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• C. violifolia accumulated mercury (Hg) in
roots and aboveground parts up to 6000
μg/g.

• Hg crossed the root casparian.
• Then was transported to aboveground
parts via vascular cylinder.

• C. violifolia root cells were tolerant to Hg.
• C. violifolia is a promising Hg
hyperaccumulator.
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Cardamine violifolia belongs to the Brassicaceae family and is a selenium (Se) hyperaccumulator found in Enshi, China.
In this study, C. violifolia was found to accumulate mercury (Hg) in its roots and aboveground parts at concentrations
up to 6000 μg/g. In the seedling and mature stages, the bioaccumulation factors (BAFS) of Hg reached 1.8–223, while
the translocation factor (TF) for Hg reached 1.5. We observed a significant positive correlation between THg concen-
trations in plant tissues and those in the soil (r2 = 0.71–0.84). Synchrotron radiation X-ray fluorescence with focused
X-ray (μ-SRXRF) showed that Hg was translocated from the roots to shoots through the vascular bundle and was
transported through the leaf veins in leaves. Transmission electron microscopy showed that root cells were more tol-
erant to Hg than leaf cells. These findings provide insights into the mechanisms of Hg hyperaccumulation in
C. violifolia. Overall, we demonstrated that C. violifolia is a promising Hg hyperaccumulator that may be used for
phytoremediating Hg-contaminated farmlands.
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1. Introduction

Mercury (Hg) is one of themost toxic metals and is transported long dis-
tances in the air (Hsu-Kim et al., 2013; Qiu et al., 2005; Selin and Noelle,
2010). The occurrence of heavily Hg-polluted soils is mainly associated
with natural deposition and anthropogenic dispersion from Hg mining
areas (Li et al., 2015a, b; Zhang et al., 2010). Mercury is bioaccumulated
and biomagnified in ecosystems. In particular, Hg contamination of farm-
lands poses a major threat to the safety of agricultural products and
human health (Antoniadis et al., 2016; Lavoie et al., 2013; Li et al.,
2018a, b). Therefore, minimizingHg contamination in soil is of great signif-
icance for ensuring the quality and safety of crops, and maintaining ecolog-
ical safety.

Conventional remediation technologies for Hg-contaminated soils can
be physical, chemical, and biological (Asfa et al., 2020; Xu et al., 2015).
Phytoremediation is an effective, low-cost, and environmentally friendly
bioremediation approach for transferring or stabilizing all toxic metals in
polluted soils (Cherian and Oliveira, 2005; Hussein et al., 2007; Liu et al.,
2020; Wang et al., 2017; Yaashikaa et al., 2022), and it has been carried
out on large scales and has been proven effective in many countries
(Bonanno et al., 2017; Chandra et al., 2017; Cox et al., 1996; Eid and
Shaltout, 2016; Zhang et al., 2015;Wang et al., 2019). Certain plants, called
hyperaccumulators, are good candidates for phytoremediation, particularly
because of their tolerance, absorption, accumulation, and translocation of
metals (Ent et al., 2012; Salt et al., 1995; Yadav et al., 2021). In the past
20 years, more than 200 plant species have been studied and their ability
to accumulate and transfer Hg has been tested. Although a few plant
species, such as E. ciliaris, E. polymnioides, A. ageratoides, B. ampestris,
D. stramonium, and T. subterraneum, are defined as “potential Hg
hyperaccumulators,” no Hg hyperaccumulators have been reported thus
far (Chamba et al., 2017; Liu et al., 2020; Lomonte et al., 2010; Mbanga
et al., 2019; Qian et al., 2018). Therefore, finding Hg hyperaccumulators
is highly desirable.

Cardamine violifolia is an annual or perennial plant that belongs to the
Brassicaceae family, and it is found in a typical seleniferous area of Enshi,
Hubei, China. It grows rapidly, has a long growth cycle, and has large
plant biomass (up to 400 g strain−1) (Rao et al., 2021; Zhu et al., 2016).
The roots, shoots and leaves of C. violifolia contain an average of 2985,
3329 and 2491 mg/kg Se DW, respectively, so it is considered a Se
hyperaccumulator (Cui et al., 2018). A previous study found that
C. violifoliawas also a hyperaccumulator of cadmium (Cd) and can be effec-
tively applied for the remediation of Cd-polluted soils (Liu et al., 2018). Hg
and Cd are in the same group in the periodic table. Therefore, we hypothe-
sized that C. violifolia could accumulate Hg from contaminated soils.

Plants have many complex mechanisms for minimizing damage caused
bymetal exposure (Li et al., 2018a, b); however, theirmechanisms of detox-
ification are poorly understood. In particular, studies on Hg stress response
mechanisms have not been performed in C. violifolia. The toxic effects of
metals on plants are determined by a series of parameters, including
metal absorption sites, distribution sites, and competition for metal binding
sites in plant cells (Israr and Sahi, 2006; Zhao et al., 2008). Therefore, it is
important to know where Hg is localized, and how Hg is transported in
plant tissues. Synchrotron radiation-based X-ray fluorescence (SRXRF) is a
useful tool for studying the spatial distribution of elements of interest
(Kopittke et al., 2018; Li et al., 2010; Zhao et al., 2013). Furthermore, cell
ultrastructure changes form the cytological basis for a series of physiologi-
cal changes in plants (Kang et al., 2015; vanDoorn and Papini, 2013). Thus,
investigations of the translocation and transformation of Hg in C. violifolia
and identification of ultrastructural changes in response to Hg stress are
critical steps toward revealing the mechanisms of Hg tolerance in plants.

In this study, the concentration of Hg in the roots and aboveground
parts ofC. violifoliawasmeasured after the plantswere cultured in soils con-
taining different levels of Hg. The spatial distribution of Hg in the roots,
shoots and leaves of C. violifolia was studied using synchrotron radiation-
based μ-XRF. Moreover, ultrastructural changes in the roots, shoots and
leaves were studied by transmission electron microscopy (TEM). The
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information from these techniques is fundamental for gaining a better
understanding of the mechanisms of Hg accumulation in C. violifolia. To
the best of our knowledge, this is the first report to show that C. violifolia
is a promising Hg hyperaccumulator. Further studies are warranted for
applying C. violifolia as a hyperaccumulator plant to real Hg-contaminated
soils.

2. Materials and methods

2.1. Cultivation experiment

C. violifolia seeds were disinfected with 1 % (V/V) sodium hypochlorite
(NaClO) solution for 15 min and then washed thoroughly with deionized
water (18.2 MΩ·cm). The seeds were germinated in moist perlite at 28 °C
in the dark. The plant incubator relative humidity was controlled in the
range of 70 % to 80 % (Cui et al., 2014). After germination, the one-
month-old seedlings were transferred to soils containing 0.1, 0.5, 1, 5, 10,
50, 100, and 500 μg/g HgCl2 (Sigma, USA). The greenhouse temperature
was controlled at 25 ± 3 °C for 16 h under light and 18 ± 3 °C for 8 h in
the dark. The plants were watered every 4 days to maintain soil moisture.
Sixty-day-old seedlings and mature plants were selected for Hg concentra-
tion analysis.

The harvested C. violifolia were washed thoroughly with deionized
water to remove soil and dust and were completely dried at room tempera-
ture. Triplicate roots, shoots, and leaves were separated by plastic scissors
and placed into separate plastic bags. The dried samples were ground into
powders using a plant grinder prior to further analysis (Chang et al.,
2020; Cui et al., 2014).

2.2. Mercury concentration analysis

For THg analysis, approximately 50 mg of the roots and aboveground
parts of each group were weighed and placed a digestion tank. The samples
were digested with 5 mL nitric acid (BV-III) and 0.5 mL hydrogen peroxide
(MOS level) and kept overnight at room temperature after complete
mixing. The predigested samples were heated on an electric heating plate
for 5 h (160 °C). Then, the samples were heated at 90 °C until the transpar-
ent solution reached a volume of approximately 1 mL. All the samples were
cooled to room temperature and then diluted to 4 mL with 2 % nitric acid
(containing 0.1 % β-mercaptoethanol) for analysis (Li et al., 2006; Li
et al., 2017; Zhao et al., 2014a, b). THg concentrations were measured by
inductively coupled plasma–mass spectrometry (ICP–MS, X7, Thermo Ele-
mental, USA) following a previously reported method (Li et al., 2015a, b).
The working conditions for ICP–MS were optimized with a 5 % nitric acid
solution containing 1 μg/L Be, Co, In and U. A standard curve was prepared
for Hg (0, 0.5, 1, 2, 5, 10, and 50 μg/L) with Hg standard stock solutions
(GBW 08617, National Research Centre for CRMs, China). The limit of de-
tection for THg by ICP–MS was 0.1 μg/L.

2.3. Quality control

Reference materials and reagent blanks were used for analytical quality
control. The standard reference material GBW10020 (citrus leaf) and
sample replicates were included during the THg analysis. The average THg
concentration of the standard reference materials was 0.16 ± 0.01 μg/g
(n = 6), which was comparable to the certified value of 0.15 ± 0.02 μg/
g. Duplicate analyses of plant tissue samples were conducted every ten
samples, and the relative standard deviations of all duplicate samples were
within 5 % (n = 20).

2.4. Bioconcentration factors and translocation coefficient of Hg in C. violifolia
tissues

Bioconcentration factors (BAFs) and translocation factors (TF) for Hg by
C. violifolia were used in this study to reflect the absorption and transport
capabilities of Hg. BAFs were defined as the ratio of Hg concentration in



Fig. 1. THg concentrations of aboveground tissues and roots in C. violifolia at
seedling stage and mature stage (μg/g).
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the roots or aboveground parts to the Hg concentration in the soil using the
following equation:

BAFtissue ¼ Ctissue

Csoil
(1)

TF was defined as the ratio of Hg concentration in the aboveground
parts to the Hg concentration in the roots using the following equation:

TF ¼ Caboveground part

Croot
(2)

2.5. Analysis of the spatial distribution of Hg by μ-XRF

The roots and shoots were first immersed in an embedding agent
(Sakura Tissue-Tek OCT), frozen at−80 °C and then cut into 40 μm-thick
slices with a freezing microtome (CM1850, Germany). The sections were
fixed onto Mylar films (polycarbonate). The leaves were clamped between
two pieces of cellophanes to keep them flat. The leaf samples were also
fixed onto Mylar films. All samples were stored at −20 °C until analysis
with μ-SRXRF (Li et al., 2020a, b; Zhao et al., 2013).

The spatial distribution of Hg in the different C. violifolia tissues was
measured at the 4W1B beamline in the Beijing SynchrotronRadiation Facil-
ity (BSRF, China). The μ-SRXRF analysis employed polychromatic excita-
tion with an energy of 10–18 keV. The storage ring ran at 2.5 GeV and at
a current intensity of 200–300 mA. The incident X-ray was focused to 50
μm × 50 μm (Li et al., 2020a, b). The plant samples were mounted on an
XYZ translation stage, and the sample platform was moved with a 2D
stepping motor along the X/Z directions at 50 μm each step. The count
time was 10 s per pixel. The elemental fluorescence intensities and the
Compton scattering intensities were normalized to the collection time and
changes in I0 (Lin et al., 2021).

2.6. Transmission electron microscopy

After seed germination in a plant incubator, one-month-old seedlings
that had similar heights (8.5± 0.3 cm) and had four fully expanded leaves
were exposed to Hg by immersing the roots in soils with 0 (control) and
5 μg/g HgCl2 (Sigma, USA). After 3 days of Hg exposure, the roots, shoots
and leaves were excised, pooled, and rinsed with deionized water. Sample
sections from the tips of the longest root (1–3mm in length, 2–3mmbehind
the apex) and the middle portion of the last developed leaf (1 mm2) were
excised and fixed in cold 4 % (v/v) glutaraldehyde in a 0.1 M potassium
−phosphate buffer (PBS, pH 7.2), were vacuum-infiltrated until the mate-
rial sank, and were left overnight at 4 °C. The samples were then
dehydrated in a graded alcohol series and embedded in resin (Spurr,
1969). Sample sections of 70 nm thickness were generated using an
LKB11800 Pyramitome (Sweden), and then examined using a transmission
electronmicroscope (model 7650; Hitachi, Tokyo, Japan) at 80 kV. At least
five sections from each treatment were examined (Zheng et al., 2018).

3. Results and discussion

3.1. Mercury accumulation in C. violifolia at the seedling stage and mature stage

The highest total Hg concentration in the soil was reported to be 790 μg/g
in the Wanshan Hg mining area of Guizhou Province (Yin et al., 2016).
Therefore, a range of 0.1–500 μg/g Hg was used in the soil in this study.
THg concentrations of the aboveground tissues and roots of C. violifolia at
the seedling stage and mature stage are shown in Fig. 1. At the seedling
stage, the accumulated Hg concentration in the roots reached 6499 μg/g
when C. violifolia was exposed to a Hg concentration of 500 μg/g in the
soil. Meanwhile, the aboveground tissues accumulated 1115 μg/g Hg. At
the mature stage, Hg concentrations also increased in the roots and above-
ground tissues after exposure, and Hg concentrations increased in the soils.
When C. violifolia was exposed to Hg concentrations of 500 μg/g in the soil,
3

the Hg concentrations in the roots and aboveground tissues were 2266 μg/
g and 557 μg/g, respectively.

In general, Hg is very toxic to plants. Exposure to excessive levels of Hg
disrupts the plant oxidative stress system and photosynthesis system and
inhibits plant growth (Azevedo et al., 2018; Calgaroto et al., 2010). How-
ever, the biomass of C. violifolia did not decrease when they grew in the
Hg-contaminated soils. Moreover, there were no visual toxicity symptoms,
such as wilting and water loss, observed during the entire C. violifolia grow-
ing stage, even when the plants were exposed to 500 μg/g Hg.

In this study, at both the seedling andmature stages, the THg concentra-
tions in the roots and aboveground tissues showed significant positive lin-
ear correlations with the soil, despite the wide range (0.1–500 μg/g)
(Fig. 5), indicating that Hg readily translocated among plant tissues and
that Hg uptake by C. violifolia was not limited by the Hg exposure concen-
trations. This indicated that C. violifolia had the ability to accumulate and
translocate Hg from the contaminated soils.

In this study, Hg accumulation in the C. violifolia roots and aboveground
parts was higher than that in other plants used for phytoremediation. For
example, Rumex induratus andMarrubium vulgarewere reported to accumu-
late Hg from soils, with phytoextraction yields of 12.9 and 27.6 g ha−1, re-
spectively (Moreno-Jiménez et al., 2006). Although thiosulfate promoted
an increase in the concentration of Hg in three plants, Brassica juncea var.
LDZY, Brassica juncea var. ASKYC and Brassica napus var. ZYYC, the Hg ac-
cumulated in the plants was lower than that in C. violifolia, indicating that
C. violifolia is a promising Hg hyperaccumulator for phytoremediation
(Wang et al., 2014; Wang et al., 2012). Moreover, in the seedling stage
and mature stage, the roots accumulated the most Hg. This finding is in
agreement with results from other studies, and it probably occurs due to
the high affinity of the roots for Hg, which trap most of the bioavailable
Hg (Marrugo-Negrete et al., 2015; Molina et al., 2006). This is generally be-
cause the roots are directly exposed to the Hg present in the soils, and Hg is
mostly accumulated in the cell walls to avoid toxic effects to the aerial parts
(Marrugo-Negrete et al., 2016).

3.2. The BAF and TF of Hg in C. violifolia in the seedling stage and mature stage

BAF is an important index for measuring the ability of plants to accumu-
late metals, while TF indicates the relative ease with which Hg is
translocated from the roots to aboveground parts (Chang et al., 2020). To
evaluate the ability of C. violifolia to translocate Hg from the roots to the
aboveground parts of the plant, the TF and BAF were calculated, and
these are shown in Table 1. Briefly, the BAF of Hg in C. violifolia roots at
the seedling stage was significantly higher than that in the mature stage.
At the seedling stage, the root BAF, aboveground part BAF and TF were



Table 1
Hg BAFs and TF of C. violifolia (n = 3) at seedling stage and mature stage in Hg exposed soils.

Hg concentrations in soil (μg/g) Seedling stage Mature stage

Root BAFs Aboveground part BAFs TF (Coverground/Croot) Root BAFs Aboveground part BAFs TF (Coverground/Croot)

0.1 223 ± 7.7 59 ± 8.6 0.3 ± 0.0 128 ± 0.7 196 ± 0.8 1.5 ± 0.0
0.5 44 ± 0.7 28 ± 2.7 0.6 ± 0.1 18 ± 0.1 21 ± 0.2 1.2 ± 0.0
1 29 ± 1.3 19 ± 1.1 0.7 ± 0.0 24 ± 0.1 8.4 ± 0.2 0.4 ± 0.0
5 6.0 ± 0.1 5.6 ± 0.1 1.0 ± 0.0 3.3 ± 0.0 2.7 ± 0.1 0.8 ± 0.0
10 5.5 ± 0.1 3.0 ± 0.0 0.5 ± 0.0 3.0 ± 0.0 2.3 ± 0.0 0.8 ± 0.0
50 10 ± 0.2 1.8 ± 0.0 0.2 ± 0.0 7.0 ± 0.1 1.8 ± 0.0 0.3 ± 0.0
100 12 ± 0.7 3.2 ± 0.0 0.3 ± 0.0 11 ± 1.3 3.0 ± 0.0 0.3 ± 0.0
500 14 ± 1.9 1.8 ± 0.2 0.1 ± 0.0 4.5 ± 1.0 2.2 ± 0.0 0.5 ± 0.0
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5.5–223, 1.8–59 and 0.1–1.0, respectively. At the mature stage, the root
BAF, aboveground part BAF and TFwere 3.0–128, 1.8–196 and 0.3–1.5, re-
spectively. When the Hg concentration in the soil was 5 μg/g, the TF was
highest in all the groups.

In general, metal hyperaccumulators are considered for phytoextraction
when both the BAF and TF are greater than one (TF and BAF > 1) (Yoon
et al., 2006; Zhao et al., 2014a, b). In this study, the root BAF and above-
ground tissue BAF were both >1. The BAF value reached the reference
value for Hg hyperaccumulators (Hannah et al., 2017; Liu et al., 2007).
Moreover, studies have been reported that hyperaccumulating plants
have intrinsic adaptive regulatory mechanisms to hyperaccumulate metals
Fig. 2. The distribution of Hg in root, shoot and leaf of C. violifoliameasured by μ-XRF. (
image); (b) the cross section of the shoot from C. violifolia under Hg exposure (b1, Hg X

4

in their aboveground tissues. In this study, the BAF of Hg in the above-
ground tissues was >1.8 in the seedling stage and mature stage, indicating
that C. violifolia could absorb and enrich Hg from soils and could accumu-
late it in the aboveground parts.

3.3. Distribution and translocation of Hg in roots, shoots and leaves

The normalized X-ray fluorescence intensities were scaled from blue
(minimum) to red (maximum). These images visually demonstrated the dis-
tribution and accumulation of Hg in the roots, shoots and leaves of
C. violifolia, as shown in Fig. 2.
a) The cross section of the root tip from C. violifolia under Hg exposure (a1, Hg XRF
RF image); (c) the leaf from Hg exposed C. violifolia (c1, Hg XRF image).
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Generally, it is difficult for metals to reach the xylem vessels of the roots
because the metals have to cross the endodermis and the suberinized
Casparian strips (Greger, 1999; Skinner et al., 2007). It has also been re-
ported that the Casparian strip is a root barrier that excludes Hg, and thus,
little Hg can be observed in the pericycle (Patty et al., 2009; White, 2012).
Most of the accumulated Hg in plants remains in the roots, and only a
small proportion is translocated to the shoots. Approximately 80 % of the
Hg trapped in the roots is bound to the cell wall. However, metal
hyperaccumulators can undergo active processes of uptake, accumulation,
and translocation from the roots to aboveground tissues (Ahammad et al.,
2018; Natasha et al., 2020; Greger, 1999; Wang and Greger, 2004). This
was the case in this study, as shown in Fig. 2a1 and b1. Hgwasmainly distrib-
uted in the epidermis and pericycle of the root, and a large amount was also
found in the central cylinder of the shoot. The presence of Hg in the pericycle
suggested that Hg was able to cross the Casparian strip and be transported
from the roots to the aboveground parts through the vascular cylinder. Hg
has been suggested to bind with phytochelatins (PCs) to form Hg-PC com-
plexes that can be transferred to vacuoles, reducing Hg stress and acting as
transporters in plants (Xu et al., 2017). PCs are chelators and are significant
for metal detoxification in plants (Natasha et al., 2020; Park et al., 2012).

Moreover, Hgwas dispersed in the leaves and was mainly located in the
leaf vein due to transport from the roots and shoots, as shown in Fig. 2c1.
According to μ-XRF analysis, C. violifolia has the ability to absorb, accumu-
late and translocate Hg.

3.4. Ultrastructural changes in roots and leaves exposed to Hg

The processes of metal accumulation and transfer are complex in plant
cells. In this study, TEM was used to analyze the impacts of Hg stress on the
ultrastructure of plant cell organelles. Since the TF was the highest in all the
Fig. 3. Transmission electron micrographs of the root cells of C. violifolia seedlings e
respectively. A, B, C and D show single cell and mitochondria of control and Hg treatm
Labels: CW, cell wall; M, mitochondria; MM, mitochondria membrane.
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groups when the seedlings were exposed to 5 μg/g Hg, Hg stress at 5 μg/g
was chosen for TEM analysis. TEM revealed that root cells of C. violifolia seed-
lings in the control group had smooth and continuous cell walls and well-
developed mitochondria (Fig. 3a and c). After 3 days of Hg exposure, the
cell walls in the roots were still intact (Fig. 3b). Generally, the cell wall is
thefirst barrier against the entry ofmetals and has a strong ability to accumu-
late metal cations. Metal effects are often observed at the cell wall (Chandra
et al., 2017; Feng et al., 2019; Feng et al., 2021; Liu et al., 2019; Wang
et al., 2019). Additionally, Hg has a high affinity for the cysteine-rich domains
of the major cell wall extension protein that resists Hg stress (Carrasco et al.,
2011). Fig. 3d shows that the mitochondrial cristae and membrane were in-
tact. A few large vesicles appeared in the mitochondria. Mitochondria are
known to be much more resistant to metals than chloroplasts, and they re-
main undisturbed even at high metal concentrations (Heumann, 1987;
Islam et al., 2007; Kleiner, 1974). This study showed that the mitochondrial
ultrastructure was not affected and remained intact in Hg-exposed roots, indi-
cating that the root cells of C. violifolia were tolerant to Hg (Fig. 3b and d).

TEM revealed that leaf mesophyll cells in the control group had well-
developed cell walls, chloroplasts, chloroplast membranes, nuclear mem-
branes, and thylakoid lamella in the leaves (Fig. 4a and c). However, consid-
erably increased granum stacks were observed in the organelles of the leaf
mesophyll cells when C. violifoliawas exposed to Hg. In addition, the plasma
membrane was detached from the cell wall. Plasmolysis was also found to be
greater than in the control and irregularly distributed in the chloroplast
(Fig. 4b and d), suggesting that leaf mesophyll cells were sensitive to Hg.
Studies have reported metal granules in the cell wall and in vacuoles. Some
studies have considered whether the plants have mechanisms to regulate
their normal growth, and this is further discussed below (Wang et al., 2019).

In general, C. violifolia root cells are more tolerant to Hg than leaf cells,
which may explain the higher concentration of Hg in the roots than in the
xposed to 0 μg/mg Hg (control) (A and C) and 2 μg/mg Hg (B and D) for 3 days,
ent plants, respectively. Bars: A = 2 μm, B = 2 μm, C = 500 nm, D = 500 nm.



Fig. 4. Transmission electron micrographs of the leaf cells of C. violifolia seedlings exposed to 0 μg/mg Hg (control) (A and C) and 2 μg/mg Hg (B and D) for 3 days,
respectively. Panels A and B, C and D show single leaf cell and chloroplast of control and Hg treatment plants, respectively. Bars: A = 2 μm, B = 2 μm, C = 1 μm, D =
2 μm, CH, chloroplast; CW, cell wall; GT, Grana thylakoid lamella; PG: plastoglobule; P, plasmolysis.
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aboveground parts. In this study, ultrastructural study of the cells of
C. violifolia provided detailed information on the mechanism of Hg
accumulation.

4. Conclusions

Overall, this study highlights the accumulation, distribution and trans-
location of Hg and the changes in the cell ultrastructure of C. violifolia,
Fig. 5.Correlation between Hg concentrations in soil and in plant tissues from plant
seedling stage and mature stage.

6

which is a promising Hg hyperaccumulator. The BAF was higher than 1 in
C. violifolia. Furthermore, spatial distribution analysis of Hg revealed that
Hg could cross the root Casparian strip and be transported from the roots
to aboveground parts through the vascular cylinder. Ultrastructural changes
indicated that the root tissue ofC. violifolia seedlingswasmore tolerant toHg
than the leaves and confirmed a higher concentration of Hg in the roots than
in the aboveground parts. To the best of our knowledge, this study reports
for the first time that C. violifolia is a promising Hg hyperaccumulator.
Further studies are warranted to apply C. violifolia as a hyperaccumulator
plant to real Hg-contaminated soils to verify its capabilities.
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