dust pollution during the production 
and use of biochar, such as wearing masks and mixing biochar 
with soil matrix.

Similarly, changes in the rhizosphere environment of plants 
weaken the HM immobilization effect of biochar, resulting 
in the re-released of adsorbed HMs into the soil (Houben 
and Sonnet 2015). Moreover, the application of biochar also 
increased the release of PAHs from plant root exudates (Wang 
et al. 2018a). In addition, during the aging of the biochar, it 
is easy for it to adsorb excessive dissolved organic carbon, 
which blocks the pore structure of the biochar, thereby reduc-
ing the number of adsorption sites and weakening its adsorp-
tion capacity (Luo et al. 2017). For instance, Li et al. (2018) 
found that the long-term application of aging biochar can 
enhance the bioaccumulation of pesticides such as acetochlor 
in corn and lead to increased health risks. Thus, if biochar 
containing highly toxic pollutants is used to remediate HM-
contaminated soil, it may increase the bioaccumulation level 
of toxic substances in the food chain and increase the risk of 
human exposure. Therefore, it is important to carefully evalu-
ate the potential damage to occupational health, environmental 
pollution, and food safety using biochar in the remediation of 
HM-contaminated soil (Fig. 3).

Table 2  Potential human health risks of biochar prepared from different feedstocks

Feedstocks Pyrolysis temperatures Experimental design Outcome measures Results (health risks) Authors/key references

Crops straw 250, 400, and 600 °C In vitro cell experiment Inhalable particle 
 (PM10), biochar dust 
or powder carrying 
HMs

Dust pneumoconiosis, 
cytotoxicity, respira-
tory health effects

Hamatui et al. (2016), 
Sigmund et al. 
(2017), Zama et al. 
(2018), Zhang et al. 
(2019b), Saletnik 
et al. (2021)

Wood (sawdust) 250–700 °C In vitro cell experiment PM2.5 carrying con-
taminants, infiltration 
and aquifer pollution, 
PAHs

Dust pneumoconiosis, 
cytotoxicity, res-
piratory health effects, 
human cancer risk

Safaei Khorram et al. 
(2016), Lyu et al. 
(2016), Sigmund 
et al. (2017), Torres 
et al. (2017), Wang 
et al. (2019c)

Animal manure 200–800 °C Laboratory experiment Bacteria, pathogens Disease risk via the 
fecal–oral route, 
neurotoxic effect

Smith et al. (2009), 
Wang et al. (2021b)

Sewage sludge 600 °C A field experiment Pathogens, parasites, 
endocrine-disrupting 
compounds

Intestinal infectious dis-
eases, teratogenesis

Zhang et al. (2019a), 
Capone et al. (2020), 
Zhang et al. (2021)

Plant residues 250, 400 and 600 °C Laboratory experiment PAHs in biochar Carcinogenic, terato-
genic, and mutagenic 
toxicities

Zhang et al. (2018); 
Wang et al. (2019c)
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Future perspectives

As a cost-effective and environmentally friendly agent, 
biochar has a broad prospect in soil HM remediation. 
However, the properties of biochar vary with the feed-
stocks and pyrolysis temperature, and they influence the 
interaction mechanisms between the biochar and soil HMs; 
In addition, there are several potential health risks in the 
processes of biochar preparation and soil HM remedia-
tion. Different kinds of feedstocks can be attributed to dif-
ferent health damages due to the lack of unified biochar 
production and application standards. For example, bio-
char derived from straw and wood is prone to dust and 
causes respiratory diseases, cytotoxicity, and dust pneu-
moconiosis among biochar dust-exposed workers (Hama-
tui et al. 2016; Sigmund et al. 2017; Torres et al. 2017). 
However, animal manure and sewage sludge-biochar are 
easy to carry bacteria and pathogens, which can adsorb 
toxic substances (e.g., HMs, PAH, and pesticides) and 
become a serious secondary source of pollution threat-
ening human health (Safaei Khorram et al. 2016; Smith 
et al. 2009; Capone et al. 2020). Therefore, some effective 
protection measures and unified standards are necessary to 
make for biochar production and application to reduce the 
risk of biochar dust or particles carrying with pathogens 
exposure. This review summarizes the potential specific 
health risks of biochar production and application, which 
can provide an implicational reference for health manage-
ment departments to make health prevention strategies 
and measures. However, the immobilization mechanism 
of biochar to different sources of HMs and the effect of 
environmental conditions on the release of HMs during 
biochar aging are still unclear. Meanwhile, it is also nec-
essary to scientifically evaluate the use of biochar for the 
remediation of HM-contaminated soils and the extent of 

the potential human health risks after remediation. Thus, 
future research should be strengthened in the following 
aspects.

1. Biochar is inevitably influenced by the chemical, physi-
cal, and biological actions in the soil during the remedia-
tion of HM-contaminated soils. Therefore, it is neces-
sary to understand the interaction mechanisms between 
biochar and HMs during the aging process.

2. The spatial differentiation of soil HMs is significant in 
high geological background areas. HMs from natural 
and anthropogenic sources have different activities and 
availabilities. However, the HM remediation mechanism 
of biochar in such high geological background areas is 
still unclear.

3. The stability of biochar is not only affected by the feed-
stock and pyrolysis temperature, but also by the soil 
environmental conditions. The remediation of HM-
contaminated soil using biochar under special environ-
mental conditions (dry–wet alternation or freeze–thaw 
alternation) requires further study.

4. There are several potential risks in the preparation and 
application of biochar. However, human health risk 
assessment for the remediation of HM-contaminated 
soils using biochar is still lacking.
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