Vol. 25, No. 2 Mar., 2006

# 广西花山--姑婆山燕山期花岗岩的 地球化学特征及成因研究

顾晟彦1,华仁民1,戚华文1,2

(1. 内生金属矿床成矿机制研究国家重点实验室,南京大学地球科学系,江苏南京 210093;2. 中国科学院地球化学研究所,贵州贵阳 550002)

摘 要:广西花山-姑婆山燕山期花岗岩体以高硅、高钾、富碱、低磷、准铝质为特征,具有较高的 TFeO/MgO 值,富 集大离子亲石元素、高场强元素和稀土元素,普遍出现褐帘石,应归属于富钾的钙碱性花岗岩(KCG)系列岩石,相当 于高钾钙碱性 I 型花岗岩。产生于后造山陆内挤压向拉张转换的地球动力学背景下,其形成与岩石圈伸展-减薄、亏 损地幔岩浆的上涌和富含金云母-钾质碱镁闪石的岩石圈地幔的部分熔融有关。 关键词:燕山期花山-姑婆山花岗岩体;KCG;含金云母-钾质碱镁闪石的岩石圈地幔;后造山 中图分类号: P588.12<sup>+</sup>1;P581 文献标识码;A 文章编号:1000-6524 (2006) 02-0097-13

# Geochemistry and petrogenesis of the Yanshanian Huashan-Guposhan granites in Guangxi

GU Sheng-yan<sup>1</sup>, HUA Ren-min<sup>1</sup> and QI Hua-wen<sup>1,2</sup>

(1. State Key Laboratory for Mineral Deposits Research, Department of Earth Sciences, Nanjing University, Nanjing 210093, China; 2. Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China)

**Abstract:** The Yanshanian Huashan-Guposhan granites in Guangxi are characterized by high silicon, high potassium, high alkaline, low phosphor and metaluminous nature, with relatively high FeO<sup>T</sup>/MgO ratios and enrichment of LILE, HFSE and REE. In addition, they commonly contain allanites. They can thus be assigned to the high-potassium calc-alkaline granite (or KCG in the classification system of Barbarin, 1999). They were formed during the conversion of the tectonic setting from compression to extension. The extension-thinning of lithosphere, the upwelling of the depleted mantle, and the partial melting of the lithospheric mantle rich in phlogopite and K-richterite might have served as the principal factors in producing this kind of granitic rocks. **Key Words:** Yanshanian Huashan-Guposhan granites; KCG; lithospheric mantle rich in phlogopite-K-rich-

terite; post-orogenic period

花岗岩问题是地质学界长期关心的重要课题。 华南尤其是南岭地区以不同时代、不同成因类型花 岗岩类的广泛分布为特征,并发育与花岗岩类相关 的极其丰富的有色、稀有金属矿产资源,因而一直受 到地质学界的重视,其中,燕山期花岗岩占有重要地 位(莫柱孙等,1980;卢焕章,1986;陈毓川等,1989; 地矿部南岭项目花岗岩专题组,1989;夏宏远等, 1991;陈毓川等,1995)。上世纪 90 年代中期以来, 有关华南地区中生代岩石圈演化、华南花岗岩类成 因的研究不断深入,并取得不少新的成果(王德滋

收稿日期: 2005-01-08;修订日期: 2005-09-20

基金项目:国家重点基础研究发展规划研究项目(1999CB403209);国家自然科学基金重点资助项目(40132010)

作者简介:顾晟彦(1979-),女,汉,矿物岩石矿床学博士研究生,E-mail: xirudagu@sohu.com。

等,1999,2002;陈江峰等,1999;沈渭洲等,2000;肖 庆辉等,2002)。对南岭花岗岩成因及相关的大陆动 力学的研究正进入一个新的高潮。

花山-姑婆山复式岩体是南岭花岗岩的重要代 表之一。前人已经对本区花岗岩做了许多工作(张 德全等,1985;朱金初等,1988,1989;杨学明等, 1990),但是在许多方面的认识还很不一致。对于岩 石的成因类型,有的认为是典型的改造型或S型花 岗岩(汪传胜,2004),有的认为是 I(燕山早期)+S 型(燕山晚期)花岗岩(朱金初等,1988,1989),有的 认为是 Li-F 花岗岩(王联魁等,2000),也有的把它 们归入钾玄质岩石系列(李献华等,1999)。由于花 山-姑婆山花岗岩处在华南很特征的一条低 t<sub>DM</sub>花岗 岩带——"十杭带"上(Gilder *et al.*,1996;Chen and Jahn, 1998),构造位置上又位于扬子和华夏两大古 陆块的交界处(洪大卫等,2002),所以具有特殊和典 型的研究意义。本文在前人研究的基础上,着重对 花山-姑婆山花岗岩的岩石地球化学特征进行了较 系统深入的研究,并提出对其成因归属、物质来源、 构造背景的一些看法。

## 1 地质概况

花山-姑婆山复式花岗岩岩体位于广西东北部 富川县、贺州市和钟山县交界区域,史称"富贺钟"地 区。大地构造位置处在湘桂海西-印支坳陷区与粤 北-东江海西期、燕山复合坳陷区交汇部位(图1)。 1.1 花山复式岩体



图 1 花山-姑婆山复式花岗岩地质简图[据朱金初等(1989)、冯佐海等(2002)及张佩华(2003)资料改编] Fig. 1 Simplified regional geological map of the Huashan-Guposhan granite complex [modified from Zhu Jinchu et al. (1989), Feng Zuohai et al. (2002) and Zhang Peihua (2003)]

花山复式岩体呈近圆形,出露面积约571 km<sup>2</sup>。 岩体北部侵入于寒武纪变质岩和泥盆纪砂页岩中, 南部仅与泥盆纪接触,围岩受岩体侵入的影响,产生 角岩化、大理岩化和砂卡岩化。花山复式岩体由印 支期牛庙岩体和同安岩体(210 Ma,朱金初等, 1988)、燕山早期花山主体花岗岩(165 Ma,朱金初 等,1988)和燕山晚期美华和银屏等细粒花岗岩体 (129 Ma,朱金初等,1988)组成。其中牛庙岩体与同 安岩体为石英二长闪长岩及石英闪长岩,花山主体 为中粒(角闪石)黑云母花岗岩,美华和银屏为细粒 花岗岩。

#### 1.2 姑婆山复式岩体

姑婆山复式岩体呈圆形,出露面积约 678 km<sup>2</sup>。 岩体西南及西北缘侵入中-上泥盆统,东南部和东北 部侵入寒武系及下泥盆统,东部与大宁岩体接触。 围岩蚀变有角岩化、硅化、大理岩化和矽卡岩化等。 晚期的红花源-新路断裂呈南北向展布,将岩体切割 成东西两个部分,分别称为东体和西体。含有大量

99

暗色闪长质包体的里松岩体近等轴状分布于姑婆山 东体的中心,面积超过 70 km<sup>2</sup>。

姑婆山复式岩体岩性及分布较为复杂,岩基中 心的里松岩体为中粒似斑状角闪石黑云母二长花岗 岩(160 Ma,张德全等,1985;杨学明等,1990),里松 岩体外围的姑婆山东体以中粗粒似斑状黑云母钾长 花岗岩(148 Ma,张德全等,1985)为主,而西体则以 中细粒斑状黑云母花岗岩-细粒花岗岩为主(140 Ma,张德全等,1985;杨学明等,1990)。

1.3 样品采集

本文研究的花山-姑婆山花岗岩不包括印支期 的牛庙岩体与同安岩体。

对于燕山期花岗岩,根据前人的年龄资料分别 采集燕山早期和晚期的样品。在花山岩体中,燕山 早期花岗岩的代表性样品主要取自花山主体中央相 带内各采石场(样号 HS),燕山晚期花岗岩采自美华 岩体和银屏岩体(样号 MH)。在姑婆山岩体中,燕 山早期花岗岩取自里松岩体和姑婆山东体中的粗粒 花岗岩(样号 LS),燕山晚期样品分别采自新路矿区 的细粒黑云母花岗岩和姑婆山西体中的细粒花岗岩 (样号 GP)。

2 岩石地球化学特征和岩石类型

对研究区 30 件代表性样品的主量和微量元素 含量进行了测试。主量元素分析在南京大学现代分 析中心实验室的 ARL9800XP + 型 X 射线荧光光谱 仪上测试。使用 Li<sub>2</sub>B<sub>4</sub>O<sub>7</sub> 和 LiBO<sub>2</sub>(67:33) 混合熔剂 和加拿大 Glaisse 高温自动燃气熔样机制样,测试条 件:X射线工作电压 40 kV,电流 60 mA。微量和稀 土元素分析在中国科学院矿床地球化学重点实验室 完成前期处理后,在南京大学成矿作用研究国家重 点实验室 Finnigan Element2 高分辨率等离子质谱仪 上测试。稀土元素全流程测试空白小于 0.1 ppb,分 析精度优于 5%;微量元素除 Nb 分析精度为 9%,其 余均优于 5%。氟和氯由南京地矿所分析测试中心 分析。分析过程依据国土资源部行业标准 DZG20-01,将样品碱熔分解,分别用茜素络合剂分光光度法 和硫氰酸汞间接分光光度法测定氟和氯,分析精度 约10%。所有样品的主量和微量元素分析结果(以 及前人部分分析结果)列于表1中。

2.1 地球化学特征

2.1.1 主量元素

总体来说,花山-姑婆山燕山期花岗岩以高硅、 高钾、富碱、低磷(多数样品 P<sub>2</sub>O<sub>5</sub> 含量低于 XRF 检 测限)为特征,具有较高的 FeO<sup>T</sup>/MgO 值(4.02~45. 74,平均 11.16)和 NK/A[(Na<sub>2</sub>O + K<sub>2</sub>O)/Al<sub>2</sub>O<sub>3</sub>, mol]指数,以及相对较低的 ACNK[Al<sub>2</sub>O<sub>3</sub>/(Na<sub>2</sub>O + K<sub>2</sub>O+CaO),mol]值。花山-姑婆山的蹇山早期花岗 岩(HS+LS)的 SiO<sub>2</sub> 为 69.04%~75.07%(平均 72. 85%,n=18),ACNK 值(平均 0.96)和 FeO<sup>T</sup>/MgO 值(平均 7.48)较低。与燕山早期花岗岩相比,花山-姑婆山的燕山晚期花岗岩(MH + GP)更富硅,SiO<sub>2</sub> 为 74.80%~76.38%(平均 75.93%,n=14),A/ CNK 值(平均 1.02)略有增高,而 FeO<sup>T</sup>/MgO 值(平 均 15.90)明显增高。从早到晚,花山-姑婆山燕山期 花岗岩向酸性和演化程度更高的方向发展。

在以 SiO<sub>2</sub> 为横坐标的 Harker 图解(图 2)中,花 山-姑婆山花岗岩所有样品的 SiO<sub>2</sub> 与 Al<sub>2</sub>O<sub>3</sub>、TiO<sub>2</sub>、 FeO<sup>T</sup>、MnO、MgO 和 CaO 呈明显的负相关,结合本 区花岗岩普遍低磷,说明它们经历了钛铁矿、长石和 磷灰石等矿物的分离结晶。SiO<sub>2</sub> 与 Na<sub>2</sub>O、K<sub>2</sub>O 的相 关关系不明显。花山-姑婆山燕山晚期花岗岩样品 通常位于燕山早期花岗岩演化趋势的前端,表明燕



图 2 花山-姑婆山复式花岗岩花岗岩类的 Harker 图解 Fig. 2 Harker diagrams of the Huashan-Guposhan granite complex

表 1 花山-姑婆山燕山期花岗岩主量元素( $w_B$ /%)、微量和稀土元素含量( $w_B$ /10<sup>-6</sup>)及地球化学参数

Table 1 Major  $(w_B/\%)$  and trace  $(w_B/10^{-6})$  element compositions and chemical parameters of the Yanshanian Huashan-Guposhan granites

| 岩体                   |        |              |        |             | Щ±14+(F |       |              |        |       |       |        |              |              |
|----------------------|--------|--------------|--------|-------------|---------|-------|--------------|--------|-------|-------|--------|--------------|--------------|
| 样号                   | HS-4   | HS-7         | HS-9   | HS-10       | HS-13   | HS-16 | HS-26        | HS-29  | HS-33 | HS-20 | HS-25  | HS-28        | HS-31        |
| SiO <sub>2</sub>     | 74.62  | 72.71        | 74.14  | 72.82       | 73.24   | 72.43 | 74.17        | 69.96  | 73.21 | 79.51 | 76.04  | 75.72        | 76.35        |
| TiO2 🏓               | 0.18   | 0.23         | 0.19   | 0.21        | 0.23    | 0.24  | 0.25         | 0.42   | 0.35  | 0.06  | 0.07   | 0.11         | 0.08         |
| $Al_2O_3$            | 12.86  | 13.49        | 13.17  | 13.08       | 13.15   | 13.85 | 12.84        | 14.25  | 12.75 | 12.62 | 12.67  | 12.56        | 12.59        |
| TFeO                 | 1.67   | 2.21         | 1.85   | 2.06        | 2.17    | 1.94  | 1.98         | 3.10   | 2.86  | 1.02  | 0.94   | 1.12         | 1.05         |
| MnO                  | 0.03   | 0.04         | 0.03   | 0.03        | 0.03    | 0.04  | 0.05         | 0.06   | 0.05  | 0.06  | 0.03   | 0.03         | 0.03         |
| MgO                  | 0.19   | 0.25         | 0.19   | 0.20        | 0.22    | 0.29  | 0.38         | 0.54   | 0.34  | 0.04  | 0.10   | 0.11         | 0.07         |
| CaO                  | 1.26   | 1.37         | 1.09   | 1.23        | 1.26    | 1.37  | 1.40         | 1.70   | 1.19  | 0.69  | 0.76   | 0.81         | 0.93         |
| Na <sub>2</sub> O    | 3.31   | 3.32         | 3.15   | 3.14        | 3.27    | 3.41  | 3.24         | 3.42   | 3.13  | 3.87  | 3.55   | 3.08         | 3.93         |
| K <sub>2</sub> O     | 5.35   | 5.62         | 5.72   | 5.71        | 5.56    | 5.64  | 5.10         | 5.47   | 5.02  | 4.82  | 5.24   | 5.75         | 4.33         |
| $P_2O_5$             | 0.00   | 0.00         | 0.00   | 0.00        | 0.00    | 0.02  | 0.03         | 0.08   | 0.04  | 0.01  | 0.00   | 0.00         | 0.00         |
| LOI                  | 0.34   | 0.29         | 0.33   | 0.74        | 0.43    | 0.47  | 0.53         | 0.69   | 0.44  | 0.54  | 0.69   | 0.38         | 0.34         |
| Σ                    | 100.00 | <b>99.78</b> | 100.07 | 99.45       | 99.80   | 99.92 | 100.19       | 100.03 | 99.70 | 99.75 | 100.19 | <b>99.79</b> | 99.82        |
| $K_2O + Na_2O$       | 8.66   | 8.94         | 8.87   | 8.85        | 8.83    | 9.05  | 8.34         | 8.89   | 8.15  | 8.69  | 8.79   | 8.83         | 8.26         |
| FeO* /MgO            | 8.81   | 8.85         | 9.76   | 10.30       | 9.86    | 6.70  | 5.21         | 5.73   | 8.42  | 25.42 | 9.36   | 10.14        | 15.04        |
| A/CNK                | 0.95   | 0.96         | 0.99   | 0.96        | 0.96    | 0.97  | 0.96         | 0.97   | 1.0   | 0.98  | 0.98   | 0.98         | 0.98         |
| F                    | 2 300  | 2 700        | 1 800  | 2 400       | 2 100   | 1 200 | 1 500        | 1 200  |       | 2 000 | 1 600  | 670          | 620          |
| Cl                   | 330    | 1 200        | 470    | 430         | 670     | 180   | 290          | 620    | 640   | 560   | 700    | 410          | 270          |
| Rb                   | 531    | 598          | 554    | 537         | 552     | 539   | 559          | 571    | 618   | 855   | /56    | 040          | 5/4          |
| Sr                   | 103    | 104          | 101    | 76.3        | 108     | 157   | 162          | 199    | 87.34 | 10.0  | 18.4   | 01.8         | 24.0         |
| Ba                   | 383    | 352          | 375    | 314         | 370     | 673   | 484          | 628    | 121   | 12.1  | 13.2   | 38.3         | 11.8         |
| Y                    | 54.1   | 54.8         | 48.4   | 56.6        | 54.2    | 51.9  | 45.2         | 53.2   | 35.6  | 73.7  | 50.6   | 30.9         | 53.1         |
| Nb                   | 51.7   | 49.5         | 43.1   | 53.1        | 54.8    | 56.4  | 5/./         | 55.0   | 50.4  | 03.3  | 49.3   | 34.3<br>5.06 | 52.4         |
| Ta                   | 10.2   | 6.28         | 4.32   | 6.14        | 6.43    | 7.18  | 5.94         | 0.23   | 0.89  | 12.0  | 05 6   | 3.90         | 5./I         |
| Zr                   | 305    | 333          | 322    | 299         | 323     | 2/6   | 360          | 384    | 354   | 139   | 80.0   | 131          | 70.0<br>7 07 |
| Ht                   | 10.8   | 10.4         | 9.57   | 10.0        | 10.4    | 8.11  | 11.2         | 11.4   | 11.1/ | 0.22  | 4.52   | 52 1         | 50.5         |
| Th                   | 68.4   | 86.4         | /1.8   | 67.2        | 13.0    | 07.5  | 03.4         | 13.3   | 118.8 | 40.0  | 41.5   | 20 1         | 30.3         |
| Ga                   | 27.3   | 28.9         | 27.9   | 26.7        | 27.7    | 26.0  | 23.8         | 29.9   | 20.7  | 20.0  | 24.4   | 20.1         | 23.5         |
| La                   | 92.0   | 200          | 98.7   | 98.1<br>179 | 105     | 12.4  | 120          | 210    | 190   | 20.9  | 10.0   | 37.3<br>80.2 | 52.1<br>60.7 |
| Ce<br>Di             | 182    | 209          | 192    | 1/0         | 20 6    | 134   | 130          | 219    | 10.6  | 5 20  | 5 00   | 0 29         | 10 1         |
| PT<br>NJ             | 10.0   | 76.0         | 70.0   | 66 1        | 20.0    | 14.5  | 19.0         | 17 6   | 68 1  | 2.20  | 23.99  | 34 5         | 40 1         |
| ING<br>See           | 11 9   | 13.7         | 10.9   | 11 2        | 12.2    | 90.9  | 40.J<br>9.79 | 12 0   | 10 38 | 7 17  | 6 56   | 6 73         | 9 61         |
| Sin<br>Fo            | 0.07   | 1 01         | 1 02   | 0.83        | 1 02    | 1 30  | 1 15         | 1 49   | 0.81  | 0.22  | 0.24   | 0.48         | 0.35         |
| Cd                   | 11 5   | 12.6         | 10.4   | 10 5        | 11 7    | 9 53  | 8 13         | 12.2   | 8 22  | 8 47  | 6 97   | 6.09         | 9.99         |
| Th                   | 1 69   | 1 74         | 1 43   | 1 49        | 1 67    | 1 43  | 1 14         | 1.51   | 0.96  | 1.55  | 1.23   | 0.93         | 1.62         |
| Dw                   | 11 1   | 10.9         | 9 22   | 9 61        | 10.9    | 9 49  | 7 60         | 9.65   | 5.96  | 11.7  | 8.91   | 6.13         | 10.8         |
| Ho                   | 2 36   | 2 31         | 1.88   | 2.09        | 2 32    | 2 11  | 1 64         | 1.97   | 1.3   | 2.83  | 2.00   | 1.34         | 2.41         |
| Fr                   | 7.00   | 6 60         | 5 62   | 6.03        | 6.63    | 6.35  | 4.91         | 5.66   | 3.75  | 9.45  | 6.35   | 4.17         | 7.24         |
| Tm                   | 1.05   | 1 00         | 0.82   | 0.86        | 0.97    | 0.98  | 0.78         | 0.91   | 0.58  | 1.67  | 1.00   | 0.66         | 1.07         |
| Yh                   | 6.89   | 6.12         | 4.91   | 5.19        | 6.02    | 6.05  | 5.00         | 5.61   | 3.59  | 11.9  | 6.48   | 4.22         | 6.66         |
| Lu                   | 1.01   | 0.92         | 0.74   | 0.79        | 0.91    | 0.91  | 0.81         | 0.83   | 0.60  | 1.93  | 0.99   | 0.64         | 0.97         |
| Ga/Al                | 4.01   | 4.05         | 4.00   | 3.86        | 3.98    | 3.55  | 3.80         | 3.96   | 3.96  | 3.89  | 3.64   | 3.02         | 3.50         |
| K/Rb                 | 83.64  | 78.02        | 85.71  | 88.27       | 83.62   | 86.87 | 75.74        | 79.53  | 67.37 | 46.80 | 57.54  | 73.89        | 62.62        |
| Rb/Sr                | 5.16   | 5.75         | 5.49   | 7.04        | 5.11    | 3.43  | 3.45         | 2.87   | 7.08  | 53.44 | 41.09  | 10.45        | 23.92        |
| Nb/Ta                | 5.07   | 7.88         | 9.98   | 8.65        | 8.52    | 7.86  | 6.35         | 8.83   | 7.31  | 5.02  | 6.96   | 5.76         | 9.18         |
| Zr/Hf                | 28.24  | 32.02        | 33.65  | 29.90       | 31.06   | 34.03 | 32.14        | 33.68  | 31.69 | 16.91 | 19.81  | 25.10        | 25.53        |
| $\Sigma$ <b>REE</b>  | 413    | 472          | 429    | 410         | 450     | 317   | 300          | 490    | 405   | 139   | 129    | 193          | 203          |
| LREE/HREE            | 8.69   | 10.20        | 11.26  | 10.21       | 9.93    | 7.61  | 8.99         | 11.77  | 15.25 | 1.82  | 2.81   | 6.97         | 3.97         |
| δΕυ                  | 0.25   | 0.24         | 0.28   | 0.23        | 0.26    | 0.42  | 0.42         | 0.36   | 0.27  | 0.09  | 0.11   | 0.23         | 0.11         |
| (La/Sm) <sub>N</sub> | 4.91   | 4.96         | 5.13   | 5.46        | 5.13    | 4.85  | 4.88         | 5.74   | 5.63  | 1.30  | 1.59   | 3.48         | 2.10         |
| (Gd/Yb) <sub>N</sub> | 1.34   | 1.66         | 1.71   | 1.63        | 1.57    | 1.27  | 1.31         | 1.75   | 1.85  | 0.57  | 0.87   | 1.16         | 1.21         |

.

101

## 续表 1-1

| Continued T | able 1-1 |
|-------------|----------|
|-------------|----------|

|                      | 美华、银屏等(MH)  |               |         |        |       |        |              |       | 新路    | (GP)   |       |       |       |
|----------------------|-------------|---------------|---------|--------|-------|--------|--------------|-------|-------|--------|-------|-------|-------|
| 样号                   | HS-34       | HS-36         | II-6-2* | HS408* | LS-4  | LS-6   | LS-7         | LS-9  | LS-10 | LS-11  | GP-1  | GP-6  | GP-13 |
| SiO <sub>2</sub>     | 76.18       | 75.99         | 76.28   | 76.38  | 74.49 | 69.04  | 70.05        | 74.44 | 72.57 | 71.20  | 75.07 | 73.05 | 74.12 |
| TiO <sub>2</sub>     | 0.08        | 0.08          | 0.03    | 0.06   | 0.20  | 0.42   | 0.42         | 0.18  | 0.18  | 0.34   | 0.27  | 0.31  | 0.28  |
| $Al_2O_3$            | 12.86       | 12.66         | 13.02   | 12.69  | 12.54 | 14.50  | 13.84        | 12.87 | 13.88 | 14.16  | 11.73 | 12.68 | 12.22 |
| TFeO                 | 1.41        | 1.11          | 0.91    | 1.35   | 1.75  | 2.96   | 2.90         | 1.75  | 1.82  | 2.61   | 2.38  | 2.57  | 2.65  |
| MnO                  | 0.06        | 0.03          | 0.02    | 0.08   | 0.03  | 0.07   | 0.07         | 0.03  | 0.03  | 0.05   | 0.04  | 0.05  | 0.06  |
| MgO                  | 0.13        | 0.09          | 0.02    | 0.04   | 0.22  | 0.62   | 0.72         | 0.26  | 0.20  | 0.43   | 0.33  | 0.39  | 0.31  |
| CaO                  | 0.41        | 0.60          | 0.45    | 0.23   | 1.20  | 1.74   | 1.67         | 1.01  | 0.94  | 1.65   | 1.30  | 1.39  | 1.48  |
| Na <sub>2</sub> O    | 3.24        | 3.66          | 3.60    | 3.09   | 3.33  | 3.88   | 4.21         | 3.29  | 3.75  | 3.70   | 3.16  | 3.13  | 3.38  |
| K <sub>2</sub> O     | 4.64        | 5.07          | 4.98    | 4.80   | 4.95  | 5.17   | 4.54         | 5.41  | 5.91  | 5.30   | 4.52  | 5.03  | 4.15  |
| $P_2O_5$             | 0.00        | 0.00          | 0.04    |        | 0.00  | 0.15   | 0.14         | 0.00  | 0.00  | 0.05   | 0.01  | 0.03  | 0.02  |
| LOI                  | 0.69        | 0.50          | 0.00    |        | 0.39  | 0.53   | 1.42         | 0.55  | 0.45  | 0.40   | 0.29  | 0.67  | 0.41  |
| $\Sigma$             | 99.86       | 99.91         | 99.46   | 98.87  | 99.29 | 99.41  | 100.3        | 99.99 | 99.93 | 100.18 | 99.36 | 99.59 | 99.37 |
| $K_2O + Na_2O$       | 7.88        | 8.73          | 8.58    | 7.89   | 8.28  | 9.05   | 8.75         | 8.70  | 9.66  | 9.00   | 7.68  | 8.16  | 7.53  |
| FeO* /MgO            | 10.87       | 12.30         | 45.74   | 33.77  | 7.93  | 4.77   | 4.02         | 6.75  | 9.09  | 6.07   | 7.20  | 6.60  | 8.53  |
| A/CNK                | 1.16        | 1.00          | 1.07    | 1.19   | 0.96  | 0.96   | 0.93         | 0.98  | 0.97  | 0.95   | 0.94  | 0.97  | 0.96  |
| F                    | 1 100       | 1 600         |         |        | 1 500 | 950    | 870          | 1 500 | 1 700 | 1 400  | 1 600 | 1 600 | 2 900 |
| Cl                   | 220         | 130           |         |        | 330   | 320    | 150          | 380   | 300   | 250    | 550   | 1 120 | 1 100 |
| Rb                   | 836         | 782           | 480     | 527    | 412   | 410    | 412          | 473   | 563   | 443    | 412   | 446   | 455   |
| Sr                   | 15.7        | 19.6          | 11.4    | 10.6   | 89.7  | 308    | 223          | 77.2  | 76.4  | 149    | 72.0  | 134   | 81.8  |
| Ba                   | 38.3        | 13.9          | 16.0    | 30.4   | 364   | 824    | 549          | 334   | 412   | 605    | 303   | 558   | 218   |
| Y                    | 60.5        | 65.8          | 66.1    | 44.3   | 38.0  | 35.9   | 39.2         | 60.9  | 58.1  | 56.8   | 46.3  | 84.4  | 89.6  |
| Nb                   | 53.7        | 62.5          | 52.4    | 42.3   | 38.3  | 56.0   | <b>59</b> .1 | 37.7  | 55.2  | 49.3   | 33.9  | 38.0  | 61.4  |
| Ta                   | 15.8        | 10.1          | 6.80    | 7.47   | 4.54  | 7.29   | 8.82         | 4.91  | 6.78  | 6.53   | 4.37  | 4.56  | 9.24  |
| Zr                   | <b>99.9</b> | 125           | 214     | 78.6   | 290   | 303    | 342          | 271   | 265   | 331    | 362   | 289   | 373   |
| Hf                   | 5.24        | 5.57          | 10.5    | 3.28   | 9.02  | 8.24   | 9.33         | 8.7   | 8.93  | 9.99   | 10.9  | 9.46  | 12.9  |
| Th                   | 35.2        | 49.2          | 41.8    | . 27.2 | 64.3  | 45.6   | 43.4         | 61.7  | 60.8  | 54.3   | 67.3  | 45.8  | 96.3  |
| Ga                   | 27.5        | 26.5          |         |        | 26.3  | 25.1   | 25.8         | 27.4  | 31.6  | 28.7   | 27.3  | 28.5  | 31.1  |
| La                   | 34.7        | 23.9          | 15.8    | 21.6   | 72.3  | 68.2   | 64.3         | 78.0  | 98.3  | 74.1   | 74.6  | 75.9  | 103   |
| Ce                   | 68.1        | 50.4          | 39.1    | 48.7   | 148   | 125    | 120          | 165   | 202   | 150    | 156   | 160   | 218   |
| Pr                   | 9.00        | 7.59          | 4.99    | 5.58   | 15.9  | 13.1   | 12.4         | 18.1  | 21.9  | 16.1   | 17.4  | 18.3  | 24.5  |
| Nd                   | 32.9        | 30.3          | 19.5    | 21.2   | 56.1  | 45.5   | 44           | 64.6  | 77.9  | 58.5   | 60.4  | 69.5  | 92.6  |
| Sm                   | 8.90        | 7.99          | 5.24    | 5.50   | 9.65  | 7.84   | 7.91         | 13.3  | 14.4  | 11.2   | 11.3  | 15.6  | 18.8  |
| Eu                   | 0.18        | 0.26          | 0.13    | 0.10   | 0.89  | 1.53   | 1.28         | 0.83  | 0.99  | 1.37   | 0.79  | 1.2   | 0.85  |
| Gd                   | 9.20        | 8.85          | 5.92    | 5.70   | 8.63  | 7.34   | 7.44         | 13.6  | 13.2  | 11.1   | 9.80  | 16.2  | 18.2  |
| Tb                   | 1.6         | 1.'52         | 1.14    | 1.13   | 1.15  | 1.01   | 1.06         | 1.97  | 1.83  | 1.56   | 1.31  | 2.53  | 2.74  |
| Dy                   | 11.5        | 11.2          | 9.09    | 7.75   | 7.26  | 6.69   | 6.87         | 13.0  | 12.0  | 10.5   | 8.46  | 17.1  | 18.5  |
| Ho                   | 2.53        | 2.7           | 2.3     | 1.72   | 1.55  | 1.43   | 1.52         | 2.87  | 2.54  | 2.21   | 1.79  | 3.56  | 4.07  |
| Er                   | 8.00        | 8.69          | 7.45    | 5.36   | 4.45  | 4.39   | 4.61         | 8.04  | 7.16  | 6.74   | 5.12  | 10.4  | 11.6  |
| Tm                   | 1.33        | 1.40          | 1.47    | 0.83   | 0.67  | 0.67   | 0.74         | 1.16  | 1.08  | 1.03   | 0.80  | 1.52  | 1.83  |
| Yb                   | 9.01        | 9.34          | 10.5    | 5.71   | 4.24  | 4.44   | 5.06         | 7.1   | 7.06  | 6.67   | 4.96  | 9.24  | 11.7  |
| Lu                   | 1.35        | 1.46          | 1.67    | 0.82   | 0.61  | 0.68   | 0.8          | 1.07  | 1.05  | 0.99   | 0.78  | 1.34  | 1.81  |
| Ga/Al                | 4.04        | 3.95          |         |        | 3.96  | 3.27   | 3.52         | 4.02  | 4.30  | 3.80   | 4.40  | 4.28  | 4.81  |
| K⁄Rb                 | 46.08       | 53.82         | 86.13   | 75.61  | 99.74 | 104.68 | 91.48        | 94.95 | 87.14 | 99.32  | 91.07 | 93.62 | 75.72 |
| Rb/Sr                | 53.25       | <b>39.9</b> 0 | 42.11   | 49.72  | 4.59  | 1.33   | 1.85         | 6.13  | 7.37  | 2.97   | 5.72  | 3.33  | 5.56  |
| Nb/Ta                | 3.40        | 6.19          | 7.71    | 5.66   | 8.44  | 7.68   | 6.70         | 7.68  | 8.14  | 7.55   | 7.76  | 8.33  | 6.65  |
| Zr/Hf                | 19.06       | 22.44         | 20.38   | 23.96  | 32.15 | 36.77  | 36.66        | 31.15 | 29.68 | 33.13  | 33.21 | 30.55 | 28.91 |
| $\sum$ REE           | 198         | 166           | 124     | 132    | 331   | 288    | 278          | 389   | 461   | 402    | 354   | 352   | 528   |
| LREE/HREE            | 3.45        | 2.67          | 2.14    | 3.54   | 10.60 | 9.80   | 8.89         | 6.96  | 9.05  | 5.50   | 9.71  | 7.63  | 6.50  |
| δEu                  | 0.06        | 0.09          | 0.07    | 0.05   | 0.30  | 0.62   | 0.51         | 0.19  | 0.22  | 0.23   | 0.23  | 0.38  | 0.14  |
| (La/Sm) <sub>N</sub> | 2.45        | 1.88          | 1.90    | 2.47   | 4.71  | 5.47   | 5.11         | 3.70  | 4.29  | 4.15   | 4.15  | 3.06  | 3.43  |
| (Gd/Yb) <sub>N</sub> | 0.82        | 0.76          | 0.45    | 0.81   | 1.64  | 1.33   | 1.19         | 1.54  | 1.50  | 1.42   | 1.60  | 1.35  | 1.25  |

续表 1-2

|                                      |               |             |        | Cont          |              |               |
|--------------------------------------|---------------|-------------|--------|---------------|--------------|---------------|
|                                      |               | Ŕ           | 新路及姑   | 婆西(GP)        | )            |               |
| 样号                                   | GP-5          | GP-8        | GP-11  | GP-16         | LH-1         | LS-15         |
| SiO2                                 | 76.05         | 76.01       | 76.31  | 76.17         | 74.80        | 75.26         |
| TiO <sub>2</sub>                     | 0.10          | 0.07        | 0.09   | 0.11          | 0.08         | 0.10          |
| Al <sub>2</sub> O <sub>3</sub>       | 12.18         | 12.64       | 12.41  | 12.23         | 12.63        | 12.83         |
| TFeO                                 | 0.83          | 1.25        | 1.30   | 1.64          | 1.41         | 1.48          |
| MnO                                  | 0.03          | 0.03        | 0.04   | 0.05          | 0.03         | 0.03          |
| MgO                                  | 0.14          | 0.21        | 0.10   | 0.10          | 0.11         | 0.21          |
| CaO                                  | 1.18          | 0.79        | 0.64   | 0.81          | 0.99         | 0.88          |
| Na <sub>2</sub> O                    | 3.38          | 4.61        | 3.62   | 3.22          | 3.56         | 3.32          |
| K <sub>2</sub> O                     | 5.17          | 3.48        | 4.74   | 5.41          | 5.01         | 5.08          |
| P <sub>2</sub> O <sub>5</sub>        | 0.00          | 0.00        | 0.02   | 0.00          | 0.00         | 0.00          |
| LOI                                  | 0.59          | 0.71        | 0.74   | 0.47          | 0.43         | 0.51          |
| $\Sigma$                             | 99.74         | 99.94       | 100.20 | 100.39        | 99.21        | 99.87         |
| K <sub>2</sub> O + Na <sub>2</sub> O | 8.55          | 8.09        | 8.36   | 8.63          | 8.57         | 8.40          |
| FeO* /MgO                            | 5.91          | 5.96        | 13.41  | 16.38         | 12.84        | 7.07          |
| A/CNK                                | 0.91          | 0.99        | 1.01   | 0.97          | 0.96         | 1.02          |
| F                                    |               | 1 400       | 2 300  | 2 300         | 1 900        | 1 800         |
| Cl                                   |               | 580         | 330    | 200           | 380          | 160           |
| Rb                                   | 526           | 597         | 956    | 636           | 636          | 569           |
| Sr                                   | 29.7          | 12.4        | 18.2   | 23.6          | 33.8         | 52.6          |
| Ba                                   | 37.9          | 19.5        | 41.0   | 44.8          | 107          | 205           |
| Y                                    | 106           | 114         | 108    | 132           | 110          | 96.1          |
| Nb                                   | 67.7          | 76.1        | 70.5   | 57.9          | 43.3         | 49.5          |
| Ta                                   | 19.9          | 39.8        | 27.5   | 9.78          | 10.3         | 7.63          |
| Zr                                   | 139           | 156         | 165    | 221           | 128          | 109           |
| Hf                                   | 8.8           | 12.5        | 8.94   | 9.63          | 7.17         | 4.72          |
| Th                                   | 50.6          | 58.2        | 53.5   | 75.1          | 36.2         | 33.2          |
| Ga                                   | 23.7          | 34.0        | 30.6   | 27.8          | 25.1         | 29.5          |
| La                                   | 21.81         | 31.3        | 26.9   | 67.1          | 33.0         | 37.9          |
| Ce                                   | 48.3          | 67.9        | 58.4   | 161           | 69.8         | 85.7          |
| Pr                                   | 6.54          | 8.79        | 7.20   | 19.2          | 9.25         | 10.2          |
| Nd                                   | 27.93         | 35.1        | 27.4   | 74.7          | 36.4         | 40.9          |
| Sm                                   | 9.21          | 11.4        | 8.74   | 18.4          | 11.7         | 11.3          |
| Eu                                   | 0.27          | 0.1         | 0.21   | 0.34          | 0.34         | 0.53          |
| Gd                                   | 11.85         | 13.8        | 11.2   | 20.1          | 14.4         | 13.9          |
| Ть                                   | 2.21          | 2.72        | 2.27   | 3.35          | 2.59         | 2.5           |
| Dy                                   | 16.47         | 21.1        | 17.8   | 23.8          | 18.4         | 18.1          |
| Ho                                   | 3.9           | 5.01        | 4.23   | 5.23          | 4.16         | 4.16          |
| Er                                   | 11.74         | 16.7        | 13.9   | 15.6          | 12.3         | 12.2          |
| Tm                                   | 1.99          | 2.92        | 2.41   | 2.3           | 1.90         | 1.86          |
| Yb                                   | 12.98         | 21.2        | 16.9   | 14.1          | 12.7         | 12.2          |
|                                      | 2.09          | 5.34        | 2.00   | 2.12          | 1.92         | 1.77          |
|                                      | 3.0/          | 5.08        | 4.00   | 4.29          | 3.75         | 4.34          |
| N/RD                                 | 01.00         | 48.39       | 41.10  | 70.01         | 10 00        | 10.92         |
| Rb/Sr                                | 17.74         | 48.15       | 52.55  | 20.95         | 18.82        | 10.82         |
| IND/18                               | 5.40<br>15.90 | 1.91        | 2.30   | 5.92<br>22.05 | 4.20         | 0.49<br>22.00 |
| LI/TI<br>Vdee                        | 13.80         | 12.48       | 200    | 22.93<br>127  | 27.00        | 23.09         |
| ∠KEE<br>I DEE ∕LIDEE                 | 1 80          | 241<br>1 79 | 200    | 421           | 229          | 2.J.J<br>2 20 |
| LILL FILLE                           | 0.08          | 0.02        | 0.06   | 0.05          | 2.33<br>0.08 | 0 13          |
| (La/Sm)                              | 1.49          | 1 73        | 1.94   | 2 20          | 1 77         | 2 11          |
| (Gd/Yb) <sub>N</sub>                 | 0.74          | 0.53        | 0.54   | 1.16          | 0.91         | 0.91          |
|                                      |               |             |        |               |              |               |

山早期和晚期的花岗岩可能具有类似的源区。

2.1.2 卤族元素(F、Cl)

总体来说花山-姑婆山花岗岩富卤族元素,且相 对富F贫Cl。28件样品氟分析含量范围为(620~ 2900)×10<sup>-6</sup>,峰值为(1000~2000)×10<sup>-6</sup>;氯分析 含量范围为(130~1200)×10<sup>-6</sup>,峰值为(200~600) ×10<sup>-6</sup>。高卤族元素含量对本区花岗岩岩浆的地球 化学特征产生了一系列重要影响(刘昌实等,2003): ① $F^-$ 或 Cl<sup>-</sup>代替聚合的铝硅酸盐熔体中桥氧(O<sup>0</sup>), 形成 Si-F、Si-Cl、Al-F、Al-Cl 键, 使熔体解聚 (depolymerization),大大降低富卤素硅酸盐体系的 固相线温度(幅度达 200℃; London, 1987; Manning et al., 1980; Xiong et al., 1996), 在结晶分异演化 过程中使其残余岩浆成分或趋同于花岗岩体系,或 趋同于似长石正长岩体系中的低熔组分。②氟是负 电性很强的元素(3.9),能以共价键形式与 HFSE 元 素,特别是镧系、锕系和稀有金属元素组成高次配位 数的复杂络合物,如  $MoF_6$ 、(Ga, A1)  $F_3$ 、  $(Nb, Ta)F_5$ 、 $(Yb, Y)F_3$ 、 $(Th, U)F_3$ 和 LaOF 等 (Richardson et al., 1979; Collins et al., 1982), 使 这些络合物在有平衡离子 Na<sup>+</sup>、K<sup>+</sup>存在下趋于稳 定,致使 HFSE 元素活性增高。本区样品的 F-Th、  $F - Yb_F - Zr_F - Hf$ 都具有一定的正相关性,直接 证明了氟对这些元素络合作用的重要意义。

2.1.3 稀土元素

花山-姑婆山燕山早期花岗岩具有较高的稀土 元素含量,  $\Sigma$  REE = 278×10<sup>-6</sup>~528×10<sup>-6</sup>(平均 393×10<sup>-6</sup>),稀土元素分配模式向右倾(图 3a), LREE/HREE=5.50~15.25(平均9.37),具有明显 的 Eu 负异常,  $\delta$ Eu=0.14~0.62(平均0.31),LREE 的分馏程度大于 HREE; (La/Sm)<sub>N</sub> = 2.97~5.56 (平均4.56), (Gd/Yb)<sub>N</sub>=1.25~1.84(平均1.49)。

燕山晚期花岗岩与早期相比,稀土元素总量降低, $\Sigma$  REE = 124×10<sup>-6</sup>~427×10<sup>-6</sup>(平均 201× 10<sup>-6</sup>),LREE 分馏程度降低,HREE 略有富集,稀土 元素分配模式近于"海鸥形"(图 3a),LREE/HREE =1.78~6.97(平均2.99),Eu负异常更明显(0.025 ~0.232,平均0.09);(La/Sm)<sub>N</sub>=1.26~3.38(平均 1.97),(Gd/Yb)<sub>N</sub>=0.45~1.20(平均0.81),均低于 燕山早期花岗岩。稀土元素的这一变化可能表明燕 山晚期花岗岩斜长石和富含轻中稀土元素的副矿物 褐帘石、榍石、磷灰石分离结晶作用更为明显。

维普资讯 http://www.cqvip.com



value after McDonough and Sun (1995)

#### 2.1.4 微量元素

花山-姑婆山花岗岩代表性样品的微量元素分 析结果见表 1。微量元素蛛网图(图 3b)表明,本区 花岗岩样品的微量元素分布型式相似,表现为大离 子亲石元素(Rb、Th、Ce、K)的强富集和高场强元素 (Y、Ta、Nb、Zr、Hf)的弱富集,暗示其来源的一致性; 与相邻元素相比,Ba、Sr、Ti、P(图中未标出)负异常 明显,这可能是由于斜长石、磷灰石和钛铁矿等矿物 的分离结晶作用所致。与燕山早期花岗岩相比,花 山-姑婆山燕山晚期花岗岩更加亏损 Ba、Sr、Ti、Zr 和 LREE,但相对富集 HREE 和 Ta(图 3),这与本区花 岗岩相应矿物的结晶分离相对应。

花山-姑婆山花岗岩具有较高的 10<sup>4</sup> Ga/Al 值和 较低的 Nb/Ta 和 Zr/Hf 比值。其中 10<sup>4</sup> Ga/Al 值  $(3.02 \sim 5.09)$ 大于绝大部分 I、S 型花岗岩而与 A 型 花岗岩相似(Collins, 1982)。Manning(1980)提出在 水不饱和条件下,F 对 Ga 的络合能力很强,形成八 面体络合物离子团 GaF $_{0}^{3-}$ ,后者在高温熔体中稳定。

相反八面体AIF<sup>3</sup>-络合物离子团在水不饱和

熔体中不稳定,故高F含量也可以促使出熔体 Ga/ Al 值增高。本区相对富氟而贫氯,对 29 件样品进行 分析,F-Ga 具正相关性。

本区燕山早期和燕山晚期花岗岩的 Nb/Ta(分 别为 7.74 和 5.08) 和 Zr/Hf(分别为 32.13 和 19. 96)明显低于正常花岗岩的对应值(正常的花岗岩 中, Nb/Ta 值约为 11, Zr/Hf 值为 36~39)(Taylor and McLemann, 1985; Green and Pearson, 1989; Dostal and Chatterjee, 2000)。Collins 等(1982)和 Cerny 等(1986)认为富 F 成分的流体可以导致 Nb/ Ta和Zr/Hf这两组元素对的分馏,即富F流体的作 用促使 Ta、Hf 的含量升高而形成的。锆石的分离结 晶作用能使分异岩浆中的 Zr 含量减少(Dostal and Chatterjee,2000),这也是促使 Zr/Hf 下降的一种可 能。该区燕山晚期花岗岩的 Nb/Ta、Zr/Hf 比值与 燕山早期花岗岩的相比明显降低,说明前者经历了 更大比例的流体改造和锆石的分离结晶作用,这也 从另一方面体现了本区燕山晚期花岗岩是燕山早期 花岗岩岩浆分异演化产物的可能性。

### 2.2 岩石成因类型

花山-姑婆山燕山早期花岗岩中普遍出现褐帘 石,呈自形斑状,有时内部可见环带,并含有磷灰石 等包裹体,说明这些褐帘石是原生的(图4)。根据岩 石含原生褐帘石、不含辉石、可见少量角闪石、高钾、 钾长石斑状结构、以岩基形式产出并含少量闪长质 包体、准铝质为主、较低的<sup>87</sup>Sr/<sup>86</sup>Sr<sub>i</sub>(~0.707)(张德 全等,1985;朱金初,1989;杨学明等,1990)等一系列 的地质地球化学特征,均表明该燕山早期花岗岩应 属于 Barbarin(1999)提出的花岗岩分类中典型的 KCG(富钾的钙碱性花岗岩类),也可对应高钾钙碱 性 I 型花岗岩。

花山-姑婆山燕山晚期花岗岩,则同时具有 MPG和KCG的特点,应为MPG和KCG之间的过 渡岩体,在矿物学特征上出现独居石、磷钇矿、褐钇 铌矿等MPG(含白云母过铝花岗岩)中常见的副矿 物,局部还出现电气石,且美华花岗岩体的<sup>87</sup>Sr/<sup>86</sup>Sr<sub>i</sub> 达到0.716,与MPG较为相似;但在主量元素特征 上,燕山晚期花岗岩整体上是准铝~弱过铝质岩石, 钾含量很高,FeO<sup>T</sup>/(FeO<sup>T</sup>+MgO)为0.86~0.96,与 KCG较为相似。不含大量原生白云母,与MPG的 差异较大,笔者将其划分为经过更多地壳混染的、高 分异的KCG。

第25卷





#### 3 物质来源与源区性质讨论

目前,有关高钾钙碱性花岗岩的源区主要有 2 种观点:①由高钾安山岩组成的年轻的地壳(Roberts and Clemens, 1993; Liégeois et al., 1998;),并在其 深处应有体积足够大的安山质源岩存在;②富含金 云母-钾质碱镁闪石的岩石圈地幔(Nelson et al., 1986; Liégeois et al., 1998)。

本地区的构造背景显示没有适合的体积足够大 的安山质源岩存在。花山--姑婆山燕山早期花岗岩  $\epsilon$ Nd(t)值变化范围为 -2.4~-3.2(朱金初等, 1988),(<sup>87</sup>Sr,<sup>66</sup>Sr)<sub>i</sub>值变化范围为 0.707~0.708(张 德全等,1985;朱金初等,1988;杨学明等,1990),表 明本区花岗岩应以幔源物质为主,并混染了一部分 壳源物质。花山--姑婆山燕山晚期花岗岩  $\epsilon$ Nd(t)值 变化范围为 -4.4~-5.0(朱金初等,1988), <sup>87</sup>Sr,<sup>66</sup>Sr,值变化范围为 0.712 0~0.716 6(朱金初 等,1988;杨学明等,1990),表明其与地壳的混染程 度进一步增加。因此,本区燕山期花岗岩最有可能 的源岩来自于富含金云母--钾质碱镁闪石的岩石圈 地幔部分熔融产物与下地壳不同程度混染形成的混 合源区,这与本区花岗岩富集不相容元素的性质相 一致(Mckenzie, 1989)。

花山-姑婆山花岗岩较高的 εNd(t) 值以及无明 显的 Nb,Ta 负异常,Nb/La=0.44~4.27,表明该区 岩石很可能受到亏损的软流圈地幔和富集的岩石圈 地幔岩浆混合的影响(李献华等,1999)。此外软流 圈地幔物质的加入也为下地壳的熔融作用提供了足够热能(Miller et al., 1999)。

综上所述,由亏损的软流圈地幔上涌而导致的 富金云母-钾质碱镁闪石的岩石圈地幔的部分熔融 形成了不相容元素富集的高钾钙碱性岩浆,并与地 壳重熔的岩浆混合,从而形成本区高钾钙碱性花岗 岩。需要指出的是,混合熔体在聚集成岩浆房后可 能有一定时间的滞留,期间经历了钛铁矿、长石、磷 灰石、褐帘石、榍石等矿物的分离结晶作用。

鉴于岩浆的化学成分主要取决于源岩性质,而 不是形成过程(Roberts and Clemens, 1993),用岩浆 的主微量元素特征来讨论源区的矿物组成已成为地 球动力学研究的一个重要领域(Hawkesworth et al.,1990;Miller et al.,1999)。

长石是花岗质熔体的主要组成部分,同时也是 Sr、Ba和Eu<sup>2+</sup>的捕获者(Rollison,1993;刘红涛等, 2002)。花山-姑婆山燕山期花岗岩普遍亏损 Sr和 Ba,并具有明显的负Eu异常,说明熔体从源区部分 熔融到大规模结晶前发生过显著的长石分离结晶作 用。由于K是高度不相容元素,钾长石不可能作为 一个稳定的矿物相残留在源区。因此,源区部分熔 融的残留相中应当含有大量的斜长石。

源区残留大量的石榴石可导致重稀土元素和 Y 极度亏损及 LREE /HREE 强烈分馏。花山-姑婆山 燕山期花岗岩类的 HREE 呈现出较为平坦的分布, 表明其源区不可能残留大量的石榴石。

辉石类(Opx、Cpx 以及 En)是地壳岩石脱水熔 融实验产物中最常见的残留矿物(Beard and Lofgren, 1991; Patino and Beard, 1995; Singh and Johannes, 1996; Montel and Vielzeuf, 1997), 在花山-姑 婆山燕山期花岗岩中的缺失表明其全部进入残留相 中。类似的缘故, 可能还有少量角闪石进入了残留 相中。辉石和角闪石的大量残留可以导致长英质熔 体具有正的 Eu 异常, 但花山-姑婆山燕山期花岗岩 具有明显的负 Eu 异常, 说明它们在残留相中的比例 不大。

在含金云母和钾质角闪石的富集地幔不同程度 熔融过程中,熔体中 La 与 Ba、K 含量呈不同的变化 趋势,与富集地幔熔融形成的熔体在分离结晶、地壳 混染过程中 La、Ba、K 的性质一致(Feldstein *et al.*, 1999;王建等,2003)。因此 La/Ba – La、La/K – La 图解(图 5)可以限制幔源熔体的源区性质。花山-姑 婆山燕山早期花岗岩的 La/Ba、La/K 与 La 表现出 正相关性,说明源区可能存在残留的金云母和/或钾 质角闪石。

因此,花山-姑婆山燕山期花岗岩类的源岩部分 熔融时的残留相主要以斜长石为主,含少量的辉石、 角闪石和金云母,其整体组成类似于中-基性的麻 粒岩。这与典型大陆地壳25~30km深处的组成类



图 5 花山-姑婆山燕山早期花岗岩的 La/K - La(a) 和 La/Ba - La(b)图解(据 Feldstein 等,1999) Fig.5 La/K - La(a) and La/Ba - La(b) diagrams of Early Yanshanian Huashan-Guposhan granite (after Feldstein *et al.*,1999)

似(Wedepohl,1995)。

## 4 花岗岩形成的构造环境判别

长期以来,南岭中生代大地构造背景一直受到 广大地质学家的重视。近年来的研究表明,南岭地 区燕山早期存在A型花岗岩(陈培荣等,1998;范春 方等,2000;付建明等,2004)、双峰式火山岩(陈培荣 等,1999)和玄武质岩浆(Chung et al.,1997;赵振华 等,1998)活动,陈培荣等(2002)指出南岭燕山早期 花岗岩具有后造山花岗岩套的矿物-岩石学特征,这 些都表明南岭在燕山早期(160~180 Ma)就开始进 人岩石圈拉张-减薄的后造山地球动力学环境。

Gilder 等(1996)、洪大卫等(2002)、chen 和 Jahn (1998) 在浙赣湘桂地区识别出一条近北东向的高 εNd、低 t<sub>DM</sub>的花岗岩带,花山-姑婆山岩体位于该带 底部。该带被认为是华夏陆块与扬子陆块之间碰撞 对接带(洪大卫,2002),构造相对薄弱,是岩石圈地 幔上涌和岩石圈伸展-减薄的有利地区。

花山-姑婆山燕山期花岗岩普遍富集 Rb、Th、 K、Y和稀土元素,具明显的 Rb、Th 峰,以及因分离 结晶作用而导致的 Ba、Ti、P、Sr 谷,无明显的 Nb、Ta 负异常,其微量元素分布形式总体上和洋岛玄武岩 (OIB)相似。与正常的洋脊玄武岩相比,本区花岗岩 更富 Nb、Ta、Zr、Hf,其地球化学性质类似 Ascension 和 Oslo Rift, 呈现板内幔源的地球化学特点(Pearce et al., 1984; Rogers et al., 1998; Li, 2000)。在SiO<sub>2</sub> - FeO\*- MgO - Al<sub>2</sub>O<sub>3</sub> - CaO 构成的系列判别图解 (Maniar 和 Piccoli, 1989)中,花山-姑婆山花岗岩体 绝大部分落在后造山花岗岩类(POG)区内(图 6)。 在 Pearce 等(1984)的花岗岩类构造环境判别图解中 (图 7),花山和姑婆山复式花岗岩体中两期花岗岩的 投影点在(Yb+Ta)-Rb 图解中均分布在同碰撞花 岗岩(Syn-COLG)与板内花岗岩(WPG)的分界线上, 而在 Yb-Ta 图解中,均投在板内花岗岩分布区内。 考虑到本区所处的地球动力学背景,本区花岗岩更 接近于板内花岗岩。

Tsai 等(2000)研究表明,铁镁质侵入岩、A 型花 岗岩和双峰式火山岩是在地壳减薄过程中与区域性 岩浆底侵有关的伸展作用的产物。花山-姑婆山燕 山早期花岗岩(160~165 Ma)与华南铁镁质侵入岩、 A 型花岗岩和双峰式火山岩形成年代相似或稍早, 这可能代表该区花岗岩形成于陆内由挤压向拉张的

第25卷



图 6 花山-姑婆山复式花岗岩 SiO<sub>2</sub> - FeO\* - MgO - Al<sub>2</sub>O<sub>3</sub> - CaO 构造环境判别图解(Maniar 和 Piccoli, 1989) Fig. 6 SiO<sub>2</sub> - FeO\* - MgO - Al<sub>2</sub>O<sub>3</sub> - CaO discrimination diagram for the tectonic settings of Huashan-Guposhan granite complex (after Maniar and Piccoli, 1989)





Fig. 7 Rb-(Yb+Ta)(a) and Ta-Yb(b) discrimination
diagrams for the tectonic settings (after Pearce et al., 1984)
ORG-洋脊花岗岩类: VAG-火山弧花岗岩类;
WPG-板内花岗岩; Syn-COLG-同碰撞花岗岩类
ORG-ocean ridge granites; VAG-volcanic arc granites; WPG-intraplate granites; Syn-COLG-syntectonic collision granites

构造转折时期,这一假设得到了图 8 的支持。在以 常量元素为主的 lg[CaO/(K<sub>2</sub>O + Na<sub>2</sub>O)] - SiO<sub>2</sub> 图 解(图 8a)中,花山-姑婆山燕山早期花岗岩均投在挤 压型与伸展型构造环境的重叠部分中,Th/Ta-Yb 图解(图 8b)也反映本区山燕山早期花岗岩具有向板 内火成岩演化的趋势,而燕山晚期花岗岩绝大部分 投在伸展型构造环境或板内火山带中。这些特征都 表明花山-姑婆山花岗岩体(尤其是燕山早期岩体) 形成于陆内由挤压向拉张的构造转折时期,与 KCG 的生成环境相一致(Barbarin,1999)。

综上所述,花山-姑婆山燕山期花岗岩体形成于 后造山陆内环境、岩石圈伸展-减薄、陆内由挤压向 拉张的构造转折时期的地球动力学背景。

## 5 结论

广西花山-姑婆山燕山期花岗岩体以高硅、高 钾、富碱、低磷、准铝-弱过铝质为特征,具有较高的 FeO\*/MgO,富集大离子亲石元素、高场强元素和稀 土元素,属 Barbarin(1999)分类中的 KCG(富钾钙碱 性)系列岩石。 第2期





Fig. 8  $lg[CaO/(K_2O + Na_2O)] - SiO_2$  diagram (after Brown, 1982) and Th/Ta - Yb diagram (after Gorton, 2000)

of the Huashan-Guposhan granite complex

在区域构造演化分析基础上,得出花山-姑婆山 花岗岩体形成于后造山陆内环境,其中,燕山早期花 岗岩体还继承了造山期同碰撞花岗岩的某些特征, 而燕山晚期花岗岩则表现出明显的板内花岗岩的特 征。因此总体上花山-姑婆山燕山期花岗岩体形成 于由挤压向拉张的构造转折时期的地球动力学背 景。富含金云母-钾质碱镁闪石的岩石圈地幔的部 分熔融形成了原始的富钾钙碱性岩浆,并与由此而 引发的地壳重熔岩浆混合,最终形成了花山-姑婆山 复式花岗岩体。

#### References

- Barbarin B. 1999. A review of the relationships between granitoid types, their origins and their geodynamic environments [J]. Lithos, 46 (3): 605~626.
- Beard J S and Lofgren G E. 1991. Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3, and 6.9 kb[J]. Journal of Petrology, 32(2): 365~401.
- Brown G C. 1982. Calc-alkaline intrusive rocks: their diversity evolution and relation to volcanic arcs[A]. Thorpe R S. Andesites - Orogenic Andesites and Related Rocks[C]. New York: John Wiley and Sons, 437~464.
- Cerny P, Goad B E and Hawthorne F C, et al. 1986. Fractionation trends of the Nb-and Ta-bearing oxide minerals in the Greer Lake pegmatitic granite and its pegmatitic aureole, southeastern Manitoba [J]. Am, Mineral, 71: 501~517.
- Chen J F and Jahn B M. 1998. Crustal evolution of southeastern China: evidence from Sr, Nd and Pb isotopic compositions of granitoids and sedimentary rocks[J]. Tectonophy, 284: 101~133.
- Chen Jiangfeng and Jahn B M. 1999. Nd, Sr, and Pb isotope tracing and evolution of continental crust of Southeast China [A]. Zheng Yongfei. Chemical Geodynamics [C]. Beijing: Science Press, 262~ 287 (in Chinese).

- Chen Peirong, Hua Renmin, Zhang Bangtong, et al. 2002. Early Yanshanian post-orogenic granitoids in the Nanling region[J]. Science in China(series D), 45(8): 755~768 (in Chinese).
- Chen Peirong, Kong Xinggong, Ni Qisheng, et al. 1999. Ascertainment and implication of Early Yanshanian bimodal volcanic association from south Jiangxi Province [J]. Geological Review, 45 (supp.): 734~741 (in Chinese).
- Chen Peirong, Zhang Bangtong, Kong Xinggong, et al. 1998. Geochemical Characteristics and Tectonic Implication of Zhaibei A-type Granitic Intrusivesin South, Jiangxi Province[J]. Acta Petrologica Sinica, 14(3): 163~173 (in Chinese).
- Chen Yuchuan and Mao Jinwen . 1995. Metallogenic Series of Ore Deposits and Metallogenic Evolution through Geologic History in North Guangxi[M]. Nanning: Guangxi Science and Technology Press, 1 ~433 (in Chinese).
- Chen Yuchuan, Pei Rongfu, Zhang Hongliang, et al. 1989. Geology of Non-ferrous and Rare Metal Deposits Related with Mesozoic Granitoids in the Nanling area[M]. Beijing: Geological Publishing House, 1~508 (in Chinese).
- Chung S L, Cheng H, Jahn B M, et al. 1997. Major and trace element, and Sr-Nd isotope constraints on the origin of Paleogene volcanism in South China prior to the South China sea opening [J]. Lithos, 40: 203~220.
- Collins W J, Bearns S D, White A J R, et al. 1982. Nature and origin of A-type granites with particular reference to south-eastern Australia[J]. Contr. Mineral. Ptrol., 80: 189~200.
- Dostal J and Chatterjee A K. 2000. Contrasting behaviour of Nb/Ta and Zr/Hf rations in a peraluminous granitic pluton Nova Scotia, Canada [J]. Chemical Geology, 163; 207~218.
- Fan Chunfang and Chen Peirong. 2000. Geochemical characteristics and tectonic implication of Beitou A-type grantic intrusive in South Jiangxi Province[J]. Geochimica, 29(4): 358~366 (in Chinese).
- Feldstein S N and Lange R A. 1999. Pliocene potassic magmas from the Kings River region, Sierra Nevada, California: evidences for melting of a subduction-modified mantle[J]. Journal of Petrology, 40: 1 301 ~1 320.

- Feng Zuohai, Liang Jincheng, Zhang Guilin, et al. 2002. On the lithodemic units of Mesozoic granitoid in east Guangxi [J]. Journal of Guilin institute of technology, 22(3): 333~340 (in Chinese).
- Fu Jianming, Ma Changqian, Xie Caifu, et al. 2004. Geochemistry and tectonic setting of Xishan aluminous A-type granitic volcanic intrusive complex, Southern Hunan[J]. Journal of Earth Sciences and Environment, 26(4): 15~23 (in Chinese).
- Gilder S A, Gill J, Coe R S, et al. 1996. Isotopic and paleomagnetic constraints on the Mesozoic tectonic evolution of south China [J]. Journal Geophy. Res., 101(B7): 16 137~16 154.
- Gorton M P and Schandl E S. 2000. From continents to island arcs: A geochemical index of tectonic setting for arc-related and within-plate felsic to intermediate volcanic rocks[J]. Canada Mineral, 38: 1065  $\sim$ 1073.
- Green T H and Pearson N J. 1989. An experimental study of Nb and Ta partitioning between Ti-rich minerals and silicate liquids at high pressure and temperature[J]. Geochemi. Cosmochim. Acta, 51: 55 ~62.
- Hawkesworth C J, Kempton P D and Rogers N W. 1990. Continental mantle lithosphere, and shallow level enrichment processes in earth' s mantle[J]. Earth and Planetary Science Letters, 96: 256-268.
- Hong Dawei, Xie Xilin and Zhang Jisheng. 2002. Geological Significance of the Hangzhou – Zhuguangshan – Huashan hign-eNd granite belt [J]. Geological Bulletin of China, 21(6): 348~354 (in Chinese).
- Liégeois J P, Navez J, Hertogen J, et al. 1998. Contrasting origin of post-collisional high-K calc-alkaline and shoshonitic versus alkaline and peralkaline granitoids: The use of sliding normalization [J]. Lithos, 45(1~4): 1~28.
- Li Xianhua, Zhou Hanwen, Liu Ying, et al. 1999. Shoshonitic intrusive suite in SE Guangxi: Petrology and geochemistry[J]. Chinese Science Bulletin, 44(18): 1992~1998 (in Chinese).
- Li X H. 2000. Cretaceous magmatism and lithospheric extension in Southeast China[J]. Journal of Asian Earth Sciences, 18: 293 ~ 305.
- Liu Changshi, Chen Xiaoming, Chen Peirong, et al. 2003. Subdivision, discrimination criteria and genesis for A type rock suites[J]. Geological Journal of China Universities, 9(4): 573~591 (in Chinese).
- Liu Hangtao, Zhai Mingguo, Liu Jianming, *et al*. 2002. The Mesozonic granitoids in the northern marginal region of North China Craton: evolution from post-collisional to anorogenic settings[J]. Acta Petrologica Sinica, 18(4): 433~448 (in Chinese).
- London D. 1987. Internal differentiation of rare-element pegmatites: Effects of boron, phosphorus, and fluorine [J]. Geochim. Cosmochim. Acta, 51: 403~420.
- Lu Huanzhang. 1986. Ore Geneses of Tungsten Deposits in South China [M]. Chongqing: Chongqing Press, 1~232(in Chinese).
- Maniar P D and Piccoli P M. 1989. Tectonic discrimination of granitoids [J]. Geological Society of America Bulletin, 101: 635~643.
- Manning D A C, Hamilton D L, Henderson C M B, et al. 1980. The probable occurrence of interstitial Al in hydrous, F-bearing and Ffree aluminosilicate melts[J]. Contrib. Mineral. Petrol., 75:257~ 262.
- McDonough W F and Sun S S. 1995. The composition of the Earth[J]. Chem. Geol., 120: 223~253.

Mckenzie D.P. 1989. Some remarks on the movement of small melt frac-

tions in the mantle[J]. Earth and Planetary Science Letters, 95: 53 ~72.

- Miller C, Schuster R, Klotzli U, et al. 1999. Post-collisional potassic and ultrapotassic magmatism in SW Tibet: geochemical and Sr-Nd-Pb-O isotopic constraints for mantle source characteristics and petrogenesis[J]. Journal of Petrology, 40(9): 1 399~1 424.
- Montel J M and Vielzeuf D. 1997. Partial melting of metagreywackes, Part II. Compositions of minerals and melts[J]. Contrib. Mineral. Petrol., 128: 176~196.
- Mo Zhusun and Ye Bodan. 1980. Nanline Granite Geology [M]. Beijing: Geological Publishing House, 1~363 (in Chinese).
- Nelson D R, McCulloch M T and Sun S S. 1986. The origins of ultrapotassic rocks as inferred from Sr, Nd and Pb isotopes [J]. Geochim. Cosmochim. Acta, 50: 231~245.
- Patiño Douce A E and Beard J S. 1995. Dehydration-melting of biotite gneiss and quartz amphibolite from 3 to 15 kbar [J]. Journal of Petrology, 36(2): 706~738.
- Pearce J A, Harris B W and Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rochs[J]. Journal of Petrology, 25(4): 956~983.
- Richardson C K and Holland H D. 1979. The solubility of fluorite in hydrothermal solutions: an experimental study [J] Geochim. Cosmochim. Acta, 43: 1313~1325.
- Roberts M P and Clemens J D. 1993. Origin of high-patassium, calc-alkaline, I-type granitoids[J]. Geology, 21: 825~828.
- Rogers N W, James D and Kelley S P. 1998. The generation of potassic lava from the eastern Virunga province, Rwanda [J]. J. Petrol., 39: 1223~1247.
- Rollinson H R. 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation[M]. Pearson Education Limited, 1~255.
- Shen Weizhou, Ling Hongfei, Li Wuxian, et al. 2000. Nd modal ages of granitoids and crust evolution in Southeast China[J]. Science in China (Series D), 30: 471~478 (in Chinese).
- Singh J and Johannes W. 1996. Dehydration melting of tonalities. Part I. Beginning of melting[J]. Contrib. Mineral. Petrol., 125: 16~ 25.
- Singh J and Johannes W. 1996. Dehydration melting of tonalities. Part II. Composition of melts and solids[J]. Contrib. Mineral. Petrol., 125: 26~44.
- Taylor S R and McLemann S M. 1985. The Continental Crust: Its Composition and Evolution[M]. Blackwell: Oxford Press, 312.
- The Granitoid Research Group of the Nanling Project, MGMR. 1989. Geology of Granitoids of Nanling Region and their Petrogenesis and Mineralization [M]. Beijing: Geological Publishing House, 171 ~ 185 (in Chinese).
- Tsai C H, Lo C H, Liou J G, et al. 2000. Evidence against subductionrelated magmatism for the Jiaoziyan Gabbro, northern Dabie Shan, China[J]. Geology, 28: 943~946.
- Wang Chuansheng. 2004. Petrogenetic models of the composite granitic plutons in the mid-western Nanling Region[J]. Acta Petrologica et Mineralogica, 23(3): 203 ~ 213 (in Chinese with English abstract).
- Wang Dezi and Zhou Jincheng. 1999. Look back and look forward to granite research[J]. Acta Petrologica Sinica, 15(2): 161~169 (in Chinese).
- Wang Dezi and Zhou Xinmin. 2002. Origin of Late Mesozoic Granitic

Volcanic-intrusive Complex and Crust Evolution in Southeastern China[M]. Beijing; Science Press, 1~295 (in Chinese).

- Wang Jian, Li Jianping and Wang Jianghai. 2003. Shoshonitic magmatism in Dali – Jianchuan area, Western Yunnan: a geochemical study of arc magmatism in a post-collisional strike-slip extensional setting [J]. Acta Petrologica Sinica, 19(1): 61~70 (in Chinese).
- Wang Liankui, Wang Huifen and Huang Zhilong. 2000. Geochemical indicators of trace element in Li-F granite liquid segregation[J]. Acta Petrologica Sinica, 16(2): 145~152 (in Chinese).
- Wedepohl K H. 1995. The composition of the continental crust [J]. Geochimica et Cosmochimica Acta, 59(7): 1 217~1 232.
- Xia Hongyuan and Liang Shuyi. 1991. Genetic Series of Ore Deposits Related to W, Sn and Rare-metal Granites [M]. Beijing: Science Press, 61~182 (in Chinese).
- Xiao Qinghui, Deng Jinfu, Ma Daquan, et al. 2002. The Ways of Investigation on Granitoids [M]. Beijing: Geological Publishing House, 1~118 (in Chinese).
- Xiong X L, Zhu J C and Rao B. 1996. A preliminary experimental investigation on genesis of topaz greisen[J]. Chinese Sci. Bull., 41: 1 451~1454.
- Yang Xueming and Zhang Peishan. 1990. Geological significance of Pb-Sr and Pb isotope to the limitation of sources of granitic rocks[J]. Chinese Science Bulletin, 35(15): 1 174~1 176 (in Chinese).
- Zhang Dequan, Wang Xueying and Sun Guiying. 1985. Cooling history and emplacement ages of the Guposhan – Lisong granite masses, Guangxi[J]. Geological Review, 31(3): 232~239 (in Chinese).
- Zhang Peihua. 2003. On the crust mantle interaction of Mesozoic granitoids in the middle sector of Nanling area, Southern China [D]. Nanjing: Nanjing University (in Chinese).
- Zhao Zhenhua, Bao Zhiwei and Zhang Boyou. 1998. Geochemistry of Mesozoic basalts in central Hunan[J]. Science in China (series D), 28(supp.), 102~112 (in Chinese).
- Zhu Jinchu and Li Xiangdong. 1988. Petrological-geochemical features and source materials of Huashan Granites, Guangxi Autonomous Region[J]. Acta Petrologica et Mineralogica, 7(1): 28~38 (in Chinese with English abstract).
- Zhu Jinchu, Li Xiangdong and Shen Weizhou. 1989. Sr, Nd and O isotope studies on the genesis of the Huashan Granite complex[J]. Acta Geologica Sinica, 63(3): 225~235 (in Chinese).

#### 附中文参考文献

- 陈江峰,江博明. 1999. Nd、Sr、Pb 同位素示踪和中国东南大陆地壳 演化[A]. 郑永飞. 化学地球动力学[C]. 北京:科学出版社, 262~287.
- 陈培荣,华仁民,章邦桐,等. 2002. 南岭燕山早期后造山花岗岩 类:岩石学制约和地球动力学背景[J]. 中国科学(D辑),32 (4):279~289.
- 陈培荣,孔兴功,倪琦生,等. 1999. 赣南燕山早期双峰式火山岩的 厘定和意义[J]. 地质论评,45(增刊):734~741.
- 陈培荣,章邦桐,孔兴功,等.1998. 赣南寨背 A 型花岗岩体的地球 化学特征及其构造地质意义[J].岩石学报,14(3):163~173.
- 陈毓川, 毛景文. 1995. 桂北地区矿床成矿系列和成矿历史演化轨迹

[M]. 南宁: 广西科学技术出版社, 1~433.

- 陈毓川,裴荣富,张宏良,等.1989. 南岭地区与中生代花岗岩类有 关的有色及稀有金属矿床地质[M].北京:地质出版社,1~ 508.
- 地矿部南岭项目花岗岩专题组. 1989. 南岭花岗岩地质及其成因和 成矿作用[M]. 北京: 地质出版社, 171~185.
- 范春方,陈培荣. 2000. 赣南陂头 A 型花岗岩的地质地球化学特征 及其形成的构造环境[J]. 地球化学, 29(4): 358~366.
- 冯佐海,梁金城,张桂林,等. 2002. 论广西东部中生代花岗岩类岩 石谱系单位[J].桂林工学院学报,2(3):333~340.
- 付建明,马昌前,谢才富,等. 2004. 湘南西山铝质 A 型花岗质火山 侵人杂岩的地球化学及其形成环境[J]. 地球科学与环境学报, 26(4): 15~23.
- 洪大卫,谢锡林,张季生. 2002. 试析杭州-诸广山-花山高 εNd 值花 岗岩带的地质意义[J]. 地质通报, 21(6): 348~354.
- 李献华,周汉文,刘 颖,等.1999. 桂东南钾玄质侵入岩带及其岩 石学和地球化学特征[J]. 科学通报,44(18):1992~1998.
- 刘昌实, 陈小明, 陈培荣, 等. 2003. A 型岩套的分类、判别标志和成 因[J]. 高校地质学报, 9(4): 573~591.
- 刘红涛, 翟明国, 刘建明, 等. 2002. 华北克拉通北缘中生代花岗岩 类: 从碰撞后到非造山[J]. 岩石学报, 18(4): 433~448.
- 卢焕章. 1986. 华南钨矿成因[M]. 重庆:重庆出版社, 1~232.
- 莫柱孙,叶伯丹. 1980. 南岭花岗岩地质学[M]. 北京:地质出版社. 1~363.
- 沈渭洲, 凌洪飞, 李武显, 等. 2000. 中国东南部花岗岩类的 Nd 模 式年齡与地壳演化[J]. 中国科学(D辑), 30: 471~478.
- 汪传胜. 2004. 南岭中西段若干复式花岗岩体的成因模式研究[J]. 岩石矿物学杂志, 23(3): 203~213.
- 王德滋,周金城. 1999. 我国花岗岩研究的回顾与展望[J]. 岩石学报,15(2):161~169.
- 王德滋,周新民. 2002. 中国东南部晚中生代花岗质火山-侵入杂岩 成因与地壳演化[M]. 北京:科学出版社,1~295.
- 王 建,李建平,王江海.2003. 滇西大理-剑川地区钾玄质岩浆作用:后碰撞走滑拉伸环境岛弧型岩浆作用的地球化学研究[J]. 岩石学报,19(1):61~70.
- 王联魁,王慧芬,黄智龙.2000. Li-F花岗岩液态分离的微量元素地 球化学标志[J]. 岩石学报,16(2):145~152.
- 夏宏远,梁书艺. 1991. 华南钨锡稀有金属花岗岩矿床成因系列 [M]. 北京:科学出版社, 61~182.
- 肖庆辉,邓晋福,马大铨,等.2002.花岗岩研究思维与方法[M]. 北京:地质出版社.1~118.
- 杨学明,张培善. 1990. Rb-Sr 和 Pb 同位素在限定花岗质岩石源岩 中的地质意义[J]. 科学通报, 35(15): 1174~1176.
- 张德全,王雪英,孙桂英.1985.关于广西姑婆山-里松岩体的定 (侵)位年龄和冷凝历史的探讨[J].地质论评,31(3):232~ 239.
- 赵振华,包志伟,张伯友.1998. 湘南中生代玄武岩类地球化学特征 [J].中国科学(D辑), 28(增刊): 7~14.
- 张佩华. 2003. 南岭中段中生代花岗岩壳幔相互作用的初步研究 [D]. 南京大学.
- 朱金初,李向东.1988. 广西花山花岗岩的岩石学和地球化学特征及成岩物质来源的探讨[J]. 岩石矿物学杂志,7(1):28~38.
- 朱金初,李向东,沈渭洲. 1989. 广西花山复式花岗岩体成因的锶、 御和氧同位素研究[J]. 地质学报,63(3): 225~235.