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PM2.5 in county-level units
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based on Monte Carlo simulation is
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• Exposure to Pb and Ni in outdoor is the
main cause of human health risk.

• Vehicle emissions and coal burning are
identified as major sources of health risk.
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 The key areas of China's urbanization process have gradually shifted from urban areas to county-level units.
Correspondingly, air pollution in county towns may be heavier than in urban areas, which has led to a lack of
understanding of the pollution situation in such areas. In view of this, 236 PM2.5 filter samples were collected
in Pingyao, north of the Fen-Wei Plain, one of the most polluted areas in China. Monte Carlo simulation was
used to solve the serious uncertainties of traditional HRA, and the coupling technology of absolute principal
component score-multiple linear regression (APCS-MLR) and health risk assessment (HRA) is used to quantita-
tively analyze the health risks of pollution sources. The results showed that PM2.5 concentration was highest in
autumn, 3.73 times the 24 h guideline recommended by the World Health Organization (WHO). Children were
more susceptible to heavy metals in the county-level unit, with high hazard quotient (HQ) values of Pb being the
dominant factor leading to an increased non-carcinogenic risk. A significant carcinogenic risk was observed for
all groups in autumn in Pingyao, with exposure to Ni in the outdoor environment being the main cause. Vehicle
emissions and coal combustion were identified as two major sources of health threats. In short, China's county-
level population, about one-tenth of the world's population, faces far more health risks than expected.
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1. Introduction

PM2.5 (particles with an aerodynamic equivalent diameter of less than
or equal to 2.5 μm), the main cause of haze events (Liu et al., 2013;
Zhang et al., 2016; Qiao et al., 2016), is a mixture of pollutants emitted
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by various potential sources of pollution such as urban construction, auto-
mobile exhaust, industrial production, coal combustion, and sand and
dust weather under physicochemical action (Kong et al., 2020; Feng
et al., 2018; Hahad et al., 2020). The chemical composition of fine particu-
late matter is complex, each city shows different pollution characteristics
according to its energy structure, industrial distribution, and geographical
location (Wang et al., 2020). PM2.5 not only pollutes the surrounding air
environment but can also reduce atmospheric visibility, affect the Earth's
radiation budget and global climate change, and even seriously threaten
public health (Jena et al., 2019; Cao et al., 2012; Xie et al., 2020). Long-
term exposure to fine particulate matter pollution increases the risk of
respiratory, cardiovascular and kidney diseases (Beelen et al., 2015; Ran
et al., 2020; Cristaldi et al., 2022; Copat et al., 2020; Dastoorpoor et al.,
2019), even causing about 4.2 million premature deaths each year
(Cohen et al., 2017). The serious risk of PM2.5 to humans has attracted
extensive attention.

Fine particulatematter is characterized by a small volume and large spe-
cific surface area, and can easily absorb many harmful substances in the en-
vironment, among which heavy metals are important pollutants that cause
human health risks due to their toxicity and enrichment (Guo et al., 2020a;
Lai et al., 2015). Previous studies have shown that heavy metals occupy
only a small fraction of PM2.5, but can contribute to a variety of diseases be-
cause of their association with mitochondrial damage and induction of ox-
idative stress (Ghasemi et al., 2020; Idani et al., 2020). In recent years,
pollution characteristics, source analysis, and ecological and health risks
of different heavy metals in PM2.5 have become a research hotspot
(Abuduwailil et al., 2015; Ye et al., 2018; Ogundele et al., 2017). The source
analysis of fine particles is mainly based on the receptor model. Absolute
principal component score-multiple linear regression (APCS-MLR), a re-
verse traceabilitymethod, can quantify the contribution rate of all pollution
sources without constructing the component spectrum of pollution sources,
which is more efficient than principal component analysis (PCA) and tradi-
tional chemical mass balance (CMB). Heavy metal risk assessment gener-
ally consists of four processes: identification of hazardous chemical
species, variation in adverse effects owing to different doses, calculation
of exposure, and quantitative characterization of risk (Mohammadi et al.,
2018). Currently, research on the health risk of heavymetals in PM2.5 relies
too much on the health risk assessment (HRA) model with definite param-
eter values while ignoring the limited availability of heavy metal samples
and the different parameter characteristics of different populations and in-
dividuals, such as differences in body weight and duration of heavy metal
exposure. This could underestimate or overestimate the health risks (Hu
et al., 2017; Huang et al., 2021). Fortunately, Monte Carlo simulation is a
statistical method based on probabilistic and statistical theory to analyze
uncertainties and identify the proportion of population health risks above
non-carcinogenic and carcinogenic thresholds byfitting the probability dis-
tributions of parameters to ensure the accuracy of health risk assessment. It
has beenwidely used in health risk assessment of heavymetals (Yang et al.,
2019; Chen et al., 2019a; Huang et al., 2021; Goudarzi et al., 2018).

Most of the existing studies have been carried out in urban areas be-
cause of the high level of socio-economic development, high population
density, and industrial concentration. However, studies on typical small-
scale high-precision county-level units have been neglected. Over the past
decade, >50 % of China's new urban population has been in county-level
units. The focus of urbanization has shifted from cities to surrounding
counties, and county-level unit urbanization is a long-term trend (Su,
2021). There are more potential pollution sources in surrounding counties
than in urban areas. Additionally, counties are subject to lower environ-
mental supervision than urban areas, and county-level units may have a
higher burden of air pollution than urban areas (Li et al., 2018; Zhi et al.,
2017). Haze pollution has trended downwards on time scales significantly
in the vast majority of China's 27 major cities, such as Beijing, Nanjing
and Zhengzhou (Li et al., 2021). In contrast, the annual average PM2.5

mass increased from 29.52 μg/m3 to 42.83 μg/m3 between 2000 and
2010 in 2640 county-level units in China (Han et al., 2021a), a trend that
has continued in recent years (Li et al., 2019; Chen et al., 2018). Permanent
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residents in China's county region totaled 745 million in 2020, and about
one-tenth of the global population is suffering from health threats caused
by PM2.5 exposure. There is an urgent need to study a typical county and
quantify the health risks of residents in county-level units.

The Fen-Wei Plain, one of the areas severely afflicted by haze in China,
was first listed as the key control area of the “Blue Sky Protection Cam-
paign” by theMinistry of Ecology and Environment of the People's Republic
of China in 2018. Coal accounts for 90 % of the primary energy consump-
tion structure in most areas of the Fen-Wei Plain, which is much higher
than the 80% in the Beijing-Tianjin-Hebei region during the peak coal con-
sumption period (Dong et al., 2021). In addition to the pollutant emissions
of coal during combustion, it also relies excessively on the road system dur-
ing transportation, which results an increased burden on local transporta-
tion and high vehicle exhaust pollution (Chen et al., 2019a,b; Dong et al.,
2021). There are many high coal-consuming enterprises, such as thermal
power and coking in the Fen-Wei Plain, with heavy industrial structures
and large emissions of industrial pollutants. Pingyao County, located in
the north of the Fen-Wei Plain, was considered the target area in this
study, with Pingyao being bordered by the Lvliang Mountains to the
north and the Taihang Mountains to the south. It is worth mentioning
that the ancient city of Pingyao, a world cultural heritage site, is located
in the north of the county, and there are many tourists every day, which
means thatmotor vehicle emissions in the study areamay not be optimistic.
Pollutants emitted by coal combustion and vehicle emissions tend to accu-
mulate owing to the blocking of mountains and the influence of downdrafts
on leeward slopes, resulting in severe local haze events. APCS-MLR was
used for source identification and allocation of heavymetals in PM2.5. In ad-
dition, APCS-MLR in combination with HRA was utilized to enable health
risk assessment based on concentration values and sources, providing a
scientific basis for reducing heavy metal exposure in atmospheric fine
particulate matter and pollution control.

2. Materials and methods

2.1. Study area and sample collection

Pingyao is (112°12E to 112°31E, 37°12N to 37°21N) located in the north
of the Fen-Wei Plain, with an area of 1260 km2, which is a county in central
Shanxi Province (Fig. 1). It belongs to the monsoon climate of medium
latitudes, with an average annual temperature of 10.6 °C. Factories, enter-
prises, and farmland are mostly in rural areas or suburbs, whereas commer-
cial and residential areas are mostly in urban areas.

Sampling points were chosen according to the “Technical Methodolog-
ical Guidelines for Ambient Air Particle Source Analysis Monitoring” issued
by the Chinese Ministry of Ecology and Environment in 2020. In this study,
the Pingyao County People's Government was selected as the sampling site
(112°18′E, 37°19′N) (on the rooftop of the party and government building)
to collect PM2.5 samples during four seasons, because it is surrounded by
residential buildings, commercial areas and urban roads, and belongs to a
typicalmixed commercial and residential area, which can accurately reflect
the overall situation of air pollution in Pingyao. PM2.5 samples were
collected from July 2020 to June 2021 on 90 mm diameter PTFE filters
(Tianjin Jinhai Environmental Protection Technology Co., Ltd., China) by
using a specific medium flow rate (0.96 ± 0.04 L/min) KDB-120B sampler
(Qingdao Kedibo Electronic Technology Co., Ltd., China). Before sampling,
allfilters were heated at high temperatures (120 °C) for 2 h, then placed in a
glass desiccator to equilibrate the moisture for 24 h. PM2.5 samples were
collected twice a day, from 8 a.m. to 8 p.m. and from 8 p.m. to 8 a.m. the
next day. In total 236 effective samples were collected. The sampling
timeswere as follows: a. Summer (57 effective samples): 31 July–31 August
2020, b. Autumn (60 effective samples): 20 October–3 November 2020, 16
November–2 December 2020, c. Winter (60 effective samples): 5 January-3
February 2021, d. Spring (59 effective samples): 8 May-22 June 2021. All
PM2.5 samples collected were stored in a refrigerator (−18 °C) until chem-
ical analysis was performed in the laboratory. Heavy metal analysis and
quality control are provided in the Supplementary Material.



Fig. 1. Geographical location map of sampling site.
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2.2. Evaluation of heavy metals pollution

The enrichment factor (EF) method has been widely used to study the
enrichment degree of heavy metals in atmospheric fine particulate matter,
which can be used to judge and evaluate the impact of human production
activities on the natural environment (Li et al., 2018). The calculation
formula of the EF is as follows:

EF ¼ Ci=Cnð Þaerosol
Ci=Cnð Þcrust

ð1Þ

where Ci is the mass concentration of each element (μg/m3), Cn is the mass
concentration of the reference element (μg/m3), (Ci/Cn)aerosol represents
the ratio of the ith element to the selected reference element in the aerosol,
(Ci/Cn)crust represents the ratio of the ith element to the selected reference
element in the crust. Al was selected as the reference element, and its con-
centration in the crust was referenced to the a-layer soil in Shanxi Province,
China (SEPA, 1990). This study divided EF into three grades, slightly
enriched (5< EF≤ 10), moderately enriched (10< EF≤ 60), and severely
enriched (EF > 60).

2.3. PCA-APCS-MLR

PCA is a widely used data dimension reduction algorithm that can select
a small number of important variables through linear transformation to
minimize the loss of original information. However, PCA is usually used
only to determine the types and quantities of potential pollution sources.
APCS-MLR converts standardized principal factor scores into non-
standardized absolute principal factor scores on the basis of PCA and then
quantitatively estimates the contribution rate of pollution sources to each
pollutant using multiple linear regression (Zhang et al., 2020; Jin et al.,
2019; Thurston and Spengler, 1985). The conversion process from the prin-
cipal factor scores to the absolute principal factor scores in the APCS-MLR
receptor model is as follows:

Z0ð Þ j ¼
0−Cj

σ j
ð2Þ

A0ð Þk ¼
Xj

j¼1

Skj � Z0ð Þ j ð3Þ

APCSk ¼ Azð Þk− A0ð Þk ð4Þ

where (Z0)j is the standardized value when the concentration of the
3

pollutant is set to zero, Cj is the average concentration of the pollutant, σj
is the standard deviation of the pollutant concentration. (A0)k is the princi-
pal component score under the absolute zero value; (Az)k is the score value
of the principal component; APCSk is the absolute principal factor score.
Finally, the contribution of pollution sources to each pollutant was esti-
mated using the following linear regression equation:

Cj ¼
X

k

akj � APCSk þ bj ð5Þ

where akj is the multiple linear regression coefficient of pollutant j from
source k, bj is the constant term of a linear equation of many variables.

The results showed negative values when we used the PCA-APCS-MLR
model to calculate the contribution rate of pollution sources, which led to
a deviation in the calculation result of the contribution rate. To ensure
the reliability of the calculation results, an absolute function was used to
convert all negative values into positive ones (Gholizadeh et al., 2016).

2.4. Health risk assessment (HRA)

The possible non-carcinogenic and carcinogenic risks caused by heavy
metals in PM2.5 were evaluated using the health risk assessment model rec-
ommended by USEPA (2011). Heavymetals in PM2.5 are mainly harmful to
human health through ingestion (ADDing), inhalation (ADDinh), and dermal
absorption (ADDderm). The formula for the daily exposure to these three
pathways is as follows:

ADDing ¼ C� IngR� EF� ED� CF
BW� AT

ð6Þ

ADDinh ¼ C� InhR� EF� ED
BW� AT� PEF

ð7Þ

ADDderm ¼ C� SA� SL� ABS� EF� ED� CF
BW� AT

ð8Þ

where C represents the concentration of heavy metals (mg/kg), IngR is the
ingestion rate (mg/day), EF is the exposure frequency (day/year), ED is
the exposure duration (years), CF is the conversion coefficient 1.0 × 10−6

(kg/mg), BW is the standard body weight (kg), AT is the average exposure
time (day), InhR is the inhalation rate (m3/day), PEF is the particulate emis-
sion factor (m3/kg), SA is the skin exposed area (cm2/day), and SL is the skin
adherence factor (mg/cm2). ABS is the skin absorption factor.

Health risks include non-carcinogenic and carcinogenic risks. Non-
carcinogenic risks are measured by the hazard quotient (HQ), and hazard

Image of Fig. 1


Fig. 2. Seasonal variation of PM2.5 concentration and samples distribution statistics.
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index (HI) is the sum of the hazard quotient of heavymetals, as shown in the
following equation:

HQ ¼ ADDx

RfD
ð9Þ

HI ¼
X

HQi ð10Þ

where ADDx is the average daily intake (mg·kg−1·d−1). RfD is the corre-
sponding reference toxicity threshold dose (mg·kg−1·d−1). If HQ or HI < 1,
there is no non-carcinogenic risk, whereas HQ or HI ≥ 1, adverse health
effects may occur (Ma et al., 2018; Zhang et al., 2018).

Carcinogenic risk (CR) and total carcinogenic risk (TCR) are calculated
using the following equation:

CR ¼ ADDx � SF ð11Þ

TCR ¼
X

CRi ð12Þ

where SF is the cancer slope factor (kg·d·mg−1). If CR > 10−4, the risk of
cancer is significantly increased, if 10−6 < CR < 10−4, it indicates an ac-
ceptable risk of cancer; and if CR < 10−6, it is considered to pose little
health risk (Ma et al., 2018; Fryer et al., 2006).

Co, Cr, Cu, Mn, Ni, Pb, and Zn were used to assess the non-carcinogenic
risks in this study. The International Agency for Research on Cancer (IARC,
2016) classified Cr (VI) and Ni into group 1, Pb into group 2A, Co into
group 2B, and Mn, Cu, and Ca were not found to be carcinogenic to the
human body. The concentration ratio of Cr (VI) to Cr (III) was approxi-
mately 1:6; therefore, the concentration of Cr (VI) was calculated according
to 1/7 of the total Cr (Massey et al., 2013). The carcinogenic risks of Cr (VI),
Pb (through ingestion and inhalation), Ni (through ingestion), and Co
(through inhalation) were also estimated.

2.5. Monte Carlo simulation

The Monte Carlo simulation was implemented using the Crystal Ball
software v11.1.24 (Oracle, USA). In this study, the mass concentration
data of Co, Cr, Cu, Mn, Ni, Pb, and Zn for four seasons were fitted to the
probability distribution, and the health risks of heavy metals were simu-
lated 10,000 times by defining assumptions and predictions.

3. Results and discussion

3.1. Seasonal pollution characteristics of PM2.5 and heavy metals

The concentration of PM2.5 in Pingyao in the four seasons is shown in
Fig. 2. Daily standard values recommended by China and WHO were con-
sidered to define the PM2.5 pollution levels in Pingyao. However, the classi-
fication based on Chinese standard values can more clearly reflect the
characteristics of PM2.5, compared to the WHO, because of the high PM2.5

load in Pingyao. Based on the Technical Regulation on Ambient Air Quality
Index (on trial) (HJ633–2012) of China, the PM2.5 pollution levels were di-
vided into five categories. Excellent, PM2.5 < 35 μg/m3, Good, 35 μg/m3≤
PM2.5 < 75 μg/m3, Mild pollution, 75 μg/m3 ≤ PM2.5 < 115 μg/m3,
Moderate pollution, 115 μg/m3 ≤ PM2.5 < 150 μg/m3, Heavy pollution,
PM2.5 > 150 μg/m3. During the monitoring period, the average concentra-
tion of PM2.5 was 73.88 ± 51.18 μg/m3, far higher than the national air
quality environmental standard (GB 3095–2012) (annual average level II,
35 μg/m3). Compared with other cities in China, it was higher than Kun-
ming (31 μg/m3) (Guo et al., 2020b), lower than Taiyuan (83.8 μg/m3)
(Zhang et al., 2019), Beijing (114.17 μg/m3) (Li et al., 2018) and Baoding
(93.91 μg/m3) (Yan et al., 2018), and close to Handan (75.81 μg/m3)
(Yan et al., 2018) and Tangshan (72.84 μg/m3) (Yan et al., 2018). This
indicates that the air pollution burden of county-level units in China is com-
parable to that of some industrial cities. The concentration of PM2.5 in
Pingyao showed obvious seasonal variation. The mass of fine particulate
4

matter in spring, summer, autumn, and winter was 63.60 ± 26.71 μg/m3,
46.53±26.07 μg/m3, 93.13±53.33 μg/m3, 90.72±68.92 μg/m3, respec-
tively. About 60 % of the autumn samples were higher than the national air
quality standard (GB 3095–2012) (daily average level II, 75 μg/m3), and the
average concentration of fine particulate matter was the highest, which dif-
fers from previous studies (Guo et al., 2021; Xie et al., 2019). There are two
reasons for this phenomenon. First, heating began in Pingyao on 1 Novem-
ber, and half of the samples collected during the autumn monitoring period
were collected after heating, when the amount of coal burning increased and
more coal dust entered the atmosphere. Second, low wind speed, high
humidity, and special terrain promoted the growth of PM2.5. The meteoro-
logical data collected during the monitoring period are shown in Table S1.

The descriptive statistics of heavy metals in PM2.5 are shown in Table 1.
The seasonal variation characteristics of heavy metals were similar to those
of fine particulate matter, with the highest average concentration in winter,
followed by autumn, spring, and summer. The annual average concentra-
tions of heavy metals from high to low were Ca, Al, Fe, K, Na, Mg, Zn, Pb,
Mn, Co, Cu, Ni, and Cr, among which Ca, Al, Fe, K, Na, and Mg were the el-
ements with the highest content in PM2.5. The high concentrations of crustal
elements may be related to sand-wind weather and construction sites (Wang
et al., 2013). The analysis of the other seven heavy metals shows that the av-
erage concentration of Zn was the highest, which is 251.8 ± 241.5 ng/m3,
followed by Pb (118.1 ± 240.9 ng/m3), Mn (80.8 ± 76.7 ng/m3) and Co
(69.0 ± 477 ng/m3). The concentrations of Cu, Zn, Mn and Ni in autumn
were much higher than those in other seasons, and the Cu content was an
order of magnitude higher than that in other seasons. Cu and Zn are widely
used in the manufacture of tires and brake pads (Banerjee et al., 2015; Han
et al., 2020), indicating that Pingyao contributed significantly to vehicle
emissions in autumn. In general, the pollution characteristics of heavymetals
in the four seasons were very similar; the sources of heavy metals in PM2.5 in
Pingyao were consistent throughout the year.

3.2. Pollution evaluation of heavy metals

To identify the impact of human activities on heavymetals in PM2.5, the
EF was used to evaluate the pollution level of heavy metals (Table S2). In
spring, Cu, Ni, and Zn were moderately enriched, whereas Co and Pb
were severely enriched. In summer, Cu and Ni were moderately enriched,
whereas Co, Pb, and Zn were severely enriched. In autumn, Cr and Mn
were slightly enriched; Ni was moderately enriched; Co, Cu, Pb, and Zn
were severely enriched. In winter, Ni was slightly enriched; Cr, Cu, and
Zn were moderately enriched; and Co and Pb were severely enriched. The
EF of heavy metals in PM2.5, was generally higher in autumn, indicating
that human activities play an important role in the high accumulation of
heavy metals during this season. The EF of Pb, Co, and Zn were the highest
throughout the year, indicating that these elements were seriously affected
by anthropogenic sources. Pb, Co, and Zn in fine particulate matter in

Image of Fig. 2


Table 1
Summary statistics of heavy metal concentrations in PM2.5 in Pingyao (ng/m3).

Season Al Ca Co Cr Cu Fe K Mg Mn Na Ni Pb Zn

Spring
Mean 2336.8 3161.8 47.8 8.6 24.1 1745.9 735.9 551.5 48.9 426.5 16.8 74.0 166.3
Median 1602.4 2008.1 20.5 5.5 38.0 1084.2 556.2 362.7 39.4 377.1 18.6 58.7 154.8
SD 2033.0 2458.8 49.0 7.4 15.8 1471.5 613.5 451.7 37.7 362.7 6.0 63.3 111.3
CV% 68.6 63.5 42.9 64.7 157.4 62.1 75.6 65.8 80.4 88.4 111.0 79.4 93.1

Summer
Mean 1934.4 2091.5 41.4 7.4 8.9 1152.0 354.4 272.9 55.1 532.9 15.2 66.1 307.7
Median 1211.2 1446.4 8.1 4.2 4.6 698.3 188.0 190.2 27.6 324.6 10.5 49.1 180.0
SD 1875.8 1817.3 40.9 7.0 8.5 1017.7 340.5 243.0 50.7 446.6 11.2 55.4 271.7
CV% 62.6 69.2 19.5 56.5 52.0 60.6 53.1 69.7 50.1 60.9 69.1 74.2 58.5

Autumn
Mean 2542.2 3830.1 86.6 15.3 107.0 2306.0 1491.5 394.5 131.8 810.7 69.5 126.7 365.2
Median 1787.6 2605.0 59.4 10.7 46.7 1962.2 832.2 276.0 102.7 587.7 47.3 95.9 310.9
SD 1962.3 3256.6 87.1 12.8 102.4 1717.4 1331.8 322.8 117.0 657.2 84.7 100.8 284.9
CV% 70.3 68.0 68.7 70.1 43.7 85.1 55.8 70.0 78.0 72.5 68.0 75.6 85.1

Winter
Mean 3564.1 4300.4 98.5 50.1 17.7 2665.3 1362.6 1120.0 85.7 766.9 11.1 202.2 169.2
Median 2196.6 2349.5 87.3 20.6 10.4 1633.5 941.1 619.9 62.3 617.8 6.7 91.2 94.4
SD 3886.2 4896.2 51.6 123.9 31.4 2855.1 1372.4 1508.6 79.3 594.5 11.0 452.3 225.7
CV% 109.0 113.9 52.4 247.6 177.6 107.1 100.7 134.7 92.6 77.5 99.9 223.6 133.3

Annual
Mean 2603.8 3362.7 69.0 20.5 39.9 1978.6 995.2 588.8 80.8 636.4 28.4 118.1 251.8
SD 2437.3 3146.2 47.7 64.8 52.2 1935.6 972.3 859.0 76.7 511.3 35.9 240.9 241.5

Abbreviations: SD, Standard deviation, CV, coefficient of variation.
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Pingyao may be closely related to vehicle emissions and coal combustion
(Wang et al., 2013).

3.3. Source distribution of heavy metals in PM2.5

PCAwas used to analyze the source distribution of the 13 heavymetals in
this study. KMO and Bartlett's sphericity tests were performed to verify fea-
sibility before PCA. The test results for spring (KMO = 0.697, P < 0.001),
summer (KMO = 0.722, P < 0.001), autumn (KMO = 0.794, P < 0.001),
and winter (KMO = 0.798, P < 0.001) showed that they were suitable for
source identification analysis.

Spring: The four principal components explained 85.69 % of the total
variables (Table S3). The Al, Ca, Fe, K, Mg, and Na loads in PC1 were
very high. Al and Fe are crustal elements that originate mainly from nature
(Zhao et al., 2019; Kong et al., 2010). According to the EF analysis results,
the values of K,Mg, Na, and Cawere all less thanfive andmainly originated
from nature, and PC1 might be interpreted as natural sources. PC2, with a
contribution rate of 25.31 %, was mainly characterized by Zn, Pb, Cr, Mn,
and Cu. The EF results showed that Cr and Mn were less affected by
human activity. Banerjee et al. (2015) found that Pb, Cu, and Zn are mainly
related to vehicle exhaust emissions, brake wear, and the use of leaded gas-
oline. In 2020, the number of civilian vehicles has reached 81,000 in
Pingyao (PCBS, 2021). The sampling site was located in the center of the
countywith highmotor traffic; therefore, PC2was assigned as vehicle emis-
sions. Only the Ni load of PC3was>0.6; themoderate enrichment of Niwas
related to the industrial sources of coal and oil combustion (Vallius et al.,
2005), and PC3might be related to industrial sources. PC4, with a contribu-
tion rate of 12.18 %, was mainly characterized by Co. The EF of Co has
reached the level of severe enrichment, which is mainly produced by
human activities, Liu et al. (2019) showed that Co was released during
the combustion of fossil fuels such as coal and oil. In 2020, the output of
coal-fired power generation has reached 2.12 billion KWH in Pingyao
(PCBS, 2021). Therefore, PC4 could be allocated to coal combustion. Sum-
mer: PC1, with a contribution rate of 53.37%, wasmainly characterized by
Al, Ca, Fe, K, and Mg. PC1 was considered natural source. In PC2, the
highest loads were observed for Zn, Mn, and Pb. The release of Zn and Pb
was closely related to vehicle emissions. PC2 was assigned to vehicle emis-
sions. The loads of Co and Ni in PC3 are >0.6. When Co and Ni are distrib-
uted in the same component, it is generally considered to be related to the
5

industrial production activities consuming fossil energy (Liu et al., 2018),
PC3might be allocated to industry sources. Autumn: PC1, with a contribu-
tion rate of 55.84 %, was mainly characterized by Al, Ca, Co, Cr, Fe, Mg,
Mn, and Zn. The EF results showed that Co mainly originated from
human production activities, while other elements were greatly affected
by natural sources. Thus, PC1 may be interpreted as a natural and coal-
burning source. In PC2, the highest loads were observed for K, Ni, and
Na. Na and K are the identification elements of biomass combustion
(Simoneit et al., 1999; Begum et al., 2004). Some autumn sampleswere col-
lected during the harvest period. Agricultural waste burning still exists de-
spite measures introduced by the local government to target crop burning.
Therefore, PC2 was assigned to biomass burning. PC3 may be allocated to
vehicle emissions. Winter: PC1, with a contribution rate of 48.58 %, was
mainly characterized by Al, Ca, Fe, K, Mg, and Mn. Thus, PC1 may be
interpreted as a natural source. PC2 may be related to vehicle emissions.
PC3 was determined to correspond to coal combustion.

The analytical results in autumn were significantly different from those
in other seasons, which can be attributed to two reasons. First, there might
be a mixed discharge of multiple pollution sources in Pingyao in autumn,
which leads to the accumulation of pollutants under adverse meteorologi-
cal conditions and bringsmore uncertainty to source identification. Second,
autumn agricultural production activities in Pingyao were mainly concen-
trated one week before the sampling period, but crop burning still existed
during the monitoring period, which may be the main reason why biomass
burning became a major source of pollution. In contrast, biomass burning
cannot be identified as the dominant source in other seasons due to the rel-
ative scarcity of biomass fuels and government monitoring. County towns
try on arable land rather than urban centers. Since China has cleaned up
straw burning in county-level units in recent years, a problemwith agricul-
tural waste incineration remains that we do not paymuchmore attention to
county-level units than to cities.

3.4. Share of pollution sources

Based on PCA determination of the pollutant composition of heavy
metals in PM2.5 in four seasons, the APCS-MLR model was used to obtain
the source distribution of each heavy metal, and further calculate the
share of each potential pollutant source (Thurston and Spengler, 1985;
Lv, 2019). The linear fitting of the predicted and measured concentrations
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of heavy metals in PM2.5 is shown in Fig. S1. Except for Na (0.678) and Pb
(0.475), the R2 values of most elements were between 0.773 and 0.962, in-
dicating that the APCS-MLR model is reliable and the results are credible.
Fig. 3. Source distribution of heavy metals in PM2.5 based on APCS-MLR mod
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The source distribution of each heavy metal and the share of the pollu-
tion sources are shown in Fig. 3. Natural sources were the main sources of
heavy metals in fine particulate matter during the spring and winter
el (a), and the distribution of pollution sources for each heavy metal (b).

Image of Fig. 3
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monitoring periods, accounting for 34.57 % and 37.62 %, respectively,
whichwas related to frequent sand-windweather during this period. Strong
winds might increase the burden of air pollution in Pingyao by carrying
bare farmland soil and road dust around the sampling site (Peng et al.,
2016; Yadav and Raman, 2021). Compared with other seasons, coal com-
bustion pollution is higher inwinter, and the heating activities of urban res-
idents significantly increase the contribution rate of this source to air
pollution (Ji et al., 2019). It is a remarkable fact that the contribution rate
of vehicle emissions is higher in summer (41.30 %), which may be due to
the fact that the summer monitoring period is in the peak tourism season,
when the COVID-19 pandemic in China significantly improved. According
to the Chinese Center for Disease Control and Prevention, there were no
suspected or confirmed cases in Shanxi Province. Transportation had all re-
turned to normal, with high human traffic leading to more vehicle emis-
sions. The main source of pollution in autumn was a mixed source of
natural and coal burning. Coal combustion is closely related to the coinci-
dence of the atmospheric monitoring period and Pingyao heating time.
However, biomass burning, a typical pollution source in autumn, contrib-
uted the least to heavy metals, accounting for only 15.87 %. According to
the field survey, agricultural activities in autumn 2020 in Pingyao were
mainly concentrated around October 9, while agricultural activities ended
when atmospheric monitoring began, and the air pollutants produced by
crop combustion were largely dispersed, which may be the main reason
for the low contribution of biomass combustion.

3.5. Health risk assessment of heavy metals in PM2.5

To verify that traditional health risk assessment models may underesti-
mate or overestimate the health risks to all populations, traditional models
andMonte Carlo simulation-based risk assessmentmodels were used to cal-
culate the non-carcinogenic risks of Pb to humans in autumn. The results of
the traditionalmodel showed that Pbmight have a non-carcinogenic risk in
children (HQ = 1.14) but has no effect on adults (HQ = 0.28). However,
Pb only had potential risks for 37.69 % of children through the Monte
Carlo simulation, and the vast majority of children were still not affected
by the health effects off Pb. In addition, 1.03% of adults exposed to outdoor
environments still need to consider the health effects of Pb. The health risk
assessmentmodel usingMonte Carlo simulation can avoid underestimation
and overestimation of health risks and significantly improve the reliability
of health risk assessment.

3.5.1. Health risk assessment based on probability distribution
A Monte Carlo simulation was used to evaluate the carcinogenic and

non-carcinogenic risk probabilities of populations (including children and
adults) exposed to heavy metals in fine particulate matter in Pingyao in
three different ways, and the results are shown in Table S6-S9. The proba-
bility distributions of non-carcinogenic risks HQ and HI for all populations
are shown in Figs. S2–5. The average annual HQof heavymetals, from large
to small, was Pb> Cr> Co >Mn >Ni> Zn > Cu. The non-carcinogenic risk
of childrenwas greater than that of adults, and the high HQ value of Pbwas
the main reason for the increase in the non-carcinogenic risk of children.
Crystal Ball software v11.1.24 (Oracle, USA) was used to run 10,000 simu-
lations of four seasons of heavy metal HQ (Karami et al., 2019). The results
showed that the HQ values of Ni, Zn, and Cu in adults were <1, and there
were very few simulation results for Ni, Zn, and Cu being>1 in children, in-
dicating that Ni, Zn, and Cu hardly pose a non-carcinogenic risk to human
health. The HQ values of Pb, Cr, and Co were the highest in winter, the
non-carcinogenic risk of Cu, Mn, and Ni reached a peak in autumn, and
the non-carcinogenic risk of Zn was significantly higher in summer than
in other seasons. An analysis of the four-season hazard index (HI) found
that children had HI values >1 in four seasons (mean 2.17), while adults
were only affected by non-carcinogenic risk in winter (winter = 1.08,
mean = 0.63). The HI of heavy metals was significantly higher than the
winter 2014 values for the Xinxiang urban area (adults 0.21, children
0.38) (Feng et al., 2017), the mean 2014–2020 values for the Shenzhen res-
idential area (adults 0.41, children 0.3) (Yan et al., 2022), and the
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2013–2014 Kunming industrial area (adults 0.17, children 0.26) (Han
et al., 2021b), which indicated that the non-carcinogenic risk of heavy
metals in fine particulate matter in the county of China was significantly
higher than that in some large cities. Children, as the groupmost vulnerable
to the non-carcinogenic risk of heavymetals in PM2.5, should take the initia-
tive to strengthen outdoor protection, especially in winter when the aver-
age HI is the highest, and Pb, Cr, and Co control should be prioritized.

The carcinogenic risk probability distribution of the four toxic heavy
metals is presented in Figs. S2–5. The average annual CR values of Ni, Pb,
Co, and Cr were 8.39E−05, 3.26E−06, 1.50E−07, 9.51E−08 for chil-
dren, 5.30E−05, 2.06E−6, 1.23E−06, 1.38E−07 for adults. The CR
values of Ni and Pb both exceeded the acceptable threshold of 1E−06.
The potential carcinogenic risk of coal and other fossil energy emissions
to local residents should be consider, especially in autumn. The carcino-
genic risks of Ni for children and adults were 1.74E−04 and 1.08E−04
respectively, exceeding the limit of 1E−04, indicating that there was a se-
rious carcinogenic risk. According to the results of the Monte Carlo simula-
tion, the CR (Ni) of children and adults in autumnwas 61.82%and 37.56%
higher than that of 1E−04, respectively, andmore than half of the children
exposed to the outdoor environment were exposed to serious cancer risk.
The annual mean total carcinogenic risk (TCR) for children and adults
was 8.72E−05 and 5.64E−05 respectively, and peaked in autumn at
1.76E−04 and 1.11E−04, respectively. The health risk in childrenwas sig-
nificantly higher than that in adults. Compared with other cities in China,
the TCR values of Pingyao were larger than those of Nanjing's educational
and residential areas in spring 2013 (adults 2.71E−05, children 6.77E
−06; adults 2.69E−05, children 6.73E−06) (Li et al., 2015), Jinan's
urban area throughout 2016 (5.00 E−05) (Sui et al., 2020), the urban cen-
ter of Baoding in spring 2016 (adults 5.66E−05, children 1.33E−06) (Lei
et al., 2021), and lower than the typical urban functional area in Beijing in
winter 2018 (adults 1.41E−04, children 2.59 E−04) (Fan et al., 2021).
County−level residents in China were already more susceptible to cancer
from pollution exposure than a few urban residents, and the health risks
were even an order of magnitude higher. The health burden on approxi-
mately half of China's population must be considered seriously. The high
health risk caused by PM2.5 in autumn in Pingyao was closely related to
the toxicity and human enrichment of Ni. Therefore, risk assessment under-
taken in the atmospheric environment should pay closer attention to heavy
metal exposure in children, especially for Pb, Cr, Co, and Ni.

3.5.2. Health risk assessment associated with pollution sources
Based on the results of the Monte Carlo simulation, the health risks

caused by each pollution source were calculated by coupling the APCS-
MLRmodel with the HRAmodel. To quantify the health risks posed by pol-
lution sources to children and adults, the average health risks of individual
heavy metals derived fromMonte Carlo simulations were multiplied by the
contribution rate of each potential pollution source (Ma et al., 2018).
Health risks (non-carcinogenic and carcinogenic, Fig. 4) from different
sources showed similar results in children and adults, which is consistent
with the study results of Huang et al., 2021. The contribution of vehicle
emissions to the non-carcinogenic risk for children and adults was much
higher than that of unidentified sources, showing the same trend in spring,
summer and winter. The non-carcinogenic risk of biomass burning due to
frequent agricultural activities and large amounts of crop stacking and
burning in autumn is as high as 35.17% for adults and 27.51% for children,
indicating that biomass burning poses a significant health threat to adults.
Vehicle emissions were a major source of non-carcinogenic risk for adults
in winter, while children were more likely to originate from unidentified
sources and from coal combustion. Unidentified sourcesmay be a combina-
tion of various pollution sources with complex sources. It is difficult to
achieve emission reduction of pollution sources through targeted control
measures, making it difficult for children to protect their health duringwin-
ter. For coal combustion, the high loads of Co andNa should be identified as
priority pollutants for non-carcinogenic risk control in children.

The proportion of sources of cancer risk differed significantly across the
four seasons. The carcinogenic risk to children and adults mainly came
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from unidentified sources and industrial sources in spring, and the contri-
bution rates of unidentified sources were 43.71 % and 43.94 %, respec-
tively, which may be due to the mixed emissions of various potential
pollution sources such as metal processing, coking, agricultural activities
and biomass combustion (Fig. 3) (Ma et al., 2018). Therefore, jointmanage-
ment of multiple potential sources should be strengthened. In summer, ve-
hicle emissions contribute the most to carcinogenic risk, followed by coal
combustion, which is often overlooked. Summer is not the peak time for
coal use, but the carcinogenic risk for children and adults from coal com-
bustionwas>27%, whichmight be related to the increased use of coal dur-
ing the peak power consumption in summer (Zhao et al., 2013; Tao et al.,
2014; Gao et al., 2018). Urban power generation in Pingyao is mainly ther-
mal power generation, and the raw materials used for thermal power gen-
eration are mainly coal and other fossil fuels. The source identification
results show that the share of coal combustion was 15.84 % in summer,
which is higher than 14.93 % in spring. In addition to the priority control
of the indicative elements Zn, Mn, and Pb in vehicle emissions, the optimi-
zation of the regional energy utilization structure should also be promoted,
strengthening power generation from clean energy sources such as solar
and wind power, or improving the efficiency of coal combustion. The
greatest contribution of vehicle emissions to human carcinogenic risk oc-
curred in autumn, reaching 54.30 % for children and 54.49 % for adults.
The high contribution from vehicle emissions was similar to that in sum-
mer. The proportion of biomass combustion in carcinogenic risk was
much lower than that in non-carcinogenic risk; therefore, more attention
should be paid to the impact of biomass combustion on the non-
carcinogenic risk to humans. The carcinogenic risk of coal combustion
caused by heating activities was the highest in winter. In general, PM2.5-
bound heavy metals from vehicle emissions and coal combustion were
the primary causes of the increased health burden on the population in
Pingyao. Prevention and treatment of health concerns in county-level
units should proceed as planned.

The health problem of population exposure to PM2.5 in Chinese county-
level units is extremely severe. Counties are likely to suffer from higher air
pollution than urban areas in the coming decades, and the focus of future
research should gradually shift from cities to counties (Su, 2021; Li et al.,
2019). Atmospheric heavy metal pollution prevention and control policies
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formulated by the government should be targeted, and the promotion of
new energy vehicles and the gradual replacement of fossil energy sources,
such as coal, by clean energy sources will remain the major control mea-
sures to reduce the health risks to the population in the future.

3.6. Strengths and limitations

Our survey sampling covered four seasons, which can comprehensively
characterize the annual variation in population health risk in county-level
units. Additionally, probabilistic simulation and source-based health risk
assessment tools can accurately quantify the health burden of population
exposure to heavy metals in PM2.5. Nevertheless, our research in only one
county cannot represent the overall situation of county-level units in
China. Future studies at larger spatial scales are needed to verify our views.

4. Conclusions

A comprehensive investigation was conducted to analyze the pollution
characteristics, sources, and health risks of heavy metals in PM2.5 in
county-level units. The concentration of PM2.5 was the highest in autumn,
reaching 93.13 ± 53.33 μg/m3, which was closely related to frequent arti-
ficial production activities during the monitoring period. Ca, Al, Fe, K, Na,
and Mg, mainly from nature, were the most abundant metals in PM2.5, but
these ubiquitous metals do not endanger human health. Pb, Co, and Zn
were greatly affected by anthropogenic production activities and were
closely related to artificial source emissions. Seasonal differences were ob-
served in the sources of the heavy metals in Pingyao.

Concentration-based and source-based health risks of heavy metals in
PM2.5 were evaluated, the non-carcinogenic risk caused by heavy metals
in county-level units was significantly higher than that in some large cities.
Children were more susceptible to heavy metals than adults, with a mean
HI of 2.17 over the four seasons, reaching a maximum value of 3.58 in win-
ter. The high HQ of Pb (mean value of 1.40) was the main reason for the in-
crease in non-carcinogenic risk in children. County-level residents in China
were alreadymore susceptible to cancer from pollution exposure than a few
urban residents, and the health risks were even an order of magnitude
higher. Notably, all groups were at serious carcinogenic risk in autumn,

Image of Fig. 4
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1.76E-04 for children and 1.11E-04 for adults. Ni control schemes should
be considered because of their high carcinogenic risk. The health burden
on approximately one in ten people worldwide must be taken seriously.
The health risks of different pollution sources were similar in children
and adults. Vehicle emissions and coal combustion should be considered
themain sources of control to reduce the health risks posed by heavymetals
in PM2.5. Air pollution treatment is difficult in county-level units with large
populations and wide areas of land. Preventing and managing health
threats to the population in China's county-level units should be a primary
concern in the future.
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