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Remediation Effects of Three Complex Iron-based Passivators on High
Arsenic Soil in Southwestern Guizhou
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YANG Qihao* ZHAO Zhenjie' ’

(1. State Key Laboratory of Environmental Geochemistry Institute of Geochemistry Chinese Academy of Sciences
Guiyang 550081 China; 2. University of Chinese Academy of Sciences Beijing 100049 China; 3. School of
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Abstract: This research aimed to study the effects of different composite iron-based passivators on the remediation of high arsenic ( As)

soil and select the most appropriate technology with better effects on passivating arsenic in soil and inhibiting arsenic accumulation in
rice grains so that provided scientific basis for the high arsenic soil remediation and management in the southwest Guizhou Province.
The rice pot experiments of three commercially available composite iron-based passivators ( composite iron-based biochar ( A)  iron—
based biochar ( B) and iron potassium-based humic acid ( C) ) remediation effects on the high arsenic soil from southwestern Guizhou
were carried out which including the changes of available arsenic and species in soil and arsenic content in rice grains under different
dosages (0.67 g/kg 1.34 g/kg 2.68 g/kg 5.36 g/kg) . The results show that the three composite iron-based passivators can in—
crease soil pH and passivate soil arsenic in different degrees. The passivation rate reached 26. 2% when using the passivator C at the
dosage of 5.36 g/kg. Each treatment changed the occurrence of soil arsenic and reduced the non-obligate adsorbed As obligate ad-
sorbed As and amorphous and weakly crystalline Fe/Al oxide bound state As to varying degrees for passivation agent A and B they
mainly changed As to crystalline Fe/Al oxide bound state for C treatment it mainly changed As to residual form. Each treatment sig—
nificantly inhibited the arsenic content in polished rice. Compared with the control the reduction rate of rice arsenic reached 48. 6%
when compound passivator A at the dosage of 1. 34 g/kg. Because the soil arsenic passivation rate can't fully characterize the rice’s ac—
cumulation capacity it should” be used as the only inspection index for soil arsenic remediation. Therefore the soil passivation rate
and the influence on arsenic accumulation in rice grains should be comprehensively considered when evaluating different soil remedia—
tion techniques.

Key words: southwestern Guizhou; complex iron-based passivators; high arsenic soil; rice; remediation



