稀有金属矿物溶解度对花岗伟晶岩成矿作用的制约

唐 勇¹, 覃山县^{1,2}, 赵景宇³, 吕正航¹, 刘喜强^{1,2}, 王 宏^{1,2}, 陈剑争^{1,2}, 张 辉^{1,*}

1. 中国科学院 地球化学研究所 地球内部物质高温高压院重点实验室,贵州 贵阳 550081

2. 中国科学院大学,北京 100049

3. 宿州学院 资源与土木工程学院, 安徽 宿州 234000

TANG Yong¹, QIN Shanxian^{1,2}, ZHAO Jingyu³, LÜ Zhenghang¹, LIU Xiqiang^{1,2}, WANG Hong^{1,2}, CHEN Jianzheng^{1,2}, ZHANG Hui^{1,*}

1. Key Laboratory of High-Temperature and High-Pressure Study of the Earth's Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China

2. University of the Chinese Academy of Sciences, Beijing 100049, China

3. School of Resources and Civil Engineering, Suzhou University, Suzhou 234000, China

TANG Yong, QIN Shanxian, ZHAO Jingyu, et al. Solubility of rare metals as a constraint on mineralization of granitic pegmatite. *Earth Science Frontiers*, 2022, 29(1): 081-092

Abstract: Granitic pegmatite deposit is one of important types of rare metal deposits. In the granitic pegmatite, the rare metals Li, Be, Nb and Ta mainly occur in mineralogically distinct zones. Their solubilities in silicate melts have been studied systematically and shown to be mostly affected by temperature (T) and aluminum saturation index (ASI). Here we set out to establish quantitative relationships between T/ASI and the solubility of rare metal minerals (Nb and Ta) in silicate melts by multiple linear regression analysis of literature data. We found the following relationships:

 $\lg c(\text{Li}) (10^{-6}) = -0.37 \times (1000/T) + 4.56, R^2 = 0.44$

 $lgc(BeO) (10^{-6}) = -4.21 \times (1000/T) + 6.86, R^2 = 0.91$

 $\lg K_{sp}(Nb) = -(2.86 \pm 0.14) \times ASI_{(Mn+Li)}(4.95 \pm 0.31) \times (1000/T) + (4.20 + 0.28), R^2 = 0.86$

 $\lg K_{sp}(Ta) = -(2.46 \pm 0.11) \times ASI_{(Mn+Li)}(4.86 \pm 0.30) \times (1000/T) + (4.00 + 0.30), R^2 = 0.80$

Where c is percentage content; K_{sp} is solubility, in mg²/kg²; ASI_(Mn+Li) is the molar ratio Al₂O₃/ (CaO+Na₂O+K₂O+Li₂O+MnO), applicable between 0.6-1.2; and T is temperature of silicate melt in Kelvin, applicable between 1073 - 1373 K. These quantitative relationships can be used as a basis for quantifying the metallogenic model of granitic pegmatite. The sharply decrease of solubility with decreasing T and increasing ASI can be the main mechanism leading to the crystallization of rare metal minerals, because the same conditions are met during magma evolution, where magma emplacement, fractional crystallization and fluid-melt interaction cause increase of magma temperature and decrease of ASI. Keywords: rare metal minerals; solubility; temperature; ASI; pegmatite

摘 要:花岗伟晶岩型矿床是稀有金属矿床重要的类型之一。在花岗伟晶岩中,稀有金属元素 Li、Be、Nb 和 Ta 主要以独立矿物的形式存在,前人对稀有金属独立矿物在硅酸盐熔体中的溶解度及其影响因素展开了系

*通信作者简介:张 辉(1965—),男,研究员,博士生导师,主要从事关键性战略金属的超常富集成矿研究。E-mail: zhanghui@vip.gyig.ac. cn

收稿日期:2020-06-20;**修回日期:**2021-01-22

基金项目:国家自然科学基金项目(41773053,91962222)

作者简介:唐 勇(1980—),男,研究员,博士生导师,主要从事伟晶岩成矿与找矿研究。E-mail: tangyong@vip.gyig.ac.cn

统研究。本文综合分析了已有的实验数据,其结果表明,影响稀有金属独立矿物溶解度最为重要的2个参数 是温度(T)和铝饱和指数(ASI)。因此本文建立了稀有金属独立矿物,尤其是铌锰矿和钽锰矿溶解度,与温度 (T)和铝饱和指数(ASI)之间的定量关系:

 $\lg [w(Li)/10^{-6}] = -0.37 \times [1\ 000/(T/K)] + 4.56, R^2 = 0.44$

 $\lg [w(BeO)/10^{-6}] = -4.21 \times [1\ 000/(T/K)] + 6.86, R^2 = 0.91$

 $lg [K_{sp}^{Nb}/(mg^2 \cdot kg^{-2})] = -(2.86 \pm 0.14) \times ASI_{(Mn+Li)} - (4.95 \pm 0.31) \times [1\ 000/(T/K)] + (4.20 + 0.28), R^2 = 0.86$

 $lg [K_{sp}^{Ta}/(mg^2 \cdot kg^{-2})] = -(2.46\pm0.11) \times ASI_{(Mn+Li)} - (4.86\pm0.30) \times [1.000/(T/K)] + (4.00+0.30), R^2 = 0.80$ 式中,温度 T 为热力学温度, ASI_{(Mn+Li)} (ASI = Al₂O₃/(CaO+Na₂O+K₂O+Li₂O+MnO), 摩尔分数比) 和 T 的适用范围分别为 0.6~1.2 和 1.073~1.373 K 的范围内。上述公式为估算硅酸盐熔体中稀有金属含量提供 了便利, 为量化花岗伟晶岩成矿模型提供了基础。

稀有金属独立矿物溶解度随温度降低和铝饱和指数的增加而急剧降低,因此,在岩浆演化过程中,由岩浆侵位、分离结晶以及流体作用等因素引起的岩浆温度降低和铝饱和指数的增加,是导致稀有金属独立矿物 结晶的主要机制。

关键词:稀有金属矿物;溶解度;温度;铝饱和指数;伟晶岩

中图分类号:P618.7;P574;P595 文献标志码:A 文章编号:1005-2321(2022)01-0081-0012

0 引言

稀有金属(Li)、铍(Be)、铌(Nb)、钽(Ta)因其独 特的物理化学性质,被广泛应用于新能源、新材料以 及新一代信息技术等战略性新兴产业,因此又被称 为战略性关键金属。稀有金属原生固体矿床类型主 要包括过铝质花岗岩-伟晶岩型、碳酸盐型以及碱 性花岗岩-正长岩型等^[1-2]。我国重要的伟晶岩型 稀有金属矿床包括新疆阿尔泰可可托海 3 号伟晶岩 脉、西昆仑白龙山伟晶岩、福建南平 31 号伟晶岩脉、 湖南仁里 5 号伟晶岩脉以及川西甲基卡 X03 伟晶 岩脉等^[3-9]。

稀有金属在过铝质花岗岩-伟晶岩中通常以独 立矿物的形式存在,矿石矿物包括锂辉石 (LiAlSi₂O₆)、透锂长石(LiAlSi₄O₁₀)、绿柱石 (Be₃Al₂Si₆O₁₈)、铌铁矿族矿物[(Mn,Fe)(Nb, Ta)₂O₆]等。稀有金属独立矿物在熔体中的晶出, 是过铝质岩浆体系中稀有金属超常富集成矿最为重 要的环节之一,而稀有金属独立矿物的结晶往往受 制于其在硅酸盐中的溶解度。为什么伟晶岩岩浆可 高度富集锂元素?为什么绿柱石通常出现在伟晶岩 的冷凝边带和石英-白云母巢状体带?为什么流体 出溶会导致稀有金属独立矿物的晶出?上述种种问 题的答案可能均与稀有金属独立矿物在花岗质熔体 中的溶解度有关。因此,稀有金属独立矿物在硅酸 盐熔体中的溶解度引起了国内外学者的广泛关注, 利用高温高压实验研究手段,开展了系统的研究工作,获得了许多重要的结论,这些结论在确立稀有金属的成矿作用方面起到了至关重要的作用^[10-19]。

本文分析整理了有关稀有金属独立矿物在硅酸 盐熔体中的溶解度及其影响因素,在此基础上,探讨 了有关稀有金属独立矿物在过铝质岩浆演化过程中 的结晶机制,进而确立了稀有金属独立矿物在过铝 质岩浆中的分布规律和成矿作用。

1 稀有金属独立矿物溶解度及其影响 因素

利用溶解、结晶、扩散等高温高压实验,前人主 要在 700~1 100 ℃和 100~200 MPa 条件下,研究 了锂辉石、绿柱石、铌锰矿和钽锰矿在硅酸盐熔体中 的溶解度^[10-22],本文图表中所用到的数据均来自上 述参考文献。稀有金属独立矿物在熔体中的溶解方 程可以用下式表示:

$$Be_{3}Al_{2}Si_{6}O_{18}(绿桂石) = 3BeO_{melt} + Al_{2}O_{3 melt} + 6SiO_{2 melt}$$
(1)
2LiAlSi_{2}O_{6}(锂辉石) = Li_{2}O_{melt} + Al_{2}O_{3 melt} + 4SiO_{2 melt} (2)

$$M_nNb_2O_6$$
(铌锰矿)= $M_nO_{melt} + Nb_2O_{5 melt}$ (3)

 $MnTa_2O_6$ (铌锰矿)= MnO_{melt} + $Ta_2O_{5 melt}$ (4)

Al₂O₃和SiO₂是硅酸盐熔体中的主要组成,通 常认为其活度在实验温压范围内保持不变,因此在 以往的研究中,通常用熔体中Li和Be的浓度表示 锂辉石和绿柱石的溶解度,而用熔体中铌锰矿和钽 锰矿组成的浓度积([MnO][Nb₂O₅]和[MnO] [Ta₂O₅],浓度单位为 mol/kg)代表铌锰矿和钽锰 矿的溶解度(K_{sp})。大量实验数据表明,铌锰矿和 钽锰矿的溶解为一致溶解,即在没有外来 MnO 和 Nb₂O₅加入的情况下,熔体中 Mn/Nb(摩尔分数 比)应该为 0.5。该数值是检验实验是否达到平衡 的 1 个重要标志。

已有的研究主要围绕挥发组分、熔体组成(铝饱 和指数,ASI=Al₂O₃/(CaO+Na₂O+K₂O+Li₂O+ BeO+MnO),摩尔分数比)以及温度(T)对稀有金 属独立矿物的影响方面开展。其结果表明,挥发组 分,尤其是氟(F)和水(H₂O)对稀有金属独立矿物 铌锰矿和钽锰矿的溶解度影响相对较弱或者没有影响^[10,12,16],而温度和熔体组成(ASI)是影响稀有金属独立矿物溶解度最为重要的2个参数。下面对此进行一一阐述。

1.1 挥发组分(F,H₂O,Li)

最早引起矿床学家关注的就是挥发分对稀有金属独立矿物溶解度的影响。Keppler^[14]研究了F对 铌锰矿和钽锰矿在准铝体系中溶解度的影响,其实 验结果表明,F能促进铌钽锰矿在熔体中的溶解度 (图 1a,b),但该结果并没有得到后来实验研究的支持。Aseri等^[10]和Fiege等^[12]的实验研究表明,熔 体中F的加入,对铌锰矿和钽锰矿溶解度影响很弱 或者几乎没有影响(图 1a,b)。如前所述,Mn/Nb

Fig. 1 Effect of flux elements on the solubility of Mn-columbite and Mn-tantalite. Data adapted from [10, 12, 14-15].

和 Mn/Ta 为 0.5 左右是平衡实验的标志,但 Keppler 实验获得的熔体中 Mn/Nb 和 Mn/Ta 值多远远大于 1,暗示其实验没有达到平衡。

 $H_2O同样如此,在1035 ℃和200 MPa条件下$ $标准花岗岩体系,Linnen^[16]发现,熔体中的<math>H_2O$ 含 量变化不会对铌锰矿和钽锰矿溶解度产生影响 (图1c)。P和B对铌钽锰矿溶解度的影响也非常 小,尤其是在过铝质熔体体系中^[13,18]。

唯一对铌钽锰矿溶解度有影响的是熔体中的 Li₂O,随着熔体中Li₂O含量的增加,铌钽锰矿溶解 度也会增加^[15](图1d)。Li的作用,与Na和K类 似,其本质可能是降低了熔体的铝饱和指数(ASI= $Al_2O_3/(Na_2O+K_2O+Li_2O),摩尔分数比)。$

有关挥发组分对绿柱石和锂辉石等含锂矿物在 硅酸盐熔体中溶解度影响的实验研究尚未系统开 展。少量实验数据表明,绿柱石在富挥发分的黑曜 岩熔体中的溶解度大于贫挥发分熔体的溶解度^[20]。

1.2 温度

温度对锂的独立矿物,包括锂辉石和透锂长石 的溶解度影响很弱(图 2a),与上述 2 种矿物共存的 硅酸盐熔体中 Li₂O 含量在 1.0%~2.0%范围内, 平均约 1.5% (相当于 Li 含量约 7 000 × 10⁻⁶)^[21,23]。但结晶实验表明,即使熔体中的 Li 含 量超过锂独立矿物的饱和溶解度,熔体中仍可能没 有锂的独立矿物晶出,因此可形成 Li 超饱和的熔 体^[21]。目前,对形成 Li 超饱熔体的有关机制还不 清楚,但 London 和 Morgan^[24]在实验中发现,Li 超 饱和熔体的形成可能与体系的水含量有关。他们在 2个实验产物中均发现了富 Li 的熔体,其中 Li₂O 含量(质量分数)分别为1.05%和1.61%,尽管前者 具有相对较少的 Li₂O 含量,但结晶相中有透锂长 石,而后者却没有任何锂的独立矿物晶出,二者较为 明显的区别是H₂O含量不同,出现透锂长石的体系 中H₂O含量较高,暗示体系中H₂O的存在可延缓 锂矿物的晶出。

温度对绿柱石、铌锰矿和钽锰矿的影响比较明 显。温度降低会导致绿柱石和铌钽锰矿的溶解度急 剧降低。实验结果表明:当温度从 850 ℃降低到 700 ℃时,如在准铝条件下 (ASI=1.0),绿柱石溶解 度由约 1 100×10⁻⁶ Be 降低到约 400×10⁻⁶ Be, 而在过铝体系中,溶解度由约 480×10⁻⁶ Be 降 低到约 120×10⁻⁶ Be^[20];当温度从 1 035 ℃降 低到 800 °C时,在过铝体系, 铌锰矿和钽锰矿的 溶解度(K_{sp})分别从 40×10⁻⁴ mol²/kg² 和 60× 10⁻⁴ mol²/kg²,降低到 2×10⁻⁴ mol²/kg² 和 7× 10⁻⁴ mol²/kg^{2[17]}。

绿柱石、铌锰矿和钽锰矿的溶解度与温度的倒数之间具有很好的线性关系(图 2),对已有的实验结果进行线性拟合,可获得稀有金属独立矿物溶解 度与温度之间的定量关系(表 1)。等式的斜率具有 重要含义,它可以清楚地指示矿物溶解度随温度变 化的趋势,通常斜率数值越大,温度对溶解度的影响 越大。同时,也可以根据关系式 dlgk/d(1/T) = $-\Delta H_{(\stackrel{\circ}{R} M)}/2$. 303R (R 为摩尔气体常数,约为 8.314 51 J/(mol·K)),计算得到绿柱石、铌锰矿 和钽锰矿在硅酸盐熔体中的溶解焓,取值范围分 别为 60~80 kJ/mol、40~150 kJ/mol 和 100~ 130 kJ/mol。

1.3 铝饱和指数

铝饱和指数对稀有金属独立矿物在硅酸盐熔体 中的溶解度影响也很大,如图 3 所示,随铝饱和指数 的升高,熔体组成性质从过碱转变成过铝质时,绿柱 石、铌锰矿和钽锰矿的溶解度明显降低。如在 200 MPa 和 800 ℃条件下,熔体的铝饱和指数从 1.00 增加到 1.36 时,与绿柱石共存的熔体中 BeO 的含量从约 2 000×10⁻⁶ 降低到约 800×10⁻⁶。

在 200 MPa 和 800 ℃条件下, 铌锰矿和钽锰矿 的溶解度与熔体铝饱和指数存在如下的关系:

 $\lg \left[K_{\rm sp}^{\rm Nb}/(\rm mol^2 \cdot kg^{-2}) \right] = (-4.10 \pm 0.11) \times$

 $ASI_{(Mn+Li)} - (0.70 \pm 0.08), R^2 = 0.96$ (5)

 $\lg \left[K_{\rm sp}^{\rm Ta}/({\rm mol}^2 \cdot {\rm kg}^{-2}) \right] = (-3.11 \pm 0.20) \times$

 $ASI_{(Mn+Li)} - (0.05 \pm 0.18), R^2 = 0.76$ (6)

目前,尚未有铝饱和指数对锂辉石等含锂矿物 在硅酸盐熔体中溶解度影响的实验研究。但锂辉石 与绿柱石类似,都是铝硅酸盐,所以熔体中铝的增加 (铝饱和指数变大)应该会导致锂辉石溶解度的 降低。

1.4 铌钽锰矿溶解度与 T 和 ASI 的关系

前人对铌锰矿和钽锰矿溶解度及其影响因素进行了系统的研究,积累了大量数据。研究结果表明 T和ASI是影响铌钽锰矿最为关键的两个参数,且 铌钽锰矿溶解度与上述两个参数具有很好的线性关 系,因此本文对已有数据进行了多元线性拟合,获得 了溶解度与T和ASI的定量关系:

Fig. 2 Effect of temperature on the solubility of independent rare-metal minerals. Data adapted from [10-13, 15-21].

表1 温度对稀有金属矿物溶解度影响

(数据引自[10-13,15-21])

Table 1	Effect of	temperature or	n solubility c	of rare metal	l minerals.	Data adapted	from	L10-13,	15-21].
---------	-----------	----------------	----------------	---------------	-------------	--------------	------	---------	---------

序号	ASI	矿物	等式	R^2	斜率	$H/(kJ \cdot mol^{-1})$
1	1.00	锂辉石	$\lg [w(Li)/10^{-6}] = -0.37 \times [1\ 000/(T/K)] + 4.56$	0.44	0.37	7.1
2	1.00	绿柱石	$\lg [w(BeO)/10^{-6}] = -2.75 \times [1\ 000/(T/K)] + 5.89$	0.95	3.32	63.6
3	>1.00	绿柱石	$\lg [w(BeO)/10^{-6}] = -4.21 \times [1\ 000/(T/K)] + 6.86$	0.91	4.21	80.6
4	0.60	铌锰矿	$\lg [K_{sp}^{Nb}/(mol^2 \cdot kg^{-2})] = -2.32 \times [1\ 000/(T/K)] + 0.42$	0.78	2.32	44.4
5	1.00	铌锰矿	$\lg [K_{sp}^{Nb}/(mol^2 \cdot kg^{-2})] = -5.56 \times [1\ 000/(T/K)] + 1.75$	0.98	5.56	106.5
6	1.20	铌锰矿	$\lg [K_{sp}^{Nb}/(mol^2 \cdot kg^{-2})] = -8.06 \times [1\ 000/(T/K)] + 3.73$	1.00	8.06	154.3
7	0.90	钽锰矿	$lg \left[K_{sp}^{Ta}/(mol^2 \cdot kg^{-2}) \right] = -5.28 \times \left[1\ 000/(T/K) \right] + 2.24$	0.98	5.28	101.1
8	1.00	钽锰矿	$\lg [K_{sp}^{Ta}/(mol^2 \cdot kg^{-2})] = -7.01 \times [1\ 000/(T/K)] + 3.17$	0.94	7.01	134.2
9	1.10	钽锰矿	$\lg [K_{sp}^{Ta}/(mol^2 \cdot kg^{-2})] = -5.19 \times [1\ 000/(T/K)] + 3.17$	0.94	5.19	99.4

注: R^2 为相关系数; ΔH 为溶解焓。等式由 origin 软件拟合而成。

Data adapted from [10-13, 15-20, 22].

 $lg [K_{sp}^{Nb}/(mg^{2} \cdot kg^{-2})] = -(2.86\pm0.14) \times ASI_{(Mn+Li)} - (4.95\pm0.31) \times [(1\ 000/(T/K)] + (4.20\pm0.28), R^{2}=0.86$ (7) $lg [K_{sp}^{Ta}/(mg^{2} \cdot kg^{-2})] = -(2.46\pm0.11) \times ASI_{(Mn+Li)} - (4.86\pm0.30) \times [(1\ 000/(T/K)] + (1.25\pm0.25)] = -(2.45\pm0.25) \times [(1.25\pm0.25)] = -(2.25\pm0.25) \times [(1.25\pm0.25)] = -(2.25\pm0.25) \times [(1.25\pm0.25)] =$

(4.00+0.30), R²=0.80 (8) 其中, 温度 T 为热力学温度, ASI_(Mn+Li) 和 T 的适用 范围分别为 0.6~1.2 和 1 073~1 373 K。

2 稀有金属独立矿物的结晶机制

2.1 稀有金属独立矿物分布特征

花岗伟晶岩中最重要的锂的独立矿物是锂辉 石,其次是透锂长石。二者在硅酸盐熔体中的稳定 存在域与温度(T)和压力(p)有关,透锂长石是高 温稳定相,随着温度降低,透锂长石会被锂辉石和石 英组合替代[25]。锂辉石等锂的独立矿物在我国一 些典型伟晶岩中均有分布,如在新疆可可托海3号 伟晶岩脉、福建南平 31 号伟晶岩脉以及川西甲基卡 X03 伟晶岩脉中。其中可可托海 3 号伟晶岩脉是我 国最重要的 Be-Li-Nb-Ta-Rb-Cs-Hf 等稀有金属综 合性矿床,3号伟晶岩脉是目前已知的世界上分异 最为完善的伟晶岩脉,从外到内可划分出9个结构 带,早期结构带(I~III带)处于岩浆阶段,流体出溶 可能发生于伟晶岩岩浆演化至 IV-V 带形成之 时[26]。锂辉石主要分布在可可托海3号伟晶岩脉 的石英-白云母带(IV带)、叶钠长石-锂辉石带 (V带)以及石英-锂辉石带(VI带),特别是后两个 结构带的锂辉石含量更高[27]。锂辉石在南平 31 号 脉伟晶岩中的分布与可可托海具有类似的特征,根 据不同结构带中的造岩矿物和副矿物展示的共生组 合特征,从边缘到核部,可将该岩脉分为5个结构 带:外部结构带(I~III带)和内部结构带(IV-V 带)。外部结构带的结晶主要处于岩浆阶段;而内部 结构带,花岗伟晶岩的结晶受热液流体影响较大,锂 辉石主要分布在石英-叶钠长石-锂辉石带(III)和 石英-锂辉石-磷锂铝石带(IV)^[28],尤其以石英-锂 辉石-磷锂铝石带为主。我国川西甲基卡 X03 伟晶 岩脉,按Černý和 Ercit^[29]分类,其属于钠长石-锂辉 石型伟晶岩,该类型伟晶岩不具明显分带,主要锂矿 物为微晶-细晶-梳状锂辉石。

Evensen和 London^[30]整理了绿柱石在多个伟晶岩中的分布特征,如图 4 所示,绿柱石主要分布在

文象结构带、石英结构带以及叶钠长石-锂辉石和 石英-锂辉石结构带中,并且绿柱石可能经过了3期 饱和结晶(图 5^[31])。这与可可托海 3 号伟晶岩脉中 的绿柱石分布特征非常类似。

除了早期结构带以外,铌钽族矿物的分布特征 与绿柱石基本相同,如:南平 31 号伟晶岩脉中,铌钽 族矿物主要分布在石英-叶钠长石-锂辉石带(III) 和石英-锂辉石-磷锂铝石带(IV)^[28];可可托海 3 号 伟晶岩脉中的铌钽族矿物也主要分布在石英-白云 母带(IV带)及之后的结构带中^[27]。

2.2 稀有金属独立矿物的结晶机制

上地壳 Li 含量约为(35 ± 11)× $10^{-6[32]}$,大多 数花岗岩中的 Li 含量小于 $100\times10^{-6[33]}$,甲基卡岩 体中 Li 含量为 $370\times10^{-6[34]}$ 。秘鲁 Macusani 黑曜 岩中的 Li 含量可达到 1 $700\times10^{-6[35]}$,含锂辉石伟 晶岩中 Li₂O 含量更高,如加拿大 Tanco 伟晶岩中 Li 平均含量为 3 $600\times10^{-6[36]}$,我国甲基卡 X03 钠 长石-锂辉石型伟晶岩脉中 Li 含量为(3 $300 \sim$ 9 600)× 10^{-6} ,平均约为 7 200×10^{-6} (Li₂O 质量分 数为 1. 53%)^[34]。相对于地壳,伟晶岩中 Li 达到了 上百倍的富集。

上地壳 Be 的平均含量约为(2~3)×10^{-6[37]},沉 积岩包括泥质岩中 Be 含量在 2.0×10⁻⁶~5.0× 10⁻⁶ 范围内^[38],我国宜春花岗岩体中 Be 含量在 $100×10^{-6}$ 到 720×10⁻⁶之间。秘鲁 Macusani 黑曜 岩中的 Be 含量最高为 $39×10^{-6[35]}$,估算的伟晶岩 中 Be 含量分布在约 $35×10^{-6}$ 到 $575×10^{-6}$ 之间,平 均为 $200×10^{-6[39]}$,位于德国和捷克边界的 Ehrenfriedersdorf 伟晶岩熔融包裹体中 Be 平均含量为 (187±242)×10^{-6[40]}。伟晶岩中 Be 的富集程度为 几倍至几十倍上地壳 Be 含量。

Nb和Ta在上地壳中的平均含量分别约为 25×10⁻⁶和 2.2×10^{-6[37]}。法国 Beauvoir 花岗岩 中 Nb 和 Ta 的含量可分别达到 158×10⁻⁶和 425× 10-6[41]。我国宜春花岗岩体的黄玉-锂云母花岗岩 中Nb、Ta含量分别为(52~80)×10⁻⁶和(99~196)× 10^{-6} ,平均为 69×10^{-6} 和 137×10^{-6} [3]。秘鲁 Macusani 黑曜岩中的 Nb、Ta 含量分别为 51×10⁻⁶ 和 24×10^{-6[35]}。澳大利亚 Greenbushes 伟晶岩中 Nb、Ta 含量分别为 92×10⁻⁶ 和 150×10^{-6[42]}。加 拿大 Tanco 伟晶岩中 Nb 和 Ta 平均含量分别为 56×10⁻⁶和 300×10^{-6[36]}。位于德国和捷克边界的 Ehrenfriedersdorf 伟晶岩熔融包裹体中 Nb 含量为 (8~238)×10⁻⁶,而 Ta 含量可高达 521×10^{-6[40]}。 马拉维 Mt. Malosa 花岗岩和伟晶岩中熔融包裹体 的 Nb 和 Ta 含量分别为(76~190)×10⁻⁶和(104~ 561)×10^{-6[43]}。伟晶岩中 Nb 的富集程度为几倍 至十几倍上地壳 Nb 含量,而 Ta 的富集程度达到 上百倍上地壳 Ta含量。

根据稀有金属在伟晶岩的含量,在稀有金属独 立矿物饱和溶解度的基础上,我们认为温度和熔体 组成变化是导致稀有金属独立矿物结晶的主要 机制。

2.2.1 温度降低

基于稀有金属独立矿物溶解度数据,根据伟晶 岩中稀有金属的含量,可以计算出其结晶的温度。

http://www.earthsciencefrontiers.net.cn 地学前缘,2022,29(1)

如图 5 所示,甲基卡 X03 号伟晶岩脉锂辉石的平均结 晶温度应该在 690 ℃左右,尽管津巴布韦 Benson 2 号伟晶岩脉 Be 含量仅为 30×10^{-6[30]},绿柱石也能 在 420~580 ℃范围晶出,而 Tanco 伟晶岩中铌钽 矿物的结晶温度估计在 345~560 ℃和 390~ 620 ℃。矿物温度计、稳定同位素、包裹体数据以及 实验研究表明,伟晶岩的结晶温度应该在 400~ 700 ℃的范围内^[35,37,44-49]。因此,上述估计的稀有 金属独立矿物的结晶温度都在合理范围内,暗示温 度变化可能是导致稀有金属矿物结晶的重要机制。

在准铝体系中,当温度从 700 ℃降低到 400 ℃

时,熔体中 Li_2O 、Be、Nb 和 Ta 含量分别从 1.50%、 430×10⁻⁶、280×10⁻⁶和 1 100×10⁻⁶降低到 1.00%、22×10⁻⁶、130×10⁻⁶和 560×10⁻⁶。其中 温度对 Be 的影响最大,BeO 的含量有近 1 个数量 级的降低,因此,温度对绿柱石饱和结晶的影响 最大。

伟晶岩岩浆侵入到围岩,因为二者之间存在显 著的温度差,可导致熔体液相线过冷(undercooling),稀有金属独立矿物溶解度降低,其中以绿柱 石溶解度降低最为明显,绿柱石出现第1次饱和,这 可能是绿柱石在伟晶岩外部带,如冷凝边或者文象 结构带大量晶出的原因。

尽管挥发分,如F、H₂O等对铌锰矿和钽锰矿 等稀有金属独立矿物溶解度影响不大,而且实验数 据表明^[10,12,16]硅酸盐熔体具有携带大量稀有金属的 能力^[17,20-21],但挥发分可降低硅酸盐熔体的固相线 温度^[24,35],从而延长岩浆的演化时限,导致稀有金 属独立矿物在降低的温度下晶出。

2.2.2 ASI 增加

在相同的温度下,ASI的增加,也能降低熔体中 稀有金属独立矿物的溶解度,导致矿物的结晶,如在 700 ℃条件下,绿柱石在准铝中的溶解度为430× 10⁻⁶ Be,而在过铝体系中仅为130×10⁻⁶ Be。Nb 和 Ta 同样如此,当铝饱和指数从1.00 增加到1.20 时,熔体中 Nb 和 Ta 含量,分别从280×10⁻⁶ 和 1 100×10⁻⁶下降到80×10⁻⁶和120×10⁻⁶。尽管 没有有关铝饱和指数对锂独立矿物溶解度影响的实 验研究,但因为锂独立矿物组成含有 Al₂O₃(锂辉石 LiAlSi₂O₆ 和透锂长石 LiAlSi₄O₁₀),因此,与绿柱 石类似,ASI的增加(Al₂O₃ 活度增加)可能同样会 导致锂独立矿物溶解度的降低。

随着分离结晶演化,残余熔体 ASI 会增加^[50], 白云母是典型的过铝质矿物,白云母的结晶,暗示熔 体中的 ASI 会达到一个极大值(1.3~1.4)^[51]。在 石英-白云母带中,白云母的大量晶出暗示熔体中 Al₂O₃ 的活度或者说 ASI 的增加,这可能是导致稀 有金属独立矿物绿柱石、铌钽矿物甚至锂独立矿物 结晶的原因,这是稀有金属独立矿物如绿柱石的第 二次饱和结晶。

2.2.3 流体作用

流体在稀有金属独立矿物结晶方面起到了 2 个 方面的作用:第一是改变了硅酸盐熔体的物理化学 性质;第二是"自交代"作用。在伟晶岩岩浆结晶的 早期阶段,晶出的矿物组合多以无水矿物为主,如石 英、长石等,随着体系中分离结晶的进行,残余熔体 中的水必然会增多,当水达到饱和时,就会发生流体 相出溶,出现独立的流体相,伟晶岩演化进入到岩 浆-热液阶段。流体出溶对稀有金属独立矿物结晶 具有重要的意义。首先,流体出溶可以降低熔体的 温度(temperature decrease)^[52];其次,流体出溶可 改变熔体组成。在高温高压实验中,常在流体相中 发现过碱性玻璃或者含挥发分的盐类(如硼酸盐或 者 NaPO₃ 等)^[35,53-54],暗示碱金属比铝更倾向分配 进入到流体相中,从而导致熔体中 ASI 的增大,而 元素在流体/熔体相间的分配实验也表明,相比于初 始物 ASI,实验产物玻璃的 ASI 往往更大^[55-56],表 明熔流体作用可以导致熔体组成的变化。正是因为 流体的出溶,影响了残余熔体的温度和组成,从而导 致了稀有金属独立矿物在岩浆--热液过渡阶段体系 中的结晶。

LCT 型伟晶岩中往往存在一些蚀变作用,如钠 长石化或云英岩化[57],精细矿物学研究表明这些蚀 变过程可能对 Nb 和 Ta 的结晶起到了很重要的作 用^[58-63]。van Lichtervelde 等^[64]发现加拿大 Tanco 伟晶岩中某些强烈蚀变的地方往往具有最高品位的 钽矿化,由此提出的一个可能的解释是含钽矿物的 结晶发生在流体-熔体共存阶段,流体提供了含钽 矿物结晶所需的活动性元素,如 Mn 和 Fe 等,而熔 体提供了不活动元素 Ta。最近,该推论得到了高温 高压实验结果的支持。McNeil 等^[65]开展了富 Nb、 Ta 熔体与富 Mn 流体相互作用的实验研究,结果表 明,中等温度的流体可以为熔体提供铌锰矿和钽锰 矿结晶所需的 Mn,并导致铌锰矿和钽锰矿的结晶。 因此,岩浆-热液过渡阶段,稀有金属独立矿物,尤 其是铌铁矿族矿物的结晶,很有可能是富活动性元 素(Mn和Fe)与富高场强元素(Nb和Ta)相互作用 的"自交代"的结果。

3 结论与展望

(1)根据稀有金属独立矿物的溶解度,基于伟晶 岩中稀有金属含量,本文认为温度和熔体组成是影 响稀有金属独立矿物晶出的主要原因。稀有金属独 立矿物结晶随温度和熔体组成的变化能合理地解释 稀有金属独立矿物的主要分布特征。

(2)利用稀有金属独立矿物溶解度尚不能解释 一些特殊的地质现象,如新疆 3 号伟晶岩脉中的糖 粒状钠长石带(II带)内,绿柱石和磷灰石紧密共生, 张辉^[26]提出是富 P 熔体和富 Si 熔体不混溶,Be 强 烈分配进入富 P 熔体相的结果,尽管在熔融包裹体 中已经找到了富 P 熔体和富 Si 熔体不混溶的证 据^[40],但目前缺少高温高压的实验支持,尚不清楚 引起二者不混溶的机制和条件。

(3)相比于上地壳组成,稀有金属,尤其是 Li 和 Ta,在花岗伟晶岩岩浆中数百倍的超常富集仍然是 个关注的问题^[66-67]。稀有金属能在云母类矿物中 高度富集已经得到了诸多地质事实的证实^[68-70]。 伟晶岩岩浆具有 S 型花岗岩岩浆的特征,其初始岩 浆可能与白云母的脱水熔融有关^[71],初始岩浆中稀 有金属的含量与原岩中稀有金属含量和其在熔体相 与残留矿物相间的分配系数有关。但目前有关稀有 金属在白云母等矿物相与过铝质熔体相间分配系数 的研究还相当缺乏,这极大阻碍了对稀有金属在过 铝质岩浆中超常富集的认识,因此,极有必要开展相 关的高温高压实验研究工作。

衷心感谢审稿专家的意见!感谢谢桂青老师在论文发 表过程中给予的帮忙!

参考文献

- LINNEN R L, SAMSON I M, WILLIAMS-JONES A E, et al. Geochemistry of the rare-earth element, Nb, Ta, Hf, and Zr deposits [M]//Treatise on geochemistry. Amsterdam: Elsevier, 2014: 543-568.
- [2] LINNEN R L, VAN LICHTERVELDE M, ČERNÝ P. Granitic pegmatites as sources of strategic metals[J]. Elements, 2012, 8(4): 275-280.
- [3] LIN Y, POLLARD P J, HU S X, et al. Geologic and geochemical characteristics of the Yichun Ta-Nb-Li deposit, Jiangxi Province, South China [J]. Economic Geology, 1995, 90(3): 577-585.
- [4] 王汝成,吴福元,谢磊,等.藏南喜马拉雅淡色花岗岩稀有 金属成矿作用初步研究[J].中国科学:地球科学,2017,47
 (8):871-880.
- [5] 吴福元,刘志超,刘小驰,等.喜马拉雅淡色花岗岩[J].岩石学报,2015,31(1):1-36.
- [6] 张辉,吕正航,唐勇.新疆阿尔泰造山带中伟晶岩型稀有金属矿床成矿规律、找矿模型及其找矿方向[J].矿床地质, 2019,38(4):792-814.
- [7] XU Z Q, FU X F, WANG R C, et al. Generation of lithiumbearing pegmatite deposits within the Songpan-Ganze orogenic belt, East Tibet[J]. Lithos, 2020, 354/355; 105281.
- [8] WANG H, GAO H, ZHANG X Y, et al. Geology and geochronology of the super-large Bailongshan Li-Rb-(Be) raremetal pegmatite deposit, West Kunlun orogenic belt, NW China[J]. Lithos, 2020, 360/361: 105449.
- [9] XIONG Y Q, JIANG S Y, WEN C H, et al. Granite-pegmatite connection and mineralization age of the giant Renli Ta-Nb deposit in South China: constraints from U-Th-Pb geochronology of coltan, monazite, and zircon[J]. Lithos, 2020, 358/359: 105422.
- [10] ASERI A A, LINNEN R L, CHE X D, et al. Effects of fluorine on the solubilities of Nb, Ta, Zr and Hf minerals in highly fluxed water-saturated haplogranitic melts[J]. Ore Geology Reviews, 2015, 64: 736-746.

- BARTELS A, HOLTZ F, LINNEN R L. Solubility of manganotantalite and manganocolumbite in pegmatitic melts[J]. American Mineralogist, 2010, 95(4): 537-544.
- [12] FIEGE A, KIRCHNER C, HOLTZ F, et al. Influence of fluorine on the solubility of manganotantalite ($MnTa_2O_6$) and manganocolumbite ($MnNb_2O_6$) in granitic melts: an experimental study[J]. Lithos, 2011, 122(3/4): 165-174.
- [13] FIEGE A, SIMON A, LINSLER S A, et al. Experimental constraints on the effect of phosphorous and boron on Nb and Ta ore formation[J]. Ore Geology Reviews, 2018, 94: 383-395.
- KEPPLER H. Influence of fluorine on the enrichment of high field strength trace elements in granitic rocks[J]. Contributions to Mineralogy and Petrology, 1993, 114(4): 479-488.
- [15] LINNEN R L. The solubility of Nb-Ta-Zr-Hf-W in granitic melts with Li and Li + F: constraints for mineralization in rare metal granites and pegmatites[J]. Economic Geology, 1998, 93(7): 1013-1025.
- LINNEN R L. The effect of water on accessory phase solubility in subaluminous and peralkaline granitic melts [J].
 Lithos, 2005, 80(1/2/3/4); 267-280.
- [17] LINNEN R L, KEPPLER H. Columbite solubility in granitic melts: consequences for the enrichment and fractionation of Nb and Ta in the Earth's crust[J]. Contributions to Mineralogy and Petrology, 1997, 128(2/3): 213-227.
- [18] TANG Y, ZHANG H, RAO B. The effect of phosphorus on manganocolumbite and mangaotantalite solubility in peralkaline to peraluminous granitic melts[J]. American Mineralogist, 2016, 101(2): 415-422.
- [19] CHEVYCHELOV V Y, BORODULIN G P, ZARAISKY G P. Solubility of columbite, (Mn, Fe)(Nb, Ta)₂O₆, in granitoid and alkaline melts at 650 850 °C and 30 400 MPa: an experimental investigation [J]. Geochemistry International, 2010, 48(5): 456-464.
- [20] EVENSEN J M, LONDON D, WENDLANDT R F. Solubility and stability of beryl in granitic melts[J]. American Mineralogist, 1999, 84(5/6): 733-745.
- [21] MANETA V, BAKER D R, MINARIK W. Evidence for lithium-aluminosilicate supersaturation of pegmatite-forming melts[J]. Contributions to Mineralogy and Petrology, 2015, 170(1): 1-16.
- VAN LICHTERVELDE M, HOLTZ F, HANCHAR J M.
 Solubility of manganotantalite, zircon and hafnon in highly fluxed peralkaline to peraluminous pegmatitic melts [J].
 Contributions to Mineralogy and Petrology, 2010, 160(1): 17-32.
- [23] STEWART D B. Petrogenesis of lithium-rich pegmatites[J]. American Mineralogist, 1978, 63: 970-980.
- [24] LONDON D, MORGAN G B. Experimental crystallization of the Macusani obsidian, with applications to lithium-rich

granitic pegmatites[J]. Journal of Petrology, 2017, 58(5): 1005-1030.

- [25] LONDON D. Experimental phase equilibria in the system LiAlSiO₄-SiO₂-H₂O: a petrogenetic grid for lithium-rich pegmatites[J]. American Mineralogist, 1984, 69(11/12): 995-1004.
- [26] 张辉. 岩浆-热液过渡阶段体系中不相容元素地球化学行为 及其机制:以新疆阿尔泰3号伟晶岩脉研究为例[D]. 贵阳: 中国科学院地球化学研究所,2001.
- [27] 邹天人,李庆昌. 中国新疆稀有及稀土金属矿床[M]. 北京: 地质出版社, 2006.
- [28] 饶灿. 福建南平 31 号花岗伟晶岩的矿物学研究与岩浆-热液 演化示踪[D]. 南京:南京大学,2009.
- [29] ČERNÝ P, ERCIT T S. The classification of granitic pegmatites revisited[J]. The Canadian Mineralogist, 2005, 43 (6): 2005-2026.
- [30] EVENSEN J M, LONDON D. Experimental silicate mineral/melt partition coefficients for beryllium and the crustal Be cycle from migmatite to pegmatite[J]. Geochimica et Cosmochimica Acta, 2002, 66(12); 2239-2265.
- [31] MANER J L IV, LONDON D, ICENHOWER J P. Enrichment of manganese to spessartine saturation in granite-pegmatite systems[J]. American Mineralogist, 2019, 104(11): 1625-1637.
- [32] TENG F Z, MCDONOUGH W F, RUDNICK R L, et al. Lithium isotopic composition and concentration of the upper continental crust [J]. Geochimica et Cosmochimica Acta, 2004, 68(20): 4167-4178.
- [33] TOMASCAK P B, MAGNA T, DOHMEN R. Lithium in the deep earth: mantle and crustal systems[M]//Advances in lithium isotope geochemistry. Berlin: Springer, 2016: 119-156.
- [34] 付小芳, 侯立玮, 梁斌, 等. 甲基卡式花岗伟晶岩型锂矿床成 矿模式与三维勘查找矿模型[M]. 北京:科学出版社, 2017.
- [35] LONDON D, MORGAN G B, HERVIG R L. Vapor-undersaturated experiments with Macusani glass + H₂O at 200 MPa, and the internal differentiation of granitic pegmatites[J]. Contributions to Mineralogy and Petrology, 1989, 102(1): 1-17.
- [36] STILLING A, ĆERNÝ P, VANSTONE P J. The Tanco pegmatite at Bernic Lake, Manitoba. XVI. Zonal and bulk compositions and their petrogenetic significance [J]. The Canadian Mineralogist, 2006, 44(3): 599-623.
- [37] TAYLOR S R, MCLENNAN S M. The geochemical evolution of the continental crust [J]. Reviews of Geophysics, 1995, 33(2): 241-265.
- [38] GREW E S. Beryllium in metamorphic environments (emphasis on aluminous compositions)[J]. Reviews in Mineralogy and Geochemistry, 2002, 50(1): 487-549.
- [39] LONDON D, EVENSEN J M. Beryllium in silicic magmas and the origin of beryl-bearing pegmatites[J]. Reviews in

Mineralogy and Geochemistry, 2002, 50(1): 445-486.

- [40] WEBSTER J D, THOMAS R, RHEDE D, et al. Melt inclusions in quartz from an evolved peraluminous pegmatite: geochemical evidence for strong tin enrichment in fluorinerich and phosphorus-rich residual liquids[J]. Geochimica et Cosmochimica Acta, 1997, 61(13): 2589-2604.
- [41] CUNEY M, MARIGNAC C, WEISBROD A. The Beauvoir topaz-lepidolite albite granite (Massif Central, France): the disseminated magmatic Sn-Li-Ta-Nb-Be mineralization[J]. Economic Geology, 1992, 87(7): 1766-1794.
- MCNEIL A G. Crystallization processes and solubility of columbite-(Mn), tantalite-(Mn), microlite, pyrochlore, wodginite and titanowodginite in highly fluxed haplogranitic melts[D]. London: The university of Western Ontario, 2018.
- [43] ZAJACZ Z, HALTER W E, PETTKE T, et al. Determination of fluid/melt partition coefficients by LA-ICPMS analysis of co-existing fluid and silicate melt inclusions: controls on element partitioning [J]. Geochimica et Cosmochimica Acta, 2008, 72(8): 2169-2197.
- [44] COLOMBO F, SFRAGULLA J, DEL TÁNAGO J G. The garnet-phosphate buffer in peraluminous granitic magmas: a case study from pegmatites in the Pocho District, Córdoba, Argentina [J]. The Canadian Mineralogist, 2012, 50(6): 1555-1571.
- GAMMEL E M, NABELEK P I. Fluid inclusion examination of the transition from magmatic to hydrothermal conditions in pegmatites from San Diego County, California[J].
 American Mineralogist, 2016, 101(8): 1906-1915.
- [46] KONTAK D J, DOSTAL J, KYSER T K, et al. A petrological, geochemical, isotopic and fluid-inclusion study of 370 Ma pegmatite-aplite sheets, Peggys Cove, Nova Scotia, Canada[J]. The Canadian Mineralogist, 2002, 40(5): 1249-1286.
- LONDON D, HUNT L E, SCHWING C R, et al. Feldspar thermometry in pegmatites: truth and consequences [J]. Contributions to Mineralogy and Petrology, 2019, 175(1): 1-21.
- [48] MORGAN VI G B, LONDON D. Crystallization of the Little Three layered pegmatite-aplite dike, Ramona District, California[J]. Contributions to Mineralogy and Petrology, 1999, 136(4): 310-330.
- [49] SIEGEL K, WAGNER T, TRUMBULL R B, et al. Stable isotope (B, H, O) and mineral-chemistry constraints on the magmatic to hydrothermal evolution of the Varuträsk rareelement pegmatite (Northern Sweden)[J]. Chemical Geology, 2016, 421; 1-16.
- [50] CHAPPELL B W. Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites[J]. Lithos, 1999, 46(3): 535-551.
- [51] ACOSTA-VIGIL A, LONDON D, MORGAN G B, et al. Solubility of excess alumina in hydrous granitic melts in equi-

librium with peraluminous minerals at 700 - 800 °C and 200 MPa, and applications of the aluminum saturation index [J]. Contributions to Mineralogy and Petrology, 2003, 146 (1): 100-119.

- [52] BURNHAM C W, DAVIS N F. The role of H₂O in silicate melts: Si₃O₈-H₂O to 10 kilobars and 700 − 1 000 °C [J]. American Journal of Science, 1974, 274: 902-940.
- [53] LONDON D. Internal differentiation of rare-element pegmatites: effects of boron, phosphorus, and fluorine [J]. Geochimica et Cosmochimica Acta, 1987, 51(3): 403-420.
- LONDON D, MORGAN G B, BABB H A, et al. Behavior and effects of phosphorus in the system Na₂O-K₂O-Al₂O₃-SiO₂-P₂O₅-H₂O at 200 MPa (H₂O) [J]. Contributions to Mineralogy and Petrology, 1993, 113(4): 450-465.
- [55] BORCHERT M, WILKE M, SCHMIDT C, et al. Partitioning of Ba, La, Yb and Y between haplogranitic melts and aqueous solutions: an experimental study[J]. Chemical Geology, 2010, 276(3/4): 225-240.
- [56] HU X Y, BI X W, SHANG L B, et al. An experimental study of tin partition between melt and aqueous fluid in F/Cl-coexisting magma[J]. Chinese Science Bulletin, 2009, 54 (6): 1087-1097.
- [57] ČERNÝ P. Characteristics of pegmatite deposits of tantalum [M]//Lanthanides, tantalum and niobium. Berlin: Springer-Verlag, 1989: 195-239.
- [58] PARTINGTON G A, MCNAUGHTON N J, WILLIAMS I
 S. A review of the geology, mineralization, and geochronology of the Greenbushes Pegmatite, Western Australia[J].
 Economic Geology, 1995, 90(3): 616-635.
- [59] ČERNÝ P. The Tanco rare-element pegmatite deposit, Manitoba: regional context, internal anatomy, and global comparisons[M]//Rare-element geochemistry of ore deposits. St John's: Geological Association of Canada, 2005: 127-158.
- [60] RAO C, WANG R C, HU H, et al. Complex internal textures in oxide minerals from the Nanping No. 31 dyke of granitic pegmatite, Fujian Province, Southeastern China[J]. The Canadian Mineralogist, 2009, 47(5): 1195-1212.
- [61] BREITER K, KORBELOVÁ Z, CHLÁDEK S, et al. Diversity of Ti-Sn-W-Nb-Ta oxide minerals in the classic granite-related magmatic-hydrothermal Cínovec/Zinnwald Sn-W-Li deposit (Czech Republic)[J]. European Journal of

Mineralogy, 2017, 29(4): 727-738.

- [62] WU M Q, SAMSON I M, ZHANG D H. Textural and chemical constraints on the formation of disseminated granite-hosted W-Ta-Nb mineralization at the Dajishan deposit, Nanling Range, Southeastern China[J]. Economic Geology, 2017, 112(4): 855-887.
- [63] WU M Q, SAMSON I M, ZHANG D H. Textural features and chemical evolution in Ta-Nb oxides: implications for deuteric rare-metal mineralization in the Yichun Granite-Marginal Pegmatite, Southeastern China[J]. Economic Geology, 2018, 113(4): 937-960.
- [64] VAN LICHTERVELDE M, BEZIAT D, SALVI S, et al. Textures and chemical evolutions in tantalum oxides: a discussion of magmatic versus metasomatic origins for Ta mineralization in the Tanco Lower Pegmatite, Manitoba, Canada[J]. Economic Geology, 2007, 102(2): 257-276.
- [65] MCNEIL A G, LINNEN R L, FLEMMING R L, et al. An experimental approach to examine fluid-melt interaction and mineralization in rare-metal pegmatites[J]. American Mineralogist, 2020, 105(7): 1078-1087.
- [66] LONDON D. Geochemistry of alkalis and alkaline earths in ore-forming granites, pegmatites, and rhyolites[M]//Rareelement geochemistry of ore deposits. St John's: Geological Association of Canada, 2005; 17-43.
- [67] LINNEN R L, CUNEY M. Granite-related rare-element deposits and experimental constraints on Ta-Nb-W-Sn-Zr-Hf mineralization[M]//Rare-element geochemistry and mineral deposits. St John's: Geological Association of Canada, 2005: 45-67.
- [68] 王汝成,谢磊,诸泽颖,等.云母:花岗岩-伟晶岩稀有金属成 矿作用的重要标志矿物[J].岩石学报,2019,35(1):69-75.
- [69] BREITER K, VAŇKOVÁ M, GALIOVÁ M V, et al. Lithium and trace-element concentrations in trioctahedral micas from granites of different geochemical types measured via laser ablation ICP-MS [J]. Mineralogical Magazine, 2017, 81(1): 15-33.
- [70] LI J, HUANG X L, HE P L, et al. *In situ* analyses of micas in the Yashan granite, South China: constraints on magmatic and hydrothermal evolutions of W and Ta-Nb bearing granites[J]. Ore Geology Reviews, 2015, 65: 793-810.
- [71] LONDON D. Pegmatite[M]. Quebec: Mineralogical Association of Canada, 2018.