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Abstract: Little is known about the competition between and niche differentiation of water and
nutrients between angiosperm and gymnosperm tree species under prolonged drought stress, espe-
cially in fragile environments. We imposed 21 d drought and competition treatments on Broussonetia
papyrifera and Platycladus orientalis and measured water, N, and P contents, the isotopic composition
of N and C, the activity of P assimilation enzymes, and stomatal conductance under solo planting
and mixed planting to characterize resource diversity and competition in response to treatments.
The N content, δ13C, δ15N, phosphomonoesterase, phosphodiesterase, gs, and foliage water content
were significantly affected by the soil water content. The δ15N content in young leaves showed that
N competition between these two plants could be alleviated through niche differentiation, but the
changes in the PDE: PME ratio for these two plants indicated that they lost the niche differentiation
of the P source under drought stress. Additionally, it was observed that foliage water content, WUE,
N contents, and N and P sources were significantly affected by interspecific competition, and Brous-
sonetia papyrifera benefited from water competition under moderate drought. Our results indicate
that plants have different competition and niche differentiation modes to different nutrients under
drought stress, and the effect of interspecific water competition should be seriously considered in
mixed forests in semiarid areas.

Keywords: angiosperm; gymnosperm; interspecific competition; water stress; stable isotopic

1. Introduction

Global warming may lead to an increase in the duration, intensity, and frequency of
drought worldwide [1]. Long-term or extreme drought will lead to plant death or change
the composition, structure, and function of plant communities. When studying the impact
of environmental change, interspecific relationships and the effects of species competition
have been viewed as dominant factors influencing community structure in ecological re-
search. It is generally believed that niche differentiation can mitigate the negative effects of
drought stress on plants, but Kunstler et al. [2] found that the degree of trait dissimilarity
between species had little influence on reducing competition. Competition determines the
interspecific or intraspecific distribution pattern of net available resources [3]. Dominant,
highly competitive species in the community can alleviate the risk of drought stress by
“plundering resources”, but interspecific competition also makes the position of the lowly
competitive species deteriorate more. Although a broad body of literature exists regarding
the study of plant performance responses to drought combined with competition, less is
known about the underlying variation in physiology [4]. Many studies have reported the
water source niche differentiation and competition of mixed-species stands under water
deficiency, but their results are inconsistent. [5–7]. The fact that resources competition and
niche differentiation occur in mixed-species stands can be obtained from in situ studies,
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but the results are often formed by many ecological factors [8] and species-specific func-
tional traits of plants, so confusing results are easily obtained. To study the interspecific
competition more accurately under drought conditions, artificial simulation experiments
under controllable laboratory conditions and in situ experiments are both indispensable.

Drought not only affects the water characteristics of plants but also affects their nutri-
ent absorption [9,10]. Soil water deficit significantly directly inhibited the absorption of
soil elements with transpiration flow and reduced ion mobility in the soil [11] and limited
the decomposition, mineralization, and nutrient cycling of soil elements [12]. Therefore,
under drought conditions, the water competition of plants in a community will also af-
fect the nutritional status of plants. Among all the nutrient elements required for plant
growth, nitrogen (N) and phosphorus (P) are undoubtedly the most important and widely
considered. The N: P ratio can determine the main characteristics and structure of plant
communities and reflect the relationship between supply and demand and the circulation
of nutrition [13–15], especially in nutrient-limited systems. Inorganic N, which includes
nitrate and ammonium, may nonetheless be generally thought to be the dominant source
of N for plants [16]. The nitrogen source composition of plants has always been an issue
that has received much attention. P is an essential nutrient taken up by plants as the
orthophosphate anion (Pi). Phosphate monoesters are the main phosphorus sources for
plants, and phosphate diesters also can be absorbed by plants in cold or damp environ-
ments [17–19]. Phosphomonoesterase (PME, EC 3.1.3.2) and phosphodiesterase (PDE, EC
3.1.4.1) are rate-limiting enzymes in the assimilation processes of phosphate monoesters
and phosphate diesters, respectively [20]; therefore, the PDE: PME ratio can be used for the
qualitative analysis of plant P source changes [21].

B. papyrifera and P. orientalis are native to eastern Asia [22,23] and frequently coexist in
mixed forests. With the main objective of studying the variations in water, nitrogen, and
phosphorus nutritional status between B. papyrifera and P. orientalis under the combined
effects of drought and competition, we conducted a simulation experiment in an artificial
climate chamber and focused on the following specific questions:

(1) Does the niche differentiation of nitrogen and phosphorus occur between B. papyrifera
and P. orientalis under drought stress?

(2) Does interspecific competition affect the status of the water, nitrogen, and phosphorus
nutrition of B. papyrifera and P. orientalis under drought stress, and who is the winner?

2. Materials and Methods
2.1. Plant Material and Drought Treatment

The angiosperm specie—Broussonetia papyrifera L. Vent. and gymnosperm specie—
Platycladus orientalis L. Franco were selected as the experimental materials. B. papyrifera
belongs to the Moraceae family and is a large, fast-growing, shallow-root-system, deciduous
broad-leaved woody species. P. orientalis from the Cupressaceae family is an evergreen
tree species with a well-developed root system and a long lifespan. Seeds were sown
in wet perlite and germinated at 25 ◦C in a greenhouse. On the 15th day after seed
germination, vigorous seedlings were transplanted into humus soil. The environmental
conditions for seedling growth were as follows: a 12 h photoperiod with a day/night
temperature of 25/16 ◦C and a photosynthetic photon flux density of 400 µmol m−2 s−1

with 60–65% relative humidity. To eliminate individual size differences as much as possible,
an experiment was started when the seedlings grew to 30 cm tall (approximately 2.5 months
old for B. papyrifera and 10 months old for P. orientalis).

To study the effect of soil water competition in these two plant species under drought
stress, plants were planted alone in a 40 cm × 30 cm box with 18 cm of nutrient soil, and
they were also planted with two species together in a 40 cm × 60 cm box with the same
thickness of nutrient soil. Figure 1 shows the planting modes and soil sampling points.
In order to supplement the water consumed via evapotranspiration, and according to
the results of the pre-experiment, 75 mL and 55 mL of water was added to the control
group of B. papyrifera and P. orientalis every day to maintain soil moisture, respectively. The
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prolonged drought treatment group stopped adding water until the end of the experiment
(21 days) to simulate long-term drought without rainfall. Following treatment, soils were
sampled once every ten days at the positions shown in Figure 1 to analyze the water content
of plants; the parameters of leaf gas exchange were measured once every five days; and the
leaves and roots were sampled to determine the water content, carbon, phosphorus, and
nitrogen contents and δ13C, δ15N, and PME and PDE activities. Plant tissue was stored at
−80 ◦C until further analysis was performed.
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soil sampling points.

2.2. Measurement of Leaf Gas Exchange

The latest fully developed leaves in the middle and upper parts of the plant were
selected for the determination of leaf gas exchange. The stomatal conductance (gs) was
measured using a Li-6400 portable photosynthesis measurement system (Li-6400, Li-Cor,
Lincoln, NE, USA) from 10: 00 to 11: 00 am. The PPFD was 400 µmol m−2 s−1, and the
temperature was 25 ◦C. Here, the leaf area of P. orientalis was converted from its leaf dry
weight using the following formula [24]:

Sori = 161 × Mori (1)

where Sori is the leaf area of P. orientalis and Mori is the leaf dry weight of P. orientalis.

2.3. Nitrogen and Phosphorus Contents

Fresh plant samples were dried at 65 ◦C for 3 days and ground for N and P content
testing, and a 0.3 g sample was added to 10 mL of H2SO4. Then, a graphite digestion instru-
ment (SH420, Hanon, Dezhou, China) was used. A total P assay kit was used for sample P
content determination, and the test was carried out with a microplate reader (Synergy H1,
BioTek, Winooski, VT, USA) according to the instructions. A Kjeldahl apparatus (K1100,
Hanon, Dezhou, China) was used for N content determination.

2.4. Carbon (δ13C) and Nitrogen (δ15N) Isotope Compositions

The fresh samples were soaked in 1 mol L−1 HCl for 1 h to remove exogenous inorganic
carbon. Then, the samples were dried at 65 ◦C for 3 days and ground to a fine powder. A
2.0 mg fine-powder sample was wrapped in a tin capsule (5 × 8 mm), and the δ13C and
δ15N values were determined using a continuous-flow isotope ratio mass spectrometer
(MAT 253; Thermo Fisher Scientific, Waltham, MA, USA).

2.5. Root PME and PDE Activities

PME activity was assayed according to the method of Tabatabai and Bremmer [25]
with some modifications. The reaction mixture containing 0.2 g of fresh root sample was
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incubated for 10 min at 37 ◦C with 4 mL of modified universal buffer (MUB), pH 8, and
1 mL of 5 mmol L−1 para-nitrophenyl phosphate (pNPP; MFCD00284586, Sigma–Aldrich,
St Louis, MO, USA). The reaction was stopped by adding 1 mL of 0.5 mol L−1 CaCl2 and
4 mL of 0.5 mol L−1 NaOH and immediately centrifuging the mixture for 2 min at 12,000 g.
The amount of p-nitrophenol released was measured in the supernatant at 412 nm.

PDE activity was assayed according to the method of Eivazi and Tabatabai [26] with
some modifications. The reaction mixture containing 0.2 g of fresh root sample was
incubated for 10 min at 37 ◦C with 4 mL of modified universal buffer (MUB; 0.1 mol L−1)
pH 8.0 and 1 mL of 5 mmol L−1 bis para-nitrophenyl phosphate (bis-pNPP; CAS645-15-8,
Aladdin, Shanghai, China). The reaction was stopped by adding 1 mL of 0.5 mol L−1 CaCl2
and 4 mL of 0.5 M NaOH and immediately centrifuging the mixture for 2 min at 12,000 g.
The amount of p-nitrophenol released was measured in the supernatant at 412 nm.

2.6. Data Analysis

Five replicates were used for soil and leaf water contents measurement, and three
replicates were used for physiology and biochemistry parameter measurement. One-way
ANOVA followed by Duncan’s multiple range test was performed to explore the differences
among the plant parameters under separate treatments. A general linear model was used
to explore the interspecific competition effect, with the planting pattern (sole or mixed)
as a fixed effect and the plant parameters at every sampling time as dependent variables.
If there were significant differences (p < 0.05) between the two groups, we judged that a
competition effect definitely existed. To explore the difference in the water control strategy
between B. papyrifera and P. orientalis, ANOVA and a general linear model were performed
using SPSS 25.0 (SPSS Inc., Chicago, IL, USA). Linear regression analysis was performed to
calculate Pearson’s correlations between soil water content and N content, P content, δ13C,
δ15N, PME, PDE, gs, and foliage water content, and this test was performed using ORIGIN
95 (OriginLab Inc., Northampton, MA, USA).

3. Results
3.1. Soil Water Content

To study the water competition between B. papyrifera and P. orientalis under mixed
planting conditions, the change in soil water content was continuously monitored. As
shown in Figure 2, at 11 d, soil water contents in the rhizosphere of B. papyrifera were not
significantly different between the solo planting and mixed planting conditions within the
3 cm deep soil layer via Duncan’s test (p < 0.05). Within the 9 cm deep soil layer, the water
content was significantly different between the mixed planting inside (MPI) and mixed
planting outside (MPO) conditions, but the difference was not significant compared with the
solo planting (SP) condition and MPO or MPI, and MPO < SP < MPI. The differences among
the three simple points disappeared within the 15 cm deep soil layer. At 21 d, the water
content in the SP condition was significantly lower than in the MPI and MPO conditions,
and there no significant differences between the MPI and MPO conditions within the 3 cm
deep soil layer. Within 9 cm deep soil layers, the water content was significantly different
between the MPI and SP conditions, but the difference was not significant compared with
the MPO and MPI or SP conditions, and SP < MPO < MPI, and there were no significant
differences among the three sample points at the 15 cm depth.

At 11 d, the water contents in the rhizospheres of P. orientalis displayed significant
differences between the solo planting (SO) and mixed planting inside (MOI) conditions,
and MOI < MOO (mixed planting outside) < SO within the 3 cm and 9 cm deep soil
layer, and the water content in the MOI condition was significantly lower than that in the
MOO and SO conditions, and there no significant differences between the MOO and SO
conditions within the 15 cm deep soil layer. At 21 d, the water content in the MOI condition
was significantly lower than that in the MOO and SO conditions, and there no significant
differences between the MOO and SO conditions within the 3 cm and 15 cm deep soil
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layer; the water content in the MOI condition was significantly lower than that in the SO
condition within the 9 cm deep soil layer.
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planting, SO—P. orientalis under mixed planting, MOO—outside of P. orientalis under mixed planting,
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3.2. Leaf Water Contents, δ13C Value, and gs

As shown in Figure 3, the water contents in both plant leaves steadily dropped under
prolonged drought conditions. Using Duncan’s test (p < 0.05), significant differences existed
between the solo planting and mixed planting conditions at 11 d and 16 d for B. papyrifera
and 11 d for P. orientalis. Under prolonged drought conditions, the δ13C values in both
plants increased at 11 d.
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MP—B. papyrifera under mixed planting, SO—P. orientalis under mixed planting, MO—P. orientalis
under mixed planting.

After 11 d, the δ13C value in B. papyrifera continued to increase, but the δ13C value
in P. orientalis was almost maintained at the same level. Significant differences (p < 0.05)
existed between the solo planting and mixed planting conditions and only occurred on
day 16 for B. papyrifera (Figure 4A,B). As shown in Figure 4C,D, under prolonged drought
conditions, the gs in B. papyrifera under the two planting modes both decreased with the
extension of processing time after 6 d. The gs in P. orientalis decreased sharply at 11 d and
then declined slightly.

3.3. N Contents and δ15N Values

The N contents relative to water contents of leaves are represented in Figure 5A,B.
Using linear regression analysis, the nitrogen content and water content in B. papyrifera
leaves showed a significant positive relation under the solo planting and mixed planting
conditions (solo: r = 0.7229, p < 0.01; mixed: r = 0.7702, p < 0.01), On the contrary, there
were significant negative correlations between the nitrogen content and water content in
P. orientalis leaves under the solo planting and mixed planting conditions (solo: r = −0.6459,
p < 0.01; mixed: r = −0.7976, p < 0.01).

Under prolonged drought conditions, the δ15N value in B. papyrifera leaves began to
decrease sharply from the 11th d, and there was a significant difference (p < 0.05) between
the mixed planting and solo planting conditions. The δ15N value in P. orientalis leaves
decreased slightly from the 16th d, and a significant difference between the two planting
modes only existed at 16 d (Figure 5C,D).
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(D). Letters denote significant differences among different planting and treatment modes (p < 0.05).

3.4. P Contents and PDE: PME Ratio

The P contents relative to the water contents in leaves are represented in Figure 6A,B.
There was no correlation between the phosphorus content and water content in B. papyrifera
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leaves under the solo and mixed planting conditions (solo: p = 0.7652; mixed: p = 0.1913),
and the same was true for P. orientalis (solo: p= 0.7652; mixed: p = 0.1913). Under prolonged
drought, the PDE: PME ratio in B. papyrifera roots decreased from 0. 56 on day 1 to 0.24
at 11 d under the solo planting condition, and from 0.54 at 1 d to 0.30 at 11 d under the
mixed planting condition. Then, this ratio increased at 21 d and was 0.33 under the solo
and mixed planting conditions. The PDE: PME ratio in P. orientalis roots decreased from
1.39 at 1d to 0.39 at 11 d under the solo planting condition and from 1.31 at 1 d to 0.43 at
11 d under the mixed planting condition. Then, this ratio increased at 21 d and was 0.78
under the solo and mixed planting conditions. (Figure 6C,D).
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Figure 6. The leaves’ P content relative to water content in B. papyrifera (A) and P. orientalis (B). Curve fits
in the graphs are separate linear regressions. The roots’ PDE: PME ratio in B. papyrifera (C) and P. orientalis
(D). Letters denote significant differences among different planting and treatment modes (p < 0.05).

3.5. Correlation and Difference Analysis

As shown in Table 1, linear regression analysis was performed to calculate Pearson’s
correlations between the soil water content and N content, P content, δ13C, δ15N, PME,
PDE, gs, and foliage water content. For B. papyrifera, there was no correlation between soil
water contents and P contents; there was a significant positive correlation between soil
water contents and N contents; and there was an extremely significant positive correlation
between soil water contents and δ13C, δ15N, PME, PDE, gs, and leaf water contents. For
P. orientalis, there was no correlation between soil water contents and P contents; a signifi-
cant positive correlation between soil water contents and δ15N; an extremely significant
positive correlation between soil water contents and δ13C, PME, PDE, gs, and leaves’ water
contents; and an extremely significant negative correlation between soil water contents and
N contents.
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Table 1. p-value and Pearson’s r between soil water content and N content, P content, δ13C, δ15N,
PME, PDE, gs, and leaf water content.

B. papyrifera P. orientalis
p-Value Pearson’s r p-Value Pearson’s r

δ13C 3.65 × 10−6 *** 0.8648 2.20 × 10−7 *** 0.9064
N content 0.0206 * 0.5405 2.30 × 10−7 *** −0.9059
δ15N 2.28 × 10−4 *** 0.7634 0.0128 * 0.5739
P content 0. 8149 −0.0594 0.6883 −0.1016
PME 6.24 × 10−5 *** 0.8021 2.50 × 10−7 *** 0.9048
PDE 2. 54 × 10−7 *** 0.9046 6.07 × 10−9 *** 0.9411
gs 2.79 × 10−4 *** 0.7567 3.61 × 10−13 *** 0.9828
Leaf water content 1.89 × 10−5 *** 0.8316 4.71 × 10−7 *** 0.8967

Soil water content is the average value of soil layers and sampling points. p-value and Pearson’s r were calculated
with linear regression analysis (* p < 0.05 and *** p < 0.001).

As shown in Table 2, a general linear model was used to analyse the difference between
solo planting and mixed planting. For B. Papyrifera, a significant difference between the two
planting methods in leaf water contents emerged at 11 d, and in δ15N, δ13C, N content, PDE
and leaf water content emerged at 16 d. For P. orientalis, a significant difference between
the two planting methods in PME and leaf water contents emerged at 11 d, in δ15N, δ13C
and PDE at 16 d.

Table 2. p-values in solo planting and mixed planting conditions in B. papyrifera and P. orientalis.

p-Value

B. papyrifera P. orientalis
1 d 6 d 11 d 16 d 21 d 1 d 6 d 11 d 16 d 21 d

δ13C 0.689 0.964 0.440 0.012 0.655 0.689 0.964 0.440 0.012 0.655
N content 0.870 0.959 0.136 0.035 0.157 0.911 0.935 0.874 0.861 0.822
δ15N 0.675 0.865 0.059 0.006 0.072 0.676 0.619 0.878 0.001 0.800
P content 0.845 0.799 0.761 0.779 0.791 0.490 0.833 0.588 0.299 0.977
PME 0.426 0.091 0.264 0.568 0.587 0.542 0.611 0.036 0.710 0.617
PDE 0.815 0.817 0.058 0.013 0.334 0.815 0.817 0.058 0.013 0.334
gs 0.938 0.567 0.340 0.659 0.658 0.205 0.286 0.980 0.954 0.758
Leaf water content 0.873 0.930 0.010 0.040 0.073 0.585 0.951 0.010 0.212 0.695

p-values were calculated with general linear model.

4. Discussion
4.1. Plants’ Water Status and Water Source Competition

How much water plants can get from soil is not only related to the distribution and
absorption capacity of their roots but is also affected by the water competitiveness of
neighboring plants [27]. In this study, the variation in water distribution in rhizosphere
soil between the two planting modes was caused by water competition under mixed
planting conditions, and B. papyrifera benefited from water competition, as shown by
Duncan’s test. The δ13C was positively related to WUE under drought stress [28]. The
competition effect emerged in B. papyrifera at 16 d, and plants under the mixed planting
condition had lower WUEs (Figure 4A), which would imply that they were in a better
water available environment. There was no difference in the δ13C value of P. orientalis
between the two planting modes (Figure 4B), and the slow growth rate and rigid stomatal
regulation strategy of P. orientalis may have weakened the effect of interspecific competition.
Conifers and broad-leaved plants have different strategies in water and nutrition regulation
in arid environments because of their significant differences in morphological structures
and physiological mechanisms [29,30]. Stomatal behavior can respond to environmental
changes and interspecific competition [31]. Under prolonged drought conditions, the gs
values in P. orientalis showed that this plant took more rigid stomatal regulation and tried
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to reduce water loss, but B. papyrifera still maintained stomatal conductance before extreme
drought occurred (Figure 4C,D). Previous studies observed that seedlings employed a
riskier strategy when planted with a high-water-use competitor, and seedlings employed a
more conservative strategy when planted with a low-water-use competitor [31]. However,
in the current study, there were no significant differences in plants’ stomatal behavior
between the solo planting and mixed planting conditions. This competitive advantage
is related to the two species exhibiting significant differences in their root morphology.
B. papyrifera has more root branches and fine roots, which is beneficial for enhancing the
absorption of soil water; the main root of the P. orientalis root is wider and has fewer
branches, which is better for the expansion of roots to further ranges and deeper soil
layers. Additionally, there is a difference in the xylem structure between angiosperms and
gymnosperms [32]. Due to the low hydraulic conductivity of tracheids relative to vessels,
the absorption and transportation of water are limited in gymnosperms [33].

4.2. Plants N Status and N Sources Change

B. papyrifera and P. orientalis displayed opposite change patterns in the relationship
between leaf water and nitrogen content (Figure 5A,B). Under solo planting and mixed
planting conditions, there was a significant positive correlation between the leaf nitro-
gen content and water content in B. papyrifera, which was similar to the results of many
studies [34–36]; however, there was a significant negative correlation between the leaf
nitrogen content and water content of P. orientalis. It is speculated that the young leaves of
P. orientalis obtain N from old leaves to synthesize abundant N-containing osmoregulation
substances to maintain osmotic pressure during stomatal closure under water deficiency
conditions. Under prolonged drought conditions, the change in δ15N value in B. papyrifera
leaves was greater than that in P. orientalis leaves (Figure 5C,D), which also implied that
B. papyrifera obtain more N from the environment and have more flexible N sources, while
N in P. orientalis was transported from old tissues. In addition, because NO3

− must be re-
duced to NH4

+ before it can be used for plant metabolism, the assimilation event of nitrate
is more complex, as mentioned by Evans et al. [37]; if plants use NO3

- as a nitrogen source,
the leaves have relatively high δ15N. From this view, B. papyrifera used more ammonium
as a nitrogen source under drought stress in this study. The differences in the N source
composition and the N pool in young leaves may show that the N competition pressure
between these two plants could be alleviated under drought stress.

4.3. Plants P Status and P Sources Change

The availability of N and P is affected by drought in soil through different mechanisms.
There was no correlation between the leaf P contents and water contents in B. papyrifera
and P. orientalis (Figure 6A,B), which suggests that there was enough P stored in the plants
to supply the growth of young leaves. P stored in roots could be used by plants for growth
at times when availability is low [38]. The P content in young P. orientalis leaves was much
higher than that in B. papyrifera, which should be because the growth time of P. orientalis of
the same size is much longer than that of B. papyrifera, so more P accumulates in the P body.
A large number of nutrient reserves obtained before drought events would make P. orientalis
acquire a stronger recovery ability after rainfall [39–41]. Under the control treatment, the
PME activity in B. papyrifera was higher than that in P. orientalis, but the PDE activity in
P. orientalis was higher than that in B. papyrifera (Figure 6C,D), which should be related
to the fact that angiosperms are more suitable for mesophytic habits and gymnosperms
are more suitable for hydrophytic habits [42] and enable niche differentiation between
these two plants in P resource utilization. Under drought stress, the PDE: PME ratio
in both plants decreased sharply under prolonged drought, showing that the activity of
PDE is heavily dependent on soil moisture; this may be because phosphate diesters are
usually degraded rapidly in dry environments and the enzyme activity is driven by relative
resource availability [43,44]. The PDE: PME ratio in these two plants underwent almost
the same changes under prolonged drought, which indicated that they might have lost
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the niche differentiation of the P source and that P competition was exacerbated under
drought stress.

4.4. Interspecific Competition Analysis

The competition mode of trees is driven by environmental factors and controlled by
the dominant limiting factor [45]. In this study, except for the P content in leaves, the
physiological and biochemical parameters of plants were significantly affected by soil water
contents under prolonged drought conditions (Table 1). This shows that water competition
was a decisive factor in interspecific nutritional competition between B. papyrifera and P. ori-
entalis. Meanwhile, a general linear model was used to analyze the interspecific competition
effect (the difference between the solo planting and mixed planting conditions) (Table 2).
The results showed that water characteristics, N and P characteristics, and resources were
significantly affected by interspecific competition under moderate drought conditions, but
the interspecific competition effect did not exist under heavy drought conditions. In the
current study, B. papyrifera benefited from interspecific competition. Previous studies also
indicated that broad-leaved species competition dominates interspecific interactions in
growth and water and nutrition utilization in mixed stands [46,47]. However, Liu et al.
found that the level of N uptake in Pinus massoniana and Pinus elliottii were inhibited by
the presence of Michelia maudiae and Schima superba, respectively, but almost no inhibitions
occurred when M. maudiae was grown together with P. elliottii or S. superba was grown
together with P. massoniana [48]. This indicates that angiosperms do not always have the
advantage when competing with gymnosperms.

5. Conclusions

The present study indicated that B. papyrifera benefits from water and nutrient compe-
tition under moderate drought, and the competition mode of B. papyrifera and P. orientalis is
controlled by the dominant limiting factor—soil water content. The N competition between
these two plants could be alleviated through niche differentiation, but they lose the niche
differentiation of the P source under drought stress conditions. This study illustrated that
when coexisting with B. papyrifera in mixed stands, the effect of drought stress on P. orientalis
will be amplified through interspecific competition; this means that the effect of interspecific
water competition on mixed forests should be seriously considered in semiarid areas.
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