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The petrogenesis of the isolated pegmatites from granites is under debate. In the Chinese Altai, massive isolated
pegmatites have been regarded as derivatives of graniticmelts, which contradicts to the results of recent studies.
In this work, the geology andmineralogy, as well as the zircon U-Pb chronology and Hf isotope geochemistry, of
10 Permian pegmatites are analyzed, and a comparative study of the Permian pegmatites and granites is con-
ducted to reveal the petrogenesis of the Permian pegmatites in the Chinese Altai. The Permian pegmatites are
concentrated in the Qiongkuer domain with a linear distribution and show structural control from regional
anticlinoriums and connections to adjacent migmatites and luecogranite dykes. Their zircon U-Pb ages are
274–253 Ma, with the dominating age being late Permian. The pegmatites have three mineralization types in-
cluding Li-Be-Ta-Nb ± Sn, Be-Nb-Ta ± REEs (rare earth elements) and REEs. The former two are comparable
with the Triassic and Devonian-Carboniferous pegmatites in mineralization and Hf isotope composition, respec-
tively, and the latter is unique in the Permian generation. The Permian pegmatites have comparable Hf isotope
compositions with the juvenile and specific components in the Habahe Group, which indicates the dependency
of mineralization on source from the heterogeneous Habahe Groupmetasedimentary rocks. The pegmatites also
show decoupling spatial-temporal and differentiation-source correlations with the Permian granites, indicating
no genetic relationship between them. Combining with the Permian high temperature metamorphism and pre-
vious tectonic-magmatic-metamorphic studies, we suggest that the Permian rare metal/earth pegmatites were
likely generated by anatexis of the Habahe Group metasedimentary rocks under an extensional setting after
the arc-arc collision between the Junggar arcs and the Chinese Altai.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Granitic pegmatites hereafter referred to simply as pegmatites, are
commonly regarded as the derivatives of granitic melt owing to their
similarities in mineral assemblage and bulk composition (e.g., Černý,
1991a; Černý et al., 2012a; London, 2018). In some cases, a pegmatite
can be linked to its parental granite according to the spatial, temporal
or chemical connections between them. However, since such a relation-
ship is not always present, the isolated pegmatites from granites have
been hypothetically connected to the “deeply buried granites”
(e.g., Černý, 1991a; London, 2008). However, the factors controlling
the differentiation of granitic melts and the emplacement of pegma-
tite-forming melts are still unclear. Recent studies have proved that
other than fractional crystallization, pegmatite formation can involve
other mechanisms, such as anatexis (e.g., Dill, 2015a, 2015b; Lv et al.,
2018a; Melleton et al., 2012; Müller et al., 2015, 2016, 2017; Simmons
and Falster, 2016). The study of pegmatite petrogenesis is crucial from
a scientific prospective because it reveals the origin of the pegmatite-
forming melt. In addition, such studies have economic significance
because the results serve as a guide for prospecting of rare metal
ore deposits.

The Chinese Altai, one of the largest pegmatite provinces in the
world, consists of two pegmatite belts, nine pegmatite fields, 38mining
areas, andmore than100,000 pegmatites (Zou and Li, 2006). It is known
for production of rare metals Li, Be, Ta, Nb and Cs, since the finding of
Koktokay No. 3 pegmatite in 1940s (Zhu et al., 2000). Abundant studies
have been conducted on these pegmatites with focuses on their miner-
alogy (e.g., Liu and Zhang, 2005; Lv et al., 2018b; Tang and Zhang, 2015;
Wang et al., 2006a, 2007a, 2009a; Wang et al., 1981; Yin et al., 2013;
Zhang et al., 2004; Zhang A.C. et al., 2008; Zhang, 2001; Zhou et al.,
2015a), chronology and isotope geochemistry (e.g., Chen et al., 1999;
Liu, 2015; Lv et al., 2012, 2015, 2018a; Ma et al., 2015; Ren et al.,
2011; Wang et al., 2001, 2002, 2003; Wang et al., 2007b; Zhang, 2001;
Zhang et al., 2016; Zhou et al., 2018), melt and fluid inclusions
(e.g., Wu et al., 1994; Lu et al., 1996; Zhang, 2001), classification
(e.g., Luan et al., 1995; Lv et al., 2018a; Wu and Zou, 1989; Zou and
Xu, 1975) and prospecting method (e.g., Luan et al., 1995; Lv et al.,
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2017, 2018c; Tang et al., 2013, 2018; Zhao et al., 2017). However, the
petrogenesis of the rare metal pegmatites in the Chinese Altai remains
poorly understood even though this topic is a crucial scientific issue.
Early studies suggested that most of these rare metal pegmatites were
formed by fractional crystallization of granitic melts (Wu and Zou,
1989; Zou and Li, 2006). However, our recent studies have proven
that the rare metal pegmatites from the Qinghe, Koktokay, Kelumute,
Kaluan, Azubai, Qunku and Bieyesamasi areas are commonly distinct
from the neighboring or potential parent granites in ages and isotopic
compositions (Liu, 2013; Lv et al., 2012, 2015, 2018a; Ma et al., 2015;
Zhang et al., 2016). The petrogenesis of the massive pegmatites in the
Chinese Altai requires reassessment.

Our previous studies have revealed that multiple generations of rare
metal pegmatites formed during the Devonian synorogenic to Jurassic
post- or anorogenic stage, with diagenetic and metallogenic peaks oc-
curring in the Triassic (e.g., Liu, 2015; Lv et al., 2012, 2015, 2018a; Ma
et al., 2015; Ren et al., 2011; Zhang et al., 2016). Comparatively, granites
in the Chinese Altai show a diagenetic peak during the Devonian and a
decreasing trend from the Devonian to the Jurassic (e.g., Wang et al.,
2006b, 2009b, 2014a). It is widely accepted that the pegmatite group
derived from the same batch of granitic melt is responsible for one gen-
eration of diagenetic and metallogenic events, such as the Triassic
granite-pegmatite systems in Songpan-Ganzi and West Kunlun oro-
genic belts (Xu et al., 2020; Yan et al., 2018) and theArchean pegmatites
and parental rock of the Ghost Lake batholith from the Mavis Lake in
Canada (Breaks andMoore, 1992). However, pegmatitefields in theChi-
nese Altai commonly consist of three or two generations of rare metal
pegmatites, such as the Devonian, Permian and Triassic pegmatites in
the Jiamanhaba and Qiebielin pegmatite fields (Lv et al., 2018a; Ren
et al., 2011). How the multiple generations of rare metal pegmatites
were formed by fractional crystallization of granitic melts, if the
requirements include sufficient material and energy bases such as gra-
nitic batholiths, successive fractional crystallization from granitic to
pegmatite-forming melts, and a specific tectonic setting such as late-
or post-orogenic (e.g., Černý, 1991a, 1991b). In this study, the geology,
mineralogy, zircon U-Pb age, and Hf isotopic compositions of 10 Perm-
ian pegmatites are analyzed, and a comparative study between the peg-
matites and granites in the Chinese Altai is conducted to reveal the
mineralization, age, source and tectonic setting of the pegmatites, and
to evaluate the genetic relationship between the pegmatites and gran-
ites in the Chinese Altai.

2. Geological background

2.1. Regional geology

The Chinese Altai is located in the middle segment of the western
part of the Central Asian Orogenic Belt (CAOB) and is adjacent to
Kazakhstan to the west, Russia to the north and Mongolia to the east
(Fig. 1a). According to its stratigraphy, metamorphism, deformation
pattern, and magmatic activity, the Chinese Altai is divided into four
fault-bounded domains including the North Altai, the Central Altai, the
Qiongkuer and the Erqis domains (Fig. 1b) (e.g., Cai et al., 2011a,
2011b; Long et al., 2007; Sun et al., 2008; Yuan et al., 2007). The North
Altai domain (Unit I in Fig. 1b) is bounded to the south by the
Hongshanzui-Nuoerte Fault (F1 in Fig. 1b); Devonian - lower Carb-
oniferous metavolcanic and metasedimentary rocks (e.g., Wang
et al., 2006b; Windley et al., 2002) are widely exposed in this domain.
The igneous rocks mainly consist of Devonian granite porphyry
and I-type granites (e.g., Lv et al., 2015; Qin et al., 2016; Yuan et al.,
2001). The Central Altai domain (Unit II in Fig. 1b) is bounded by the
Hongshanzui-Nuoerte and the Abagong-Kuerti faults to the north and
south, respectively. As the principal segment of the Chinese Altai, it is
composed of a thick turbidite and pyroclastic sequence of the Habahe
Group (e.g.,BGMRX, 1993 ; Windley et al., 2002), upper Ordovician vol-
canic molasse and terrigenous clastic sequences of the Dongxileke and
2

Baihaba Formations, and middle to upper Silurian metasandstone of
the Kulumuti Formation (e.g., BGMRX, 1993; Windley et al., 2002).
Granitoids are widely exposed and consist of major early to mid-
Paleozoic (500–360 Ma) I- and S-type granites (e.g., Cai et al., 2011a,
2011b; Ma et al., 2015; Sun et al., 2008, 2009b; Windley et al., 2007;
Wang et al., 2006b, 2009b; Wang et al., 2010; Yuan et al., 2007; Zhang
et al., 2017) and minor Mesozoic granites (230–202 Ma) (e.g., Chen
et al., 2017; Liu, 2015; Wang et al., 2014a). Mafic rocks that formed in
the Devonian have a limited occurrence in the Koktokay area (e.g., Cai
et al., 2012a). The Qiongkuer domain (Unit III in Fig. 1b) is bounded
by the Abagong-Kuerti Fault to the north and the Fuyun-Xibodu Fault
to the south. It is composed of Paleozoic clastic and volcanic rocks,
which are subdivided into the early Devonian Kangbutiebao Formation
and the Middle Devonian Altai Formation, respectively (e.g., BGMRX,
1993; Windley et al., 2002). A recent study revealed a deposition time
of Cambrian to Ordovician (540–460 Ma) for the Altai Formation
based on the detrital zircon ages (Broussolle et al., 2018). The igneous
rocks exposed in this domain mainly consist of middle-late Paleozoic
I-type granite (e.g., Tong et al., 2014; Sun et al., 2008; Wang et al.,
2006b, 2009b, Wang T. et al., 2010; Yang et al., 2010; Yuan et al.,
2007; Zheng et al., 2016), late Paleozoic A-type granite (e.g., Liu,
2017), and Devonian-Permian mafic dykes (e.g., Broussolle et al.,
2018; Cai et al., 2010, 2016; Pirajno et al., 2008; Wan et al., 2013). The
south Altai domain (Unit IV in Fig. 1b) is located between the Fuyun-
Xibodu Fault to the north and the Erqis Fault to the south. The north-
western part of this domain is largely covered byQuaternary sediments.
The southeastern part is occupiedmainly by Devonian fossiliferous suc-
cessions of the Kangbutiebao Formation that are in turn overlain by Late
Carboniferous formations (BGMRX, 1993; Windley et al., 2002). A few
Carboniferous-Permian granites are exposed in this domain (Tong
et al., 2012, 2014).

Recent studies have suggested that the Chinese Altai is a magmatic
arc formed by multiple subduction-accertion processes occurring at an
active continentalmargin during themiddle Cambrian to early Permian.
During the middle Cambrian, the tectonic setting of the Chinese Altai
changed from a passive to active continental margin. Subsequently,
the Chinese Altai underwent a prolonged subduction process from Or-
dovician to Carboniferous marked by ocean ridge subduction, massive
granitic magma activity, and high-temperature metamorphism during
the Devonian (e.g., Cai et al., 2010, 2011a, 2011b, 2012a; Jiang et al.,
2010; Sun et al., 2009b). With the continuous subduction of the Paleo-
Asian Ocean slab, the Chinese Altai converged consecutively with the
East and West Junggar arcs during the Permian (e.g., Broussolle et al.,
2018; Cai et al., 2012b, 2016; Li et al., 2015). After the amalgamation
of the Siberia and Tarim cratons, the Chinese Altai entered a post-
orogenic stage during the Triassic (e.g., Cai et al., 2016; Xiao et al.,
2008, 2009, 2015, 2018).

2.2. Geology and mineralogy of the pegmatites

According to previously reported statistics, approximately 100,000
dykes constitute the huge number of pegmatites exposed in the Chinese
Altai (Wu and Zou, 1989). They are distributed mainly in the Halong-
Qinghe (A in Fig. 1b) and the Jiamanhaba-Dakalasu (B in Fig. 1b) located
in the Central Altai Qiongkuer domains, respectively. Of these, the
former consists of five pegmatite fields, including Qinghe, Kuwei-
Jiebiete, Keketuohai, Kelumute-Jideke and Kalaeerqisi (1 to 5 in
Fig. 1b, respectively), and the latter consists of four pegmatite fields, in-
cluding Dakalasu-Kekexier, Xiaokalasu-Qiebielin, Hailiutan-Yeliuman
and Jiamanhaba (6 to 9 in Fig. 1b, respectively) (Wu and Zou, 1989;
Zou and Li, 2006).

2.2.1. JMHB06 pegmatite
The JMHB06 pegmatite is located in the southeastern part of the

Jiamanhaba pegmatite field, which is situated at the western end of
the Kabaer-Xibodu Paleozoic magmatic arc and the northern limb of



Fig. 1. Tectonic location (a) and geological sketch map of the Chinese Altai (b) (modified fromWindley et al., 2002; Lv et al., 2018a). Abbreviation: CAOB= Central Asian Orogenic Belt;
SC = Siberia Craton; TC = Tarim Craton; NC= North China Craton. Code: I, North Altai domain; II, Central Altai Domain; III, Qiongkuer domain; IV, Erqis domain. A, Halong-Qinghe peg-
matite belt; B, Jiamanhaba-Xiaokalasu pegmatite belt. 1, Qinghe pegmatite field; 2, Koktokay pegmatite field; 3, Kuwei-Jiebiete pegmatite field; 4, Kelumute-Jideke pegmatite field; 5,
Kalaeerqisi pegmatite field; 6, Dakalasu-Kekexier pegmatite field; 7, Xiaokalasu-Qiebielin pegmatite field; 8, Hailiutan-Yeliuman pegmatite field; 9, Jiamanhaba pegmatite field.
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the Baogutu anticlinorium. The area is dominated by the Caledonian
Jiamanhaba granite batholiths, which consists of biotite granite and
plagiogranite (Zou and Li, 2006). The biotite granite is the major host
rock for the pegmatites. Sedimentary rocks are rarely exposed, with
only a limited outcrop of the Tuokesalei Formation exposed in the cen-
tral area. This formation consists of marine terrigenous clastics with si-
liceous and carbonate rocks (Yang et al., 2013) and hosts a few of
pegmatites. The Pegmatites in this field commonly have small outcrops
with maximum lengths and widths of 300 m and 10 m, respectively.
Most of these pegmatites consist mainly of K-feldspar, quartz, andmus-
covite and show simple internal zoning; only a few show Be±Nb-Ta
mineralizations. Three generations of pegmatite have been recognized
in this field, including Devonian (~395 Ma), Permian (~269 Ma), and
Triassic (~238 Ma) (Lv et al., 2018a, 2018b, 2018c; Ren et al., 2011).
The JMHB06 pegmatite intruded in gneissic biotite granite, as suggested
by the sharp contact, development of a chilled border, and orientated
growth of schorl in exocontact zone (Fig. 2a). It shows a limited outcrop
and consists of four internal zones (Table 1). Some Be-, Nb- and Ta-rich
minerals were observed in the outcrop or separated by artificial heavy
concentrate testing (Fig. A.1). Details of the mineral association are pre-
sented in Table 2.
3

2.2.2. YLM15 and HLT01 pegmatites
The YLM15 and HLT01 pegmatites are located in the Yeliuman-

Hailiutan pegmatite field. The pegmatite field is situated in the north-
western part of the Kabaer-Xibodu Paleozoic magmatic arc and the
northern limb of the Qilimutale anticlinorium (Zou and Li, 2006).
Granitic rocks including gneissic biotite granite, plagiogranite and
medium-grained granite are widely exposed and host a few pegma-
tites. Zircon U-Pb dating indicates ages of Devonian to Ordovician
(389–453 Ma) (Cai et al., 2011a; Sun et al., 2008, 2009b). Mafic
rocks with U-Pb age of about 376 Ma are sporadically exposed (Cai
et al., 2010). The Aletai Formation is exposed in the northern part of
the area and hosts abundant pegmatites. The pegmatites in this area
are commonly less fractionated, as proved by the dominating K-
feldspar-quartz-muscovite mineral association, simple zonation, and
mineralizations of Be±Nb-Ta. Two Ordovician-Silurian metapegm-
atites (476–426 Ma) were identified in previous works (Ren et al.,
2011; Wang et al., 2001).

The YLM15 pegmatite is located in the Yeliumanmining area north-
western of the Hailiutan-Yeliuman pegmatite field, exhibits a vein in-
trusion in gneissic biotite granite (Fig. 2b). The HLT01 pegmatite is
located in the Hailiutan-Chonghuer mining area southeastern of the



Fig. 2. Field photographs of the studied pegmatites and wall rocks, which show the contact relationship between the pegmatites and wall rocks. (a) JMHB06, (b) YLM15, (c) HLT01,
(d) SEJK01, (e) TEL01, (f) QME01, (g) AKB01, (h) QME02, (i) DKLS01 and (j) BC01.
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Hailiutan-Yeliuman pegmatite field as an intrusion inmetagabbro along
a northwest joint (Fig. 2c). They consist of 3–4 internal zones (Table 1)
and have simple mineral assemblages (Table 2), with REE(Y)-rich min-
erals locally observed in the outcrops (Figs. A.2 and A3).

2.2.3. SEJK01, AKB01, TEL01, QME01 and 02 pegmatites
The SEJK01, AKB01, TEL01, QME01, and QME02 pegmatites are dis-

tributed throughout the northwestern to southeastern segments of
the Xiaokalasu-Qiebielin pegmatite field. Tectonically, this pegmatite
field is situated in the western of the Kabaer-Xibodu Paleozoic mag-
matic arc and the axis structure zone of the Qiebielin anticlinorium
(Zou and Li, 2006). As the largest pegmatite distribution area in the
Jiamanhaba-Dakalasu pegmatite belt, the Xiaokalasu-Qiebielin peg-
matite field consists of the Xiaokalasu, Qiemuerqieke, Taerlang,
Qiebielin, Aergake, Akesaiyi-Akesu, Akebasitawu, Saerjiake, Wulukete
andQieboluoyi-Akegonggaitemining areas and thousands of pegmatite
dykes. Most of the pegmatites show simple internal zoning and limited
rare metal mineralization, with some exhibiting Be±Nb-Ta mineral-
ations. Only a few located, in Xiaokalasu, Qiebielin, and Saerjiakemining
areas, show complex zonation and Li-Be-Ta-Nb mineralization. Two
generations of pegmatites including Devonian (403 Ma, Lv et al.,
2018a) and Triassic (249–240 Ma, Ren et al., 2011) have been con-
firmed. Granitoids are prevalent and dominated by early-middle Paleo-
zoic Taerlang and Qiemuerqieke batholiths consisting of granodiorite,
biotite granite, tonalite, and adamellite, with zircon U-Pb ages of
404–462 Ma (Cai et al., 2011a; Wan et al., 2011; Wang et al., 2013;
Yuan et al., 2007). In addition, three small Permian granite plutons
4

have been reported including Keyinbulake syenogranite (278 Ma, Li
et al., 2012b), Aweitan porphyritic adamellite (271 Ma, Tong et al.,
2014) and a two-mica granite situated close to the Aletai city
(275 Ma, Sun et al., 2009a). Permian gabbro dykes are exposed only in
Qiemuerqieke area (Wan et al., 2013). Metasedimentary rocks, includ-
ing those of the Habahe Group and the Aletai Formation, are locally ex-
posed in the northwestern and southeastern parts of the pegmatite
field, respectively.

The SEJK01, AKB01, TEL01, and QME01 and 02 pegmatites are lo-
cated in the Saerjiake, Akebasitawu, Taerlang andQiemuerqiekemining
areas, respectively, and exhibit as intrusions in biotite-quartz schist, bi-
otite granite, quartz-biotite schist, gneissic two-mica granite and biotite
granite, respectively (Fig. 2d-h). They consist of 3–5 internal zones
(Table 1) and show various types of mineralization according to the
mineral assemblages (Table 2) and typical ore and accessory minerals
(Figs. A.4–8).

2.2.4. DKLS05 pegmatite
The DKLS05 pegmatite is exposed in the Dakalasu-Kekexier pegma-

tite field. Tectonically, this field is situated in the axis structure zone of
the Kelan syncline and the northern of Kalasu fault zone (Zou and Li,
2006). Granites consist of the Ordovician gneissic biotite granite
(465 Ma, Zou and Li, 2006); Devonian gneissic granite and epidote-
bearing granite (412 Ma and 410.5 Ma, respectively; Broussolle et al.,
2018); and Permian epidote-bearing granite (283.7 Ma), gneissic gran-
ite (279.1 Ma) (Broussolle et al., 2018), and porphyritic biotite granite
(270 Ma; Liu et al., 2018). Metasedimentary rocks including the Aletai



Table 1
Geology and internal zonation of the studied pegmatites in the Chinese Altai.

Pegmatite Pegmatite field Mining area Wall rock Contact
relationship

Shape Length
and
width
(m)

Strike Mineralization Zonation

JMHB06 Jiamanhaba Jiamanhaba Gneissic biotite granite Sharp Tabular 100
and
1–3

275o Be-Ta-Nb Graphic zone, blocky microcline zone, quartz-muscovite zone, quartz core zone

YLM15 Yeliuman- Hailiutan Yeliuman Gneissic biotite granite Sharp Vein 80 and
3–5

325o REE Graphic zone, microcline-quartz-muscovite-biotite zone, quartz core zone

HLT01 Hailiuitan Metagabbro Sharp Tabular 200
and
5–10

330o REE Graphic zone, blocky orthoclase-microcline-quartz zone, orthoclase-muscovite-biotite zone,
quartz core zone

SEJK01 Xiaokalasu-Qiebielin Saerjiake Biotite-quartz schist Sharp Tabular 600
and
3–5

330o Li-Be-Ta-Nb Graphic zone, blocky orthoclase-microcline zone, quartz- muscovite zone,
quartz-cleavelandite- spodumene zone, quartz core zone

AKB01 Akebasitawu Biotite granite Sharp Tabular 200
and
2–5

210o Be-Nb-Ta-REE Graphic zone, blocky orthoclase-microcline zone, quartz-muscovite zone

TEL01 Taerlang Biotite-quartz schist Sharp Tabular 200
and
3–5

290o Be-Nb-Ta-REE Graphic zone, quartz-microcline-biotite zone, quartz-muscovite-biotite zone, quartz core zone

QME01 Qiemuerqieke Gneissic two- mica
granite

Sharp Vein 50 and
3–5

342o REE Graphic zone, blocky microcline zone, quartz-muscovite zone, quartz core zone

QME02 Biotite granite Sharp Tabular 300
and
1–5

330o Li-Be-Ta-Nb-Sn Graphic zone, blocky microcline zone, quartz-muscovite zone, cleavelandite-quartz- muscovite
zone, quartz core zone

DKLS01 Dakalasu-Kekexier Dakalasu Biotite granite Sharp E: Pod 60 and
5–15

290o Be-Nb-Ta Graphic zone, blocky microcline-quartz zone, muscovite aggregation zone,
albite-muscovite-quartz zone

W:
Vein

100
and
3–5

220o

BC01 Qinghe Tagerbasitawu-
Baicheng

Staurolite-biotite-quartz
schist

Sharp Pod 80 and
2–16

280o Li-Be- Ta-Nb Graphic zone, muscovite aggregation zone, microcline- orthoclase-quartz zone,
quartz-muscovite-albite zone, cleavelandite-quartz-spodumene zone, quartz core zone
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Table 2
The mineral assemblages of the Permian pegmatites in the Chinese Altai.

Mineral/pegmatite JMHB06 YLM15 HLT01 SEJK01 AKB01 TEL01 QME01 QME02 DKLS01 BC01

Microline 35 35 25 30 35 35 30 35 45 30
Quartz 31 26 22 25 32 22 35 25 25 30
Muscovite 19 21 17 15 15 20 25 20 10 15
Orthoclase 6 8 23 10 8 9 4 6 10 7
perthite 5 4 8 3 6 7 3 3 5 2
Albite 3 2 1 15 3 1 2 10 2 15
Biotite − 3 3 − − 5 − − 2 −
Beryl +++ − − ++++ +++ +++ − +++ ++++ ++++
Ferrocolumbite + − − − ++ − + − +++ ++
Mangancolumbite ++ − − +++ +++ − + +++ ++ +++
Ferrotantalite − − − − ++ − − − ++ −
Manganotantalite ++ − − +++ + − − + − ++
Spodumene − − − +++ − − − − − ++++
Lepidolite − − − ++ − − − +++ − ++
Betafite ++ − − − + − − − + −
(Ce)-Monazite ++ +++ ++ + ++ ++ ++ − − +
Xenotime ++ ++ +++ − ++ + +++ − + −
Bertrandite − − − − − − − − + −
Bismutotantalite − − − + − − − − − −
Cassiterotantalite − − − − − − − ++ − −
Thoreaulite − − − − − − − + − −
Cassiterite − − − − − − − + − −
Uranmicrolite ++ − − + ++ − − ++ +++ −
Bismutomicrolite + − − + ++ − − − − −
Uranpyrochlore ++ − − − + + − − + +++
Yttropyrochlore − − − − ++ − − − − −
Fergusonite ++ − − − − − − − − −
Tapiolite − − − − − − − − + −
Triphylite − − − ++ − − − − − +++
Sicklerite − − − ++ − − − − − +++
Spessartite +++ +++ +++ ++++ +++ +++ ++++ +++ ++ +++
Almandine + − + − − + − − +++ −
Fluorapatite +++ ++ +++ − +++ ++++ +++ + +++ ++
Manganapatite − − − ++++ − − − ++++ − +++
Schorl +++ +++ ++++ ++++ +++ ++++ +++ ++++ ++++ +++
Tsilaisit − − − ++ − − − +++ − −
Zircon ++ ++ ++ +++ ++ ++ ++ ++ ++ +++
Amblygonite − − − + − − − − − +
Rutile − − + − − − − − ++ −
Ilmenite ++ − + − − − + − ++ +
magnetite + ++ + + + +++ ++ + +++ +
Cheralite + + + − + − − − − −
Bismutite + − − + − − − − − +
Thorite − + + − − + − − + −
Sphene − + − − − − − − − −
Pyrophanite − − − − − − − − + −
Topaz + + + − − + + − − +
Allanite − − + − − − − − − −
Epidote − + + − − − − + − −
Vernadite − − ++ − − − − + − +

Note: number means speculative volume percent; symbol ++++means high content and can be commonly observed in pegmatites; +++meansmedium content and can be locally
observed;++means low content confirmed by artificial heavy concentrate tests;+means extremely low content confirmed by artificial heavy concentrate tests;−means not observed.

Z.-H. Lv, H. Zhang and Y. Tang Lithos 380–381 (2021) 105865
formation slate as well as schist and gneiss are widely exposed. More
than 1000 pegmatites are exposed in this area (Zou and Li, 2006) and
are commonly characterized by low fractionation and simple zoning;
only a few show Be±Nb-Ta mineralization.

The DKLS01 pegmatite is the largest pegmatite in this pegmatite
field and occurs as intrusion in porphyritic biotite granite with a sharp
contact (Fig. 2i). It consists of the eastern and western segments with
distinct shapes and strikes (Table 1), and contains abundant Be-, Nb-
and Ta-rich minerals (Table 2 and Fig. A.9).

2.2.5. BC01 pegmatite
The BC01 pegmatite is situated in the Tagerbasitawu-Baicheng

mining area, Qinghe pegmatite field. This field is located the plunging
crown of the Qinggeli anticlinorium tectonically and consists of tens of
mining areas and 8000 pegmatites (Zou and Li, 2006). The pegmatites
with Be mineralization are distributed mainly in the Asikaerte and
6

Buleke mining areas; those with muscovite mineralization are distrib-
uted in the Tiemulete, Buleke, Naransala, and Akebulake mining areas.
Only a few pegmatites, with limited Li-Be±Nb-Ta ± Cs mineralization,
are exposed in the Baicheng, Talati and Amulagong mining areas.
Metasedimentary rocks of the Habahe Group are widely exposed in
the pegmatite field and host a majority of pegmatites. Granitoids are
rare in most mining areas, only a few small plutons are sporadically
exposed and consist of plagioclase granite (485–507 Ma, Zhang
et al., 2017), granodiorite (363–394 Ma, Ye et al., 2015; Song et al.,
2017), monzogranite (395 Ma, Shi et al., 2015) and quartz diorite
(381 Ma, Song et al., 2017).

The BC01 pegmatite occurs as an intrusion in staurolite-biotite-
quartz schist with a sharp contact (Fig. 2j). It consists of six zones
(Table 1) with prevalent development of albitization. Li-, Be-, Nb-
and Ta-rich minerals are locally observed in the outcrop (Fig. A.10),
and other minerals are also identified, as listed in Table 2.
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3. Sampling and analytical methods

All samples numbered as JMHB06, YLM15, HLT01, SEJK01, AKB01,
TEL01, DKLS01, BC01, QME01 and 02 were collected from the graphic
texture zones of the corresponding pegmatites. The samples were
grinded and zircons were picked out by hand to avoid contamination.
Zircon target preparation, image acquisition under cathodolumi-
nescence (CL), and in situ U-Pb, REEs and Hf isotope analyses were per-
formed at the State Key Laboratory of Continental Dynamics, Northwest
University, Xi'an, China. The U-Pb dating and content analysis of REEs
was conducted on an Agilent7500a ICP-MS instrument equipped with
a 193-nm ArF excimer laser, with working conditions as following:
laser frequency of 10 Hz with energy of 34–40 mJ, beam diameter of
30 μm, background acquisition of 30 s and signal acquisition of 60 s.
Helium was used as the carrier gas to provide efficient aerosol delivery
to the torch (Yuan et al., 2004). The U, Th and Pb concentrations were
calibrated using 29Si as an internal standard and NIST 610 as an external
standard. The zircon 206Pb/207Pb, 206Pb/238U and 207Pb/235U ratios were
calculated by ICPMS Data Cal (Liu et al., 2009). The concordia diagrams
and weighted mean calculations were making by using the Isoplot pro-
gram (Ludwig, 2003). The two standard zircons 91,500 and GJ-1 yielded
weighted mean 206Pb/238U ages of 1064 ± 3.5 Ma (n = 30, 2σ) and
603 ± 3.0 Ma, respectively, which are in good agreement with the rec-
ommended ages (Wiedenbeck et al., 2004). The correction of common
Pb was achieved according to the method of Andersen (2002). The un-
certainty of individual analyses was reported at the 1σ level, and the
weighted mean 206Pb/238U age was calculated at the 2σ level.

Zircon Hf isotopic analysis was conducted on a Nu Plasma HR
MCICP-MS equipped with a GeoLas 2005 193-nm ArF excimer laser ab-
lation system. The analyses were performed with a spot size of 44 μm,
laser repetition rate 10 Hz and energy density of 15–20 J/cm−2. Helium
was used as the carrier gas. The detailed instrumental settings and ana-
lytical procedures were described by Diwu et al. (2011). Zircons 91,500
and GJ-1 were also analyzed as unknown samples to check the data
quality. The obtained weighted 176Hf/177Hf ratios were 0.282326 ±
0.000098 (n = 40, 2σ) for 91,500 and 0.282039 ± 0.000010 (n = 40,
2σ) for GJ-1, which were consistent with the recommended ratios
within 2σ error (0.282307 ± 0.000058 and 0.282015 ± 0.000019, re-
spectively) (Elhlou et al., 2006; Griffin et al., 2006).

4. Results

4.1. Zircon morphology, cathodoluminescence (CL) and backscattered elec-
tron (BSE) features and Th/U ratios

The zircon grains from the ten pegmatites vary in size from 80 to
500μm.Theyarebrown incolor andopaquewitheuhedralhabits featur-
ing {111} and {110} or only {111} crystal faces. According to the CL and
BSE features, three types of zirconwere identified. The type-1 zircon is
featuredbyweakandhomogenousluminancewithnoevidentoscillatory
zoning under CL and BSE images, such as the zircons from the HLT01
(Fig. 3c1 and 2), SEJK01 (Fig. 3d), TEL01 (Fig. 3f1 and 2), QME01
(Fig. 3g) QME02 (Fig. 3h1 and 2), DKLS01 (Fig. 3i) and BC01 (Fig. 3j1
and2)pegmatites.Thetype-2zirconischaracterizedbyweakandmosaic
luminance and spongy texture inCLandBSE imageswith abundantmin-
eral inclusions or pores, such as the zircons from the JMHB06 (Fig. 3a),
YLM15 (Fig. 3b), HLT01 (Fig. 3c3 and 4), QME02 (Fig. 3h3 and 4), and
BC01 (Fig. 3j5 and 6) pegmatites. The type-3 zircon is featured by core-
rim texture and relatively intense luminance in CL images, and exhibits
as an inherited zircon corewith blurry oscillatory zoning, such as the zir-
cons fromtheAKB01(Fig.3e4)andBC01(Fig.3j4)pegmatites.Exceptthe
type-3 zircon, other zircons commonly have high U and/or Th contents
andvaryingTh/Uratios.ThezirconsfromtheJMHB06andYLM15pegma-
tites commonly have high contents of Th (771–13,580 ppm and
142–1336 ppm) and U (3887–32,504 ppm and 4399–32,507 ppm, re-
spectively) with varying Th/U ratios of 0.08–0.68 and 0.01 to 0.19,
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respectively. The zircons from the HLT01, SEJK01, AKB01, TEL01,
QME01, QME02, and BC01 pegmatites have low contents of Th
(mostly <100 ppm) and high contents of U (mostly >1000 ppm)with
low Th/U ratios (mostly <0.1). Comparatively, the zircons from the
DKLS01pegmatite havemoderate contents of Th (253–2430 ppm) and
U(1036–8777ppm)withTh/U ratios of 0.08–0.68(TableA.1). Compara-
tively, the type-3 zircons from the AKB01 and BC01 pegmatites have
lower contents of Th (146–341 ppm) andU (220–3789 ppm), with Th/
U ratios of 0.07–0.66 (Table A.1).

4.2. Rare earth elements (REEs) in zircon

The zircons from the ten pegmatites have varying contents of REEs
(not including Y), with the average contents decreasing from
6391 ppm for the JMHB06 pegmatitie to 236 ppm for the BC01 pegma-
tite (Table C.1). However, the three types of zircon mentioned above
show distinct REE patterns. The type-1 zircon shows enrichment of
heavy rare earth elements (HREEs, Gd-Lu), Ce positive anomaly and
Eu negative anomaly in the chondrite-normalized patterns (Fig. 5),
with (Sm/La)N ratios of 4.8–132.5, Ce/Ce* ratios of 1.7–34.5 and Eu/
Eu* ratios of 0.02–0.7 (Table C.1). The type-2 zircon shows relatively en-
richment of light rare earth elements (LREEs, La-Eu), weakened Ce and
Eu anomalies compare to the type 1 (Fig. 5a, b, c, f, h and i), with smaller
(Sm/La)N and Ce/Ce* ratios of 2.5–12.5 and 0.9–2.8, respectively, and
larger Eu/Eu* ratios of 0.1–1.4 (Table C.1). The type-3 zircon shows
more evident enrichment of HREEs and Ce positive anomaly compare
to the type-1 (Fig. 5e and j), with larger (Sm/La)N and Ce/Ce* ratios of
14.6–152.9 and 9.8–82.1, respectively (Table C.1). The types-1 and -2
both have evident tetrad effect in the HREE segment (TE3,4 > 1.2),
which is distinct to the type-3 (Table C.1).

4.3. Zircon U-Pb ages and Hf isotopes

4.3.1. JMHB06
Fifteen zircons were selected for U - Pb age determination. Of these,

thirteen type-1 zircons define an age population with 206Pb/238U ages
ranging from 256 Ma to 264 Ma and a weighted mean 206Pb/238U age
of 260.4± 4.0Ma (Table A.1; Fig. 4a). The age of 260.4± 4.0Ma is con-
sidered to represent the formation age of the pegmatite. Two type-2 zir-
cons yield discordant ageswith 206Pb/238U ages of 285–301Ma (Spots 4
and 6, Table A.1). Of these thirteen zircons, twelve yielded consistent
176Hf/177Hf values ranging of 0.282747–0.282778. According to the
crystallization age of 260.4 Ma, the calculated εHf(t) values range from
+4.81 to +5.80 with TCDM model ages of 977–914 Ma (Table B.1).

4.3.2. YLM15
Five type-2 zircons yield discordant ages with 206Pb/238U ages

ranging from 268 to 396 Ma (Spots 4, 5, 7, 9 and 14). Ten type-1 zir-
cons define an age population with 206Pb/238U ages of 258–267 Ma
and a weighted mean 206Pb/238U age of 262.9 ± 3.8 Ma (Table A.1;
Fig. 4b), which is considered to represent the formation age of the
pegmatite. The ten zircons yield consistent 176Hf/177Hf values ranging
from 0.282810 to 0.282897. According to the crystallization age of
262.9 Ma, the calculated εHf(t) values range from +6.99 to +9.80
with TCDM model ages of 841–662 Ma (Table B.1).

4.3.3. HLT01
Fifteen zircons were selected for U - Pb age determination. Of

these, ten type-1 zircons yield concordant 207Pb/235U and 206Pb/238U
ages and define a weighted mean 206Pb/238U age of 253.8 ± 4.1 Ma
(Table A.1; Fig. 4c). Five type-2 zircons yield discordant ages with
206Pb/238U ages of 256–335 Ma (Spots 5, 7, 9, 10 and 14, Table A.1).
The age of 253.8 ± 4.1 Ma is considered to represent the formation
time of the pegmatite. The ten zircons yield 176Hf/177Hf values ranging
from 0.282768 to 0.282851. According to the crystallization age of



Fig. 3. Representative backscattered electron (BSE) and cathodoluminescence (CL) images of zircons from the studied pegmatites, showing the laser analytic spots, mineral inclusions,
206Pb/238U ages and/or εHf(t) values. (a) JMHB06, (b) YLM15, (c) HLT01, (d) SEJK01, (e) AKB01, (f) TEL01, (g) QME01, (h) QME02, (i) DKLS01 and (j) BC01. Scale bars correspond to
100 μm.

Z.-H. Lv, H. Zhang and Y. Tang Lithos 380–381 (2021) 105865
253.8 Ma, the calculated εHf(t) values range from +5.21 to +8.10
with TCDM model ages of 947–763 Ma (Table B.1).

4.3.4. SEJK01
Fifteen type-1 zirconswere selected for U and Pb age determination.

They define an age population with 206Pb/238U ages of 247–260Ma and
a weighted mean 206Pb/238U age of 252.7 ± 2.1 Ma (Table A.1; Fig. 4d).
The age of 252.7± 2.1Ma is considered to represent the formation time
of the pegmatite. Ten of these zircons yield consistent 176Hf/177Hf values
ranging from 0.282623 to 0.282661. According to the crystallization age
of 252.7 Ma, the calculated εHf(t) values range from −0.32 to +1.52
with TCDM model ages of 1296–1180 Ma (Table B.1).

4.3.5. AKB01
Fifteen zircons were selected for U-Pb age determination. Three

type-3 zircons yield older ages with 206Pb/238U ages of 418–420 Ma
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(Spots 9, 12 and 13). Twelve type-1 zircons define an age population
with 206Pb/238U ages varying from 247 Ma to 258 Ma and a weighted
mean 206Pb/238U age of 253.0±3.0Ma (Table A.1; Fig. 4e)which is con-
sidered to represent the formation time of the pegmatite. Of these
twelve zircons, ten yield consistent 176Hf/177Hf ranging from 0.282638
to 0.282686. According to the crystallization age of 253 Ma, the calcu-
lated εHf(t) values range from +0.58 to +2.37 with TCDM model ages
of 1239–1126 Ma (Table B.1).

4.3.6. TEL01
Twenty zirconswere selected for U - Pb age determination. Of these,

six type-2 zircons yield discordant ages with varying 206Pb/238U ages of
323–475Ma (Spots 1, 2, 4, 8, 10 and 12, Table A.1). Fourteen type-1 zir-
cons define an age population with 206Pb/238U ages varying from
244 Ma to 265 Ma and a weighted mean 206Pb/238U age of 255.5 ±
2.7 Ma (Table A.1; Fig. 4f), which is considered to represent the



Fig. 4. Concordia and weighted average diagrams of the LA-ICP-MS U-Pb ages of zircons from samples JMHB06 (a), YLM15 (b), HLT01 (c), SEJK01 (d), AKB01 (e), TEL01 (f), QME01 (g),
QME02 (h), DKLS01 (i) and BC01 (j). Mean ages were calculated from age spot without padding gray, error ovals are 1 sigma and mean ages given as 2 sigma.
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formation age of the pegmatite. Of these fourteen zircons, ten yield
176Hf/177Hf values ranging from 0.282597 to 0.282834. According to
the crystallization age of 255.5 Ma, the calculated εHf(t) values range
from−0.60 to+7.61 with TCDMmodel ages of 1316–801Ma (Table B.1).

4.3.7. QME01
Twenty type-1 zircons define an age population with 206Pb/238U

ages varying from 249 Ma to 257 Ma and a weighted mean 206Pb/238U
age of 253.3 ± 2.4 Ma (Table A.1; Fig. 4g) which reflects the formation
time of the pegmatite. Ten of theses zircons yield 176Hf/177Hf values
ranging from 0.282782 to 0.282911. According to the crystallization
age of 253.3 Ma, the calculated εHf(t) values range from +5.82 to
+10.19 with TCDM model ages of 907–629 Ma (Table B.1).

4.3.8. QME02
Fifteen zircons were selected for U - Pb age determination. Of these,

five type-2 zircons yield discordant ages with varying 206Pb/238U ages
from 268 Ma to 842 Ma (Spots 1, 3, 5, 8 and 15, Table A.1). Ten type-1
zircons define an age population with 206Pb/238U ages varying from
249 Ma to 260 Ma and a weighted mean 206Pb/238U age of 253.5 ±
3.2 Ma (Table A.1; Fig. 4h), which is considered to represent the forma-
tion time of the pegmatite. Eight of these zircons yield consistent
176Hf/177Hf values ranging from 0.282701 to 0.282714. According to
the crystallization age of 253.5 Ma, the calculated εHf(t) values range
from +2.58 to +3.20 with TCDM model ages of 1114–1074 Ma
(Table B.1).

4.3.9. DKLS01
Sixteen zircons were selected for U-Pb age determination. Of these,

two type-2 zircons yield discordant ages with 206Pb/238U ages of
270–282 Ma (Spots 5 and 13). Fourteen type-1 zircons define an age
population with 206Pb/238U ages ranging from 252 Ma to 262 Ma and
a weighted mean 206Pb/238U age of 258.0 ± 3.8 Ma (Table A.1; Fig. 4i).
Thus, the age of 258.0±3.8Ma is considered to represent the formation
time of the pegmatite. Of these fourteen zircons, twelve yield consistent
176Hf/177Hf values ranging from 0.282726 to 0.282775. According to the
crystallization age of 258 Ma, the calculated εHf(t) values range from
+4.01 to +5.76 with TCDM model ages of 1026–915 Ma (Table B.1).

4.3.10. BC01
Twenty zirconswere selected for U-Pb age determination. Two type-

3 zircons yield older 206Pb/238U ages of 347–355 Ma (Spots 3 and 19).
Eight type-2 zircons yield discordant ages with 206Pb/238U ages ranging
from 105 Ma to 238 Ma (Spots 1, 3, 5, 8, 9, 11, 12 and 14). Ten type-1
zircons define an age population with 206Pb/238U ages of 264–278 Ma
and a weighted mean 206Pb/238U age of 274.0 ± 5.3 Ma (Table A.1;
Fig. 4j), which is considered to represent the formation age of the peg-
matite. The ten zircons yielded consistent 176Hf/177Hf values of
0.282600–0.282633. According to the crystallization age of 274 Ma,
the calculated εHf(t) values range from −0.07 to +1.11 with TCDM
model ages of 1296–1222 Ma (Table B.1).

5. Discussion

5.1. Age, mineralization, and classification of the Permian pegmatite

5.1.1. Genesis of zircon and significance of U-Pb age
Some isotopic systems of minerals have been applied in pegmatite

dating, such as (1) zircon U-Pb, (2) monazite U-Pb, (3) molyb-
denite Re-Os, (4) columbite U-Pb, (5) apatite U-Pb and (6) muscovite
Ar-Ar and K-Ar. However, zircon U-Pb dating is preferentially adopted
for the studied pegmatites, with consideration of the varying closure
temperatures of the isotopic systems in minerals [T1 (900–700 °C;
Cherniak and Watson, 2000; Ortega-Rivera et al., 1997) ≥ T2
(750–720 °C; Copeland et al., 1988) > T3 (700–600 °C; Raith and
Stein, 2000) > T4 (> lower amphibolite facies, Romer and Smeds,
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1994) ≥ T5 (620–450 °C; Chamberlain and Bowring, 2000;
Krogstad and Walker, 1994) > T6 (425 °C and 380 °C, respectively;
Harrison et al., 2009)], the dominating formation temperature of
pegmatite (about 650–450 °C), the hydrothermal fluid activities, the
multiple-generations and the prevalence of dating mineral in highly-
fractionated pegmatites. Although the zircons formed in highly-
fractionated pegmatites are commonly rich in U and Th, those formed
in early stage (e.g., graphic zone and aplite zone) mostly have low U
and Th, and are suitable for dating, according to our previous works
(e.g., Lv et al., 2012, 2018a). The reasons for the failure in zircon U-Pb
dating of highly-fractionated pegmatites, include limited zircon grains
have been separated, rock samples for zircon separation were collected
from the zones with high U and/or Th or alteration zones, and rough
preparation works for dating (target, polishing and zircon CL and BSE
imaging, etc.).

The zircons from the studied pegmatites commonly have low Th/U
ratios <0.1 (Table A.1). Except inherited zircons, no zircon shows oscil-
latory zoning in the BSE and CL images (Fig. 3), which indicates their
distinction from typical igneous zircons (e.g., Wu and Zheng, 2004). In
the BSE and CL images, the type-1 zircons show uniform luminance
(e.g., Fig. 3a1, d1, f1, g1, i1 and j1), which indicates that they are primary
in composition and structure with limited modification by metamict-
ization or fluid alteration (e.g., Corfu et al., 2003). In the chondrite-
normalized REE patterns (Fig. 5), the type-1 zircons show depletion of
LREEs and enrichment of HREEs, positive Ce anomalies (Ce/Ce* =
2.0–34.5) and negative anomalies (Eu/Eu* = 0.1–0.7) with the tetrad
effect shown in the HREE segment (TE3,4 > 1.2) (Table C.1). The devel-
opment of tetrad effect indicates that the pegmatite-forming melts
were highly fractionated and enriched in hydrous fluids (Irber, 1999).
As shown in Fig. 6, most of the zircons show intermediate abundances
of La and (Sm/La)N and Ce/Ce* ratios (Table C.1) between the referred
magmatic and hydrothermal zircons (Hoskin, 2005) (Fig. 6a and b).
All of these features suggest that the type-1 zircons are neither igneous
nor hydrothermal in origin, which is consistent with the nature of
pegmatite-forming melts featuring the coexistence of melt and hydr-
ous fluid phases (e.g., Thomas and Davidson, 2016). Therefore, the
type-1 zircons may represent the primary zircons crystallized form
pegmatite-forming melts. The 206Pb/238U and 207Pb/235U ages obtained
from these zircons are concordant with concordance ≥90% (Table A.1),
and may represent the formation ages of the pegmatites.

Comparatively, the type-2 zircons show mosaic luminance and
spongy textures featuring abundant pores and mineral inclusions in
BSE and CL images (e.g., Fig. 3a3, b3, h3 and j5). These features indicate
that modifications in composition and structure occurred after crystalli-
zation (e.g., Corfu et al., 2003). In addition, except for those of the BC01
pegmatite, the type-2 zircons show higher abundances of REEs, particu-
larly LREEs (Fig. 5a, b, c, f, h and i), and lower ratios of (Sm/La)N
(2.5–12.5) and Ce/Ce* (0.9–2.8) than those with concordant ages
(Table C.1), which overlap with the range of hydrothermal zircon
(Fig. 6a and b). All of these features suggest that the type-2 zircons
were altered by hydrothermal fluid after metamictization. The
206Pb/238U and 207Pb/235U ages obtained from the type-2 zircons are dis-
cordant with concordance <90% (Table A.1) and older than the concor-
dant ages of type-1 zircons from the same sample, which indicates that
the U-Pb systems were destroyed and mixed by common Pb (e.g., Wu
and Zheng, 2004). The zircons of type 2 from the BC01 pegmatite
show mosaic luminance and spongy textures, have higher and lower
contents of U and REEs (Table C.1), respectively, and younger ages
than those of the type-1 zircons from the same pegmatite (Table A.1
and Fig. 4j). The younger ages are discordant with concordance of
78.3–89.5% (Table A.1), and show negative correlations with the U
and Th contents (Fig. 7), which contrasts to the positive correlation
caused by “high-U/Th effect”, indicating a loss of radiogenic Pb after
metamictization (e.g., Li, 2016). The type-3 zircons are definitely
inherited zircons according to the core-rim texture in CL images anddis-
tinct REE patterns to other types of zircons (e.g., Corfu et al., 2003;
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Hoskin, 2005), and their ages are irrelevant to the formation time of
pegmatites.

Previous works suggest that high abundances of U or Th in zir-
cons, depending on the crystallization age, could induce
metamictization of the zircon by radiation damage, which further re-
sults in a loss of radioactive Pb and misinterpretation of the U-Pb age
(e.g., Wu and Zheng, 2004). Some of our zircon samples have high
abundances of U or Th (Table A.1), which indicates that they
underwent metamictization featured by mosaic luminance and
spongy texture in CL images. Following the calculation method of
Nasdala et al. (2001), the radiation dosages in the studied zircons
have calculated with varying α-doses (Dα) of 0.08–32.7 × 1018 α/g
(Table D.1). However, we believe that the concordant ages obtained
from the type-1 zircons can represent the crystallization times of the
zircons according to 1) most analyzed zircons (> 63%) have α-dose
accumulations lower than 4 × 1018 α/g, which indicates limited
metamictization (Nasdala et al., 2004); 2) the α-doses do not show
correlation to the concordance of U-Pb ages (Fig. 8), which means
that metamictization and late annealing processes do not always in-
duce a loss of radiogenic Pb (e.g., Nasdala et al., 2001, 2004); 3) the
concordant ages do not show positive correlations to the contents
of U and Th in the zircons (Fig. 7), which contradicts the disturbance
from the “high-U/Th effect” (e.g., Li, 2016).

A few Permian pegmatites in the Chinese Altai have been re-
ported by previous works (Ren et al., 2011; Zhou et al., 2018),
some of which suggest formation in the early Permian according to
the Ar-Ar ages of muscovite (Zhou et al., 2018). However, such
ages for the pegmatites should be reassessed carefully for the follow-
ing reasons. Firstly, the muscovite Ar-Ar ages are commonly tens of
millions of years younger than zircon U-Pb ages, as indicated by pre-
vious dating results. For example, the Talati pegmatite has been
dated by zircon U-Pb and muscovite Ar-Ar method at 385.9 ±
3.5 Ma (sampling from the rim zone, Lv et al., 2018a) and 286.4 ±
1.6 Ma (sampling from the outer intermediate zone, Zhou et al.,
2018), respectively. Such a large gap (ca. 100 Ma) is hard to explain
by slow cooling or late hydrothermal fluid activity. Similar age gaps
between U-Pb ages and Ar-Ar or K-Ar ages were also observed in
the Koktokay No. 3 pegmatite (ca. 30–70 Ma, Chen et al., 1999;
Chen, 2011; Wang et al., 2007b; Zhou et al., 2015b) and the
Kelumute No. 112 pegmatite (ca. 60–80 Ma, Lv et al., 2012; our un-
published data) in the Chinese Altai, and other pegmatites world-
wide (e.g., Barnes, 2010; Kontak et al., 2005; Melleton et al., 2012).
Secondly, the Ar-Ar ages of 297–265 Ma determined for the pegma-
tites (Zhou et al., 2018) overlap with the time span of high-
temperature granulite-facies metamorphisms during the Permian
(299–271 Ma; Hu et al., 2006; Li et al., 2014; Tong et al., 2013;
Wang et al., 2009c, 2014b), which indicates that the Ar-Ar ages
might be reset by high-temperature metamorphisms and reflect
the cooling times after peak metamorphism. For example, the Talati
pegmatite is proposed to form at 385.9 ± 3.5 Ma by zircon U-Pb age,
and the Ar-Ar system in muscovite may suffered from thermal dis-
turbance (e.g., with T > 425 °C, Harrison et al., 2009) from high-
temperature metamorphism at 299 Ma (e.g., Wang et al., 2009c),
which induced the open of Ar-Ar system in muscovite and further
to the loss of radiogenic Ar. After that, the Ar-Ar system rebooted
during the cooling process at temperature below 425 °C and about
286 Ma.

In this work, the JMHB06, YLM15, HLT01, SEJK01, AKB01, TEL01,
QME01, QME02, DKLS01, and BC01 pegmatites, were dated by zircon
U-Pb as 260.4 ± 4.0 Ma, 262.9 ± 3.8 Ma, 253.8 ± 4.1 Ma, 252.7 ±
2.1 Ma, 253.0 ± 3.0 Ma, 255.5 ± 2.7 Ma, 253.3 ± 2.4 Ma, 253.5 ±
3.2 Ma, 258.0 ± 3.8 Ma and 274.0 ± 5.3 Ma, respectively. These ages
can represent the formation times of the pegmatites according to the
genesis of zircons and other evidence mentioned above. Therefore, our
dating results demonstrate that the studied pegmatites formed mainly
in the late Permian.
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5.1.2. Mineralization
The Chinese Altai has been a main production site for rare metals

such as Li, Be, Ta, and Cs since the Koktokay No. 3 pegmatite was discov-
ered in the 1940s. Many rare metal ore deposits of the hundreds found
in this area have been exploited. Recent studies have revealed that the
major rare metal pegmatites exposed in the Central Altai domain were
formed during the Triassic (238–208 Ma). These includes the
super-large Li-Be-Ta-Nb-Cs ore deposits and Li ore deposits of the
Koktokay No. 3 and Kaluan pegmatites, respectively; the large Li-Be-
Ta-Nb ore deposits of the Kelumute No. 112 and Koktokay No. 1 pegma-
tites; and the mid-sized Li-Be ore deposits and Be ore deposits of the
Kukalagai No. 650 and Asikaerte pegmatites (Chen, 2011; Liu, 2015;
Lv et al., 2012; Ma et al., 2015; Ren et al., 2011). In addition, a few peg-
matites exposed in the Qiongkuer domain with limited Li ± Be-Ta-Nb
mineralization were formed during the Middle Devonian to Early Car-
boniferous (Lv et al., 2018a). However, the mineralization of Permian
pegmatite remains unclear owning to a lack of sufficient chronology
and mineralogy researches.

According to the mineral associations of the pegmatites (Table 2),
the Permian pegmatites in the Chinese Altai have three types of miner-
alization. The SEJK01, QME02 and BC01 pegmatites have a complex
mineralization of Li-Be-Ta-Nb ± Sn. The JMHB01, AKB01, TEL01, and
DKLS01 pegmatites have dominat mineralization of Be-Nb-Ta, with a
certain degree of REE mineralization. The YLM15, HLT01, and QME01
pegmatites show only REE (including Y) mineralization, particularly
HREE, as proved by the centimeter-level xenotime grain in the HLT01
pegmatite (Fig. A.3c). Compared with the Devonian-carboniferous and
Triassic pegmatites, some of the Permian pegmatites show evident
REE mineralization, which indicates that the Permian pegmatites have
a certain potential to form REE ore deposits in the Chinese Altai.

5.1.3. Classification
Although a classification scheme for pegmatites involving LCT (en-

richment of Li, Cs and Ta), NYF (enrichment of Nb, Y and F) andmixtures
of the two types (Černý, 1991b; Černý et al., 2012a; Černý and Ercit,
2005) is widely applied, it is indigestible for study, procpecting, and
exploration works (Dill, 2016; Müller et al., 2018). For this reason, we
recommend the CMS (Chemical composition-Mineral assemblage-
Structural geology) model (Dill, 2016) because it clarifies the correla-
tions between tectonic dynamics and the origins of pegmatitic rocks.
More importantly, however, this model can be used to distinguish peg-
matites from other pegmatitic quartz-feldspathic rocks including
pegmatoids, metapegmatites, granitic pegmatites and pseudope-
gmatites. According to this classification, a total of five types of pegma-
titic rocks have been identified in the Chinese Altai: pegmatites, granitic
pegmatites, metapegmatites, pegmatoids, and pseudopegmatites (Lv
et al., 2018a). The studied pegmatites in this work are distinguished
from the Yelaman and Nasenqia metapegmatites (Wang et al., 2001)
and the Tiemulete pegmatoids (Lv et al., 2018a) by their igneous origin
and evident internal zonations. In addition, they are distinguished from
the Liangkeshu pseudopegmatite (Jiang, 2012) by their primary and
pegmatitic textures and from the Shangkelan granitic pegmatite (Zou
and Li, 2006) by a lack of parental granite in the same region
(Section 5.2).

5.2. Relationships between the Permian pegmatites and granites in the
Chinese Altai

According to the classical petrogenesis model for pegmatites, LCT
pegmatites always show regional zonation from barren to complex
mineralization with a maximum distance of 10 km from their parental
S-type granites (Selway et al., 2005). The NYF pegmatites commonly
show no regional zonation, and are distributed in or near their parental
A-type granites (Černý, 1991b; Černý and Ercit, 2005). However, the re-
gional zonation of pegmatites does not prove the existence of parental
rocks. In the Chinese Altai, the regional zonation of pegmatites is



Fig. 5. Chondrite-normalized rare earth elements (REE) patterns of zircons from the JMHB06 (a), YLM15 (b), HLT01 (c), SEJK01 (d), AKB01 (e), TEL01 (f), QME01 (g), QME02 (h), DKLS01
(i) and BC01 (j) pegmatites. Type-1,−2 and − 3 represent primary, secondary and inherited zircon, respectively.
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Fig. 6. La vs. (Sm/La)N (a) and Ce/Ce* vs. (Sm/La)N (b) diagrams for genetic discrimination of zircons from the studied pegmatites. Ranges ofmagmatic andhydrothermal zircons referred to
Hoskin (2005). (Sm/La)N means chondrite-normalized Sm/La ratio, Ce/Ce* calculated according to CeN/(LaN*SmN)0.5. The types of zircon are same to those in Fig. 5.
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observed only to the west of the Halong granite batholiths, which con-
sists of biotite granite and two-mica granite (Zou and Li, 2006). From
east towest, four pegmatite zonations have been identified by local geol-
ogists since the 1950s: a barren pegmatite zone, a Be-Nb-Ta pegmatite
zone, a Li-Be-Nb-Ta pegmatite zone, and a quartz vein zone. The Halong
granite has been chronically regarded as the parental rock of the pegma-
tites. However, our recent chronology, isotope geochemistry and whole
rock composition studies revealed that the Halong granite has zircon
U-Pb ages of 403–398Mawith ƐHf(t) values of+9.9 to+15.2 in addition
tometaluminous compositions, indicating I-type granite. Conversely, the
Azubai Be-rich pegmatites, the Jiamukai-Qunku Be-Nb-Ta pegmatites
and the Kaluan Li-rich pegmatites have zircon U-Pb ages of 227–
192 Ma with ƐHf(t) values of −0.6 to +6.3 (Ma et al., 2015; Zhang
et al., 2016), which precludes a genetic relationship between the Halong
granite and the rare metal pegmatites. Therefore, detailed geochemical
and isotopic studies are required even if the potential parental granite
of the pegmatite is indicated by field geological observations.

In this section, comparative studies of the Permian pegmatites
and granites are conducted to clarify the temporal-spatial and
differentiation-source relationships between them.
Fig. 7. 206Pb/238U ages vs.Contents of U (a) and Th (b) in zircons from the studied pegmatites. No
Th effect” on the concordant ages (blue diamond shape). The types of zircon are same to those

13
5.2.1. Temporal-spatial distributions of the Permian pegmatites and
granites

According to the statistics on the Permian pegmatites and granites in
the Chinese Altai, the ages and spatial features of the pegmatites show
significant distinctions from the granites. Spatially, the granites are lo-
cated mainly in the southeastern areas of the Qiongkuer and South
Altai domains. The pegmatites are concentrated mostly in the north-
western part of the Qiongkuer domain (Fig. 9). Temporally, the granites
formedmainly during the early Permian (285–265Ma), and the pegma-
tites are commonly formed in the late Permian (265–250 Ma; Table 3;
Fig. 10). Essentially, the Permian granite is absent in most pegmatite
fields (Fig. 9). In the areas adjacent to the Xiaokalasu-Qiebielin pegma-
tite field, two Permian granites including the Keyinbulake syenogranite
(No. 25 in Fig. 9) and the Aletai two-mica granite (No. 24 in Fig. 9) in ad-
dition to the Aweitan porphyritic adamellite (No. 23 in Fig. 9) have been
dated by zircon U-Pb as 278.6 ± 3.5 Ma, 275.1 ± 1.7 Ma, and 271 ±
2 Ma, respectively (Li et al., 2012b; Sun et al., 2009a; Tong et al.,
2014). However, the U–Pb ages of the adjacent pegmatites, including
the SEJK01, AKB01 and Xiaokalasu pegmatites (Nos. 30, 31 and 35 in
Fig. 9, respectively) are 252.7 ± 2.1 Ma, 253.0 ± 3.0 Ma (this work),
evident correlation is observed in thediagrams, indicating the limited influence of “highU/
in Fig. 5.



Fig. 8.Concordance between 206Pb/238U and 207Pb/235U ages vs.α-doses (radiation dosages) of zircons from the studiedpegmatites. It showsweak correlation between the concordance of
age and α-dose in the studied zircons.

Fig. 9. The satellite map of the Chinese Altai from Google Earth, with showing of the precise locations of the Permian pegmatites, granitoids and mafic rocks. The rock numbers refer to
Table 3.
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Table 3
The age statistics on the Permian magmatic-metamorphic events in the Chinese Altai.

Number Domain Location Sample Lithology Age Error Reference

1 SA Chaergan 06Q4 Granite dyke 277 3.2 Zhang et al., 2010
2 SA Areletuobie 11ALT17 Monzogranite 293.7 4.6 He et al., 2018
3 SA Mayinebo 0410TW2 Biotite granite 283 4 Zhou et al., 2007
4 SA Yulekenhalasu ZR01 Beschtauite 265 4 Xue et al., 2016
5 SA Wuqiagou o9-2 Gnesisic granite dyke 293.5 6 Zhang et al., 2015
6 SA Fuyun A13 Biotite monzogranite 281 5 Tong et al., 2006
7 SA Fuyun A14 Biotite granite 275 2
8 SA Kuerqis Gneissic granite 274.1 0.5 Yang et al., 2012
9 SA Kuerqis Gneissic granite 278.7 0.9
10 SA Ertix river sample 7 Unfoliated granite 278 7 Briggs et al., 2007
11 SA Fuyun sample 4 Granitic Dyke 286 12
12 SA Mayinebo 08AL18 Granite dyke 252 2.2 Zhang et al., 2012
13 SA daqiaonan 152 Biotite granite 267 5 Tong et al., 2014
14 SA xibodu 3055 Monzogranite 267 6
15 SA Kezile KZ Monzogranite 290 4 Zhao et al., 2016
16 QD Kadelat Kadelat-07 Quartz monzonite 280 1.1 Zhang et al., 2018
17 QD Bukesala KL4 Biotite monzogranite 277 2.4 Gao et al., 2010
18 QD Jiaerbasidao Biotite granite 286.6 2.6 Yang et al., 2013
19 CA Adenbluk A4 Porphyritic granite 271 5 Tong et al., 2014
20 QD Dakalasu Biotite granite 270.4 1.9 Liu et al., 2018
21 QD Lamazhao 258 Biotitite monzogranite 276 9 Wang et al., 2005
22 QD Jiangjunshan Biotite granite 268.3 1.9 Liu et al., 2018
23 QD Aweitan A3 Porphyritic adamellite 271 2 Tong et al., 2014
24 QD Aletai city D05126-1 Two-mica granite 275.1 1.7 Sun et al., 2009a
25 QD Keyinbulake Two mica syengranite 278.6 3.5 Li et al., 2012a
26 QD Woduoke 09HTW1 Quartz diorite 299 4 Zhou et al., 2015
27 QD Jiamanhaba JMHB06 Pegmatite 260.4 4 This work
28 QD Yeliuman YLM15 Pegmatite 262.9 3.8
29 QD Hailiutan HLT01 Pegmatite 253.9 4.1
30 QD Saerjiake SEJK01 Pegmatite 252.7 3.1
31 QD Akebasitawu AKB01 Pegmatite 253 3
32 QD Taerlang TEL01 Pegmatite 255.5 2.7
33 QD Qiemuerqieke QME01 Pegmatite 255.3 2.4
34 QD Qiemuerqieke QME02 Pegmatite 253.5 3.2
35 QD Xiaokalasu Xkls Pegmatite 258.1 3.1 Zhou et al., 2018
36 QD Jiangjunshan JJS-1 Pegmatite 250.1 8.1 Liu, 2017
37 QD Dakalasu DKLS01 Pegmatite 258 3.8 This work
38 QD Tangbahu FH08-1 Pegmatite 258 3.8 Ren et al., 2011
39 QD Baicheng BC01 Pegmatite 274 5.3 This work
40 SA Dasazi 07AL06 Gabbro 272.5 2.4 Zhang et al., 2010
41 SA Mayinebo 07AL03 Gabbro 269.4 2.5
42 SA Kalatongke 02KK101 Norite 287 5 Han et al., 2004
43 SA Fuyun C12FY27 Gabbro-norite 273 4.3 Cai et al., 2016
44 QD Kekesazi 2011ALT018 Gabbro 281.2 1.8 Zhang et al., 2014
45 QD Qiemuerqieke Gabbro 276 2.1 Wan et al., 2013
46 QD Qinghe 02XA Andesitic gneiss 281.2 3.1 Hu et al., 2006
47 QD Altai A915 Metapelitic schist 299.2 3.4 Wang et al., 2014b
48 QD Dakalasu A152 Pelitic granulite 292.8 2.3 Wang et al., 2009c
49 QD Dakalasu LT10F-41 Pelitic granulite 271 5 Tong et al., 2013
50 SA Fuyun Fy0402/052117 Pelitic granulite 277 2 Li et al., 2014

Note: SA = South Altai, QD= Qiongkuer domain; CA = Central Altai.
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and 258.1±3.1Ma (Zhou et al., 2018), respectively. In the Jiangjunshan
mining area, the alkaline biotite granite (No. 22 in Fig. 9) and the JJS01
pegmatite (No. 36 in Fig. 9) are dated as 268.3 ± 1.9 Ma and 250.1 ±
8.1Ma, respectively (Liu, 2017; Liu et al., 2018). In the Dakalasu pegma-
tite field, the biotite granite (No. 20 in Fig. 9) has been dated as 270.4 ±
1.9 Ma (Liu et al., 2018), which is evidently older than the DKLS01 peg-
matite, at 258.0 ± 3.8 Ma (No. 38 in Fig. 14).

A decoupling temporal-spatial relationship has also been proved re-
gionally and globally. In the Koktokay, Bieyesamasi, Kelumute, Kaluan,
Azubai and Jiamukai mining areas in the Chinese Altai, Paleozoic gran-
ites (450–370Ma) are prevalent; however, the pegmatites formed dur-
ing the Mesozoic (238–160 Ma) (Lv et al., 2012, 2015; Ma et al., 2015;
Ren et al., 2011; Zhang et al., 2016). In the Central Asian Orogenic Belt,
most of the Li-rich pegmatites show evident time gaps of a few tens to
hundreds of millions of years compared with the granites which are
generally regarded as parental rocks, according to the age statistics on
Li-rich pegmatites and the adjacent granites (Zagorsky et al., 2014).
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The isolated pegmatites with no parental granites exposed in the
same region are hypothetically proposed to have a “deep-buried par-
ent granite” (Černý, 1991a; London, 2018). However, the confirmed
granite-related pegmatites are always juxtaposed with their parental
granites. For example, the Archean Ghost Lake granite batholith and
the Mavis Lake pegmatite group in the Superior province of north-
western Ontario, Canada, are concurrently exposed (Breaks and
Moore, 1992). Similar situations are also observed in the Mesozoic
Jiajika two-mica granite and in the surrounding pegmatite zones in Si-
chuan province, China (Fu et al., 2015; Xu et al., this issue). The co-
exposure of pegmatite groups and the associated source granites
under the same denudation level could indicate that the pegmatites
are (sub)horizontally but (sub)vertically differentiated from the
source granite. In the Hagendorf-Pleystein pegmatite Province, Central
Europe, the “deep-buried parental granite” of the pegmatites has been
excluded by geophysical surveys and core rock samples from bore-
holes (Dill, 2015a).



Fig. 10. Histogram of zircon U-Pb ages of the Permian pegmatites and granites from the
Chinese Altai. Data source refers to Table 3.
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5.2.2. Differentiation andmetallogenetic potentiality of the Permian granite
The fertile granite, which is regarded as parental rock of the

rare metal pegmatite consists mainly of rock-forming minerals of
alkaline feldspar, muscovite, and quartz, with minor tourmaline,
Mn-rich garnet, cordierite, Hf-rich zircon, and rare metal minerals
such as beryl and ferrocolumbite (Černý, 1991b; Selway et al.,
2005). The geochemistry indicates that this fertile granite is com-
monly peraluminous to strongly peraluminous and is characterized
by high differentiation with low REE abundance and ratios of K/
Rb < 100, Mg/Li < 10, Zr/Hf < 15, and Nb/Ta < 8 (Ballouard
et al., 2016; Selway et al., 2005). The unique indicator for the fertile
granite could be the general development of lanthanide tetrad ef-
fects in the chondrite-normalized REE patterns of the bulk compo-
sitions (Černý et al., 2012b) and REE-bearing minerals such as
zircon (Yang et al., 2014). All of these features can be used to dis-
tinguish fertile granite from barren granite.
Fig. 11. Nb/Ta vs. Zr/Hf (a), Mg/Li (b), and K/Rb (c) diagrams of the Permian granites from the C
the former. Data of the Permian granites from the Chinese Altai refers to Cai et al. (2016); Gao e
Zhang et al. (2018); Zhou et al. (2007, 2015b). data of the Shangkelan granites from Zou and Li (
(2012b) and Selway et al. (2005), respectively; data of the fertile granites from South China is
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In the Chinese Altai, the Permian granitoids consist of monzogranite,
biotite granite, two-mica granite and quartz diorite (Table 2). Most of
the granitoids are approximately circular or linear in shapewith limited
deformation, and they generally cut pre-Permian structures. The granit-
oidmineralogy consistsmainly of plagioclase, K-feldspar, quartz, andbi-
otite, and the geochemistry indicates high-K calc-alkaline to alkaline
and metaluminous to weakly peraluminous compositions. Most of
these granitoids are identified as I- and A-type (e.g., Gao et al., 2010;
He et al., 2018; Liu et al., 2018; Tong et al., 2014; Wang et al., 2005).
S-type granite is rare and is distributed in the Mayinebo and Kadelat
areas, southeastern part of the Chinese Altai (e.g., Zhang et al., 2018;
Zhou et al., 2007) (Table 2). According to our statistics, these
granitoids commonly show high ratios of K/Rb > 100, Mg/Li > 10, Zr/
Hf > 15 and Nb/Ta > 8 (Fig. 11), which are distinctive of parental gran-
ites of raremetal pegmatites. In addition, these Permian granitoids have
high REE contents with no lanthanide tetrad shown in the chondrite-
normalized REE patterns of the bulk compositions (See references in
Table 3). All of these features indicate that the Permian granitoids in
the Chinese Altai are weakly differentiated and are too barren to be pre-
cursors of the rare metal pegmatites. However, the Yulekenhalasu
beschtauite (Xue et al., 2016) the Keyinbulake syenogranite (Li et al.,
2012b), and the Kuerqis gneissic granites (Yang et al., 2012) are pro-
posed to relate with Cu, Cu-Zn and Fe mineralization, respectively.
5.2.3. Zircon Hf isotopic compositions of the Permian pegmatites and
granites

It is generally known that the parental granite and its derivative peg-
matite are expected to possess comparable isotopic compositions. The
Lu-Hf isotope system has an extremely high blocking temperature and
is hardly affected by the fractional crystallization process (e.g., Kinny
and Maas, 2003). A comparative study of the zircon Hf isotope in the
Permian pegmatites with that of the granites in the Chinese Altai is pre-
sented here to identify their source relationship. According to previous
studies, early-middle Permian I-type granites (295–270 Ma) have zir-
con εHf(t) values of +5.7 to +12.3 and young TDMC model ages of
933–527 Ma, which partly overlap with the isotopic compositions of
the Permian gabbros (Fig. 12) and are proposed to be generated by dif-
ferentiation of mantle-derived magmas with variable degrees of crustal
contamination (e.g., He et al., 2018; Tong et al., 2014). Themiddle Perm-
ian A-type granites (about 270 Ma) have dispersive zircon εHf(t) values
of −7.0 to +4.6 with TDMC model ages of 948 Ma to 1668 Ma, which is
ascribed to mantle-derived magma mixed with ancient crustal mate-
rials (e.g., Liu et al., 2018). The early Permian S-type granites (about
280 Ma) have εHf(t) values of −7.46 to +2.56 with TDM model ages of
1770 Ma to 843 Ma, and are suggested to derive from partial melting
of Mesoproterozoic metasediments (e.g., Zhang et al., 2018) with con-
tamination by basalt magma (Zhou et al., 2007).
hinese Altai and typical fertile granites worldwide, show the low differentiation degree of
t al. (2010); He et al. (2018); Liu et al. (2018); Tong et al. (2006, 2014);Wang et al. (2005);
2006); data of the fertile granites from Superior andManitoba, Canada refers to Černý et al.
our unpublished data.



Fig. 12.Diagram of εHf(t) values vs. crystallizing ages of zircons from the Permian pegmatites (this work), mafic rocks (Cai et al., 2016;Wan et al., 2013), and I-type (He et al., 2018; Tong
et al., 2014), A-type (Liu et al., 2018) and S-type (Zhang et al., 2018) granites in the Chinese Altai. DM= depleted mantle, CHUR= chondrite uniform reservoir.
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The zirconHf isotope compositions of the Permian pegmatites partly
overlapwith that of the I-, A- and S-type granites due to the scatteredHf
isotope compositions of the latter (Fig. 12). In order to check the source
connection between them precisely, the εHf(t) values and TDM model
ages of the pegmatites and granites at 255 Ma were recalculated, and
the weighted mean Hf isotope compositions are used to compare. The
pegmatites with ‘NYF’ signatures (JMHB06, HLT01, YLM15, AKB01,
TEL01, QME01, and DKLS01) have weighted mean εHf(255 Ma) value
andmodel age of 5.45±0.29 and 932±19Ma, respectively. The Hf iso-
topic composition is distinct from those of the A- (with εHf(255Ma) and
TDM age of 0.9 ± 1.5 and 1220 ± 92 Ma, respectively) and I-type (with
εHf(255 Ma) and TDM age of 8.06 ± 0.6 and 735 ± 43 Ma, respectively)
granites (Fig. 12). The pegmatiteswith ‘LCT’ signatures (SEJK01, QME02,
and BC01) have weighted mean εHf(255 Ma) value and model age of
1.16± 0.52 and 1204± 33Ma, respectively, which is evidently distinct
from that of the S-type granites (with εHf(255Ma) and TDMmodel age of
−4.4 ± 1.5 and 1553 ± 94Ma, respectively) and close to that of the A-
type granites (Fig. 12). Distinct Hf isotopic compositions of the Permian
pegmatite and granite have also been observed locally with juxtaposi-
tion of the Permian granite and pegmatite. The Dakalasu pegmatites
have been regarded as the derivative of the biotite granite and two-
mica granite (Zou and Li, 2006). However, the DKLS01 pegmatite
shows distinct Hf isotopic compositions with εHf(t) values of +4.01 to
+5.76 (this work) from that in the biotite granite at −7.0 to +4.6
(Liu et al., 2018). Therefore, the source connections between the ‘NYF’
pegmatite and the A-type granite and between the ‘LCT’ pegmatite
and the S-type granite were not observed in the Permian pegmatites
and granites of the Chinese Altai.

In summary, the decoupling temporal-spatial and differentiation-
isotope correlations between the Permian pegmatites and granites do
not support a genetic relationship between them.

5.3. Source of the Permian pegmatites

Compared with the Hf isotopic compositions of zircons from the
Devonian-Carboniferous and Triassic pegmatites in the Chinese Altai,
the Permian pegmatites have a wider range of zircon εHf(t) values
(Table 4; Fig. 12). However, all pegmatites of the three periods are com-
parable in theirmineralizations and zirconHf isotopic compositions. Ac-
cording to these features, the Permian pegmatites are classified into
three types (Fig. 13a, b), including the Li-Be-Ta-Nb ± Sn mineralized
pegmatites (SEJK01, QME02, and BC01) with dominat εHf(t) values
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ranging from 0 to +3 and maximum TDM model ages of 1.09 Ga
(type-1); Be-Nb-Ta ± REE mineralized pegmatites (JMHB06, AKB01,
TEL01, and DKLS01) with major εHf(t) values ranging from +3 to +7
and TDM model ages of 1.09 Ga to 0.86 Ga (type-2); and the REE miner-
alized pegmatites (YLM15,HLT01, andQME01)withmajor εHf(t) values
ranging from +7 to +10 and TDM model ages of 0.86–0.63 Ga (type-3)
(Table 3; Fig. 13). The zircon Hf isotopes of the type-1 pegmatite are
consistent with those of the Triassic pegmatites characterized by
Li-Be-Ta-Nb±Csmineralization; those of the type-2 pegmatite are con-
sistent with zircon Hf isotopic compositions of the Devonian-
Carboniferous pegmatites featuring Be-Ta-Nb ± Li mineralization; and
those of the type-3 pegmatites are unique in all pegmatite generations
(Fig. 13a and b). Therefore, the correlation between the mineralization
type and zircon Hf isotopic compositions indicates that the mineraliza-
tion of the pegmatites is controlled predominately by their sources.

Recent studies have suggested that the Precambrian basement is ab-
sent in the Chinese Altai and that the crustal component is significantly
heterogeneous (e.g., Jiang et al., 2016; Liu et al., 2012; Long et al., 2008,
2010). The Chinese Altaiwas anearly Paleozoicmagmatic arc developed
at an active continentalmargin (e.g., Xiao et al., 2008, 2009, 2015, 2018)
and consists mainly of early Paleozoic sedimentary, granitic and volca-
nic rocks (e.g., Cai et al., 2011a, 2011b; Jiang et al., 2011; Long et al.,
2007, 2008, 2010; Sun et al., 2008; Sun et al., 2009a, 2009b; Wang
et al., 2011; Yuan et al., 2007). The early Paleozoic sedimentary strata,
particularly those of the Habahe Group, are proposed as the major
crust components of the Chinese Altai (e.g., Jiang et al., 2015, 2016). Re-
garding the petrography, the western segment of the Habahe Group
consists of schist, gneiss, siltstone, slate, and mudstone, and the central
segment is composed of schist, gneiss, migmatite, and minor marble.
The eastern segment of the Habahe Group includes lower garnet-
sillimanite-biotite-plagioclase gneiss, garnet-biotite schist, migmatite,
and leptynite and the upper staurolite-biotite schist, biotite-quartz
schist, and chlorite-quartz schist (BGMRX, 1993; Long et al., 2010). Re-
garding the provenance, the U-Pb age and Hf isotope compositions of
detrital zircons from the Habahe Group indicate multiple sources com-
posed of a dominantmagmatic source eroded from the Caledonian oro-
genic system, a mixed source of Neoproterozoic metasedimentary and
juvenile igneous rocks from the Tuva-Mongol block and amixed source
of Paleoproterozoic-Neoarchean granitoid and metasedimentary rocks
from the southern Siberian craton (Fig. 14) (Jiang et al., 2011; Liu
et al., 2012; Long et al., 2010). Inmetamorphic grade, the lower, middle,
and upper crust corresponds to granulite, amphibolites, and greenschist



Table 4
The mineralizations and zircon U-Pb ages and Hf isotopic compositions of rare metal/earth pegmatites in the Chinese Altai.

Location Pegmatite field Pegmatite Mineralization Scale Age (Ma) ƐHf(t) TCDM (Ma) Referrence

Qingkuer domain Qinghe TLT01 Be-Nb-Ta-Li Small 386 +3.99 ~ +5.06 1166–1057 Lv et al., 2018a
Jiamanhaba JMHB02 Be-Nb-Ta Small 395 +4.69 ~ +8.28 1088–860
Qinghe AMLG01 Be-Nb-Ta-Li Small 358 +5.5 ~ +7.28 1008–895
Qiebielin-Xiaokalasu QBL02 Be-Nb-Ta Small 403 +3.12 ~ +7.22 1186–934
Qinghe TMLT01 Be-Nb-Ta Small 333 +3.20 ~ +5.30 1135–1001
Jiamanhaba JMHB06 Be-Ta-Nb Unknown 260 +4.81 ~ +5.87 977–910 This work
Haikiutan-Yeliuman YLM15 REE Unknown 263 +7.17 ~ +9.80 830–662

HLT01 REE Unknown 254 +5.21 ~ +8.10 947–763
Qiebielin-Xiaokalasu SEJK01 Li-Be-Ta-Nb Unknown 253 −0.32 ~ +1.52 1296–1180

ACB01 Be-Nb-Ta-REE Unknown 253 +0.58 ~ +2.37 1239–1126
TEL01 Be-Nb-Ta-REE Unknown 256 −0.61 ~ +7.63 1316–795
QME01 REE Unknown 253 +5.82 ~ +10.19 907–629
QME02 Li-Be-Ta-Nb-Sn Unknown 254 +2.58 ~ +3.20 1114–1074

Dakalasu DKLS01 Be-Nb-Ta Small 258 +4.01 ~ +5.76 1026–915
Qinghe BC01 Li-Be-Ta-Nb Small 274 −0.07 ~ +1.11 1296–1222

Central Altai domain Kelumute KLMT112 Li-Be-Ta-Nb Large 238–211 +0.92 ~ +2.35 1190–1112 Lv et al., 2012
Koktokai KKT03 Li-Be-Ta-Nb-Cs Super-large 220–209 +1.25 ~ +2.39 1174–1102 Chen, 2011; Wang et al., 2007a, 2007b
Kalaeerqisi KKLG650 Li-Be-Ta-Nb Medium 228–211 −0.51 ~ +1.99 1276–1131 Ma et al., 2015

KLA805 Li-Ta-Nb Large 216 0.00 ~ +2.50 1248–1090
KLA806 Li-Ta-Nb 224 +0.65 ~ +2.02 1213–1126
KLA803 Li-Ta-Nb 225 −0.60 ~ +2.20 1275–1095 Zhang et al., 2016

Fig. 13. Histogram of TCDM model ages (a) and ƐHf(t) values vs. TCDM model ages of zircons (b) from rare metal/earth pegmatites in the Chinese Altai. The diagrams show that various
generations of pegmatites are comparable in Hf composition and mineralization. D, C, P and T are abbreviations of Devonian, Carboniferous, Permian and Triassic, respectively.
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Fig. 14.Diagram of εHf(t) values versus crystallizing ages of zircons from the raremetal/earth pegmatites (Chen, 2011; Lv et al., 2012, Lv et al., 2018a, 2018b, 2018c; Ma et al., 2015; Zhang
et al., 2016 and this work) and Habahe Group metasedimentary rocks (Jiang et al., 2011; Long et al., 2007, 2010, 2012) in the Chinese Altai. The εHf(t) values of the Caledonian volcanic
complex from the Lake Zone, Mongolia (Kovach et al., 2011) and amphibolites and gneisses from the Chinese Altai (Hu et al., 2000) are calculated according to the reduction formula of
εHf = 1.36εNd + 2.95 (Vervoort et al., 1999). DM= depleted mantle, CHUR= chondrite uniform reservoir.
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facies metamorphism, respectively (Broussolle et al., 2018; Jiang et al.,
2016). In rare metal/earth abundance, different rock samples from the
Habahe Group show large variations including 15.6–91.2 ppm Li,
1.0–5.5 ppm Be, 6.0–84.2 ppm Nb, 0.4–5.1 ppm Ta, 2.4–12.5 ppm Cs,
and113-273 ppm REEs (Shen, 2015).

The source diversity of the Habahe Group raises the possibility of
generation of various pegmatites according to the mineralization and
Hf isotopic composition. According to the zircon Hf isotope composi-
tions, the three generations of pegmatites totally overlapwith the juve-
nile crust materials in the Habahe Group (Fig. 14). The Permian-Triassic
pegmatites with Li-Be-Ta-Nb ± Cs ± Sn mineralization might be de-
rived from a slightly depleted source dominated by the Caledonian
and Neoproterozoic igneous rocks with model ages of 1.09–1.32 Ga
(Fig. 14). Although lack of the isotope study on the Caledonian spodu-
mene pegmatites (483–497 Ma, Kuznetsova and Shokalsky, 2011)
from the Southern Sangilen pegmatite belt in the Tuva-Mongol block,
they could be one potential source for the Permian-Triassic Li-rich peg-
matites in the Chinese Altai due to the large source of the Habahe Group
from the Tuva-Mongol block (Jiang et al., 2011; Liu et al., 2012; Long
et al., 2010). Comparatively, the Devonian-Permian pegmatites with
Be-Nb-Ta ± Li ± REE mineralization might be derived from a moder-
ately depleted source dominated by the Caledonian igneous rocks
with model ages of 0.86–1.09 Ga (Fig. 14). The source is represented
by the amphibolites or gneisses in the Habahe Group, with consistent
εNd(t) values of 3.7–7.0 at 700 Ma (Hu et al., 2000) and corresponding
εHf(t) andmodel ages of 8.0–12.5 and 0.87–1.1 Ga, respectively, accord-
ing to the reduction formula εHf = 1.36εNd + 2.95 (Vervoort et al.,
1999). As proved by previous study, the Be-Nb-Ta-REE-rich pegmatites
in the Evje-Iveland pegmatite field, Norway,were generated by anatexis
of amphibolites (Müller et al., 2017). Compared with that in other peg-
matites, the Permian REE-rich pegmatites have largely depleted Hf iso-
topic compositions which is similar to the the Caledonian juvenile crust
materials with model ages of 0.63–0.86 Ma (Fig. 14). We deduce that
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they might be formed by partial melting of the juvenile crust compo-
nents eroded from the Caledonian orogenic system, with or without
mixing bymantle components. The juvenile components are presented
by the basaltic to andesitic volcanic complex from the Lake Zone,
Mongolia. These rocks were formed at 570–540 Ma, with εNd(t) values
of 6.4–9.9 (with corresponding εHf(t) values of 11.6–16.4, according to
Vervoort et al., 1999) and TDM model age of 0.55–0.80 Ga, and are sug-
gested to be derived from depleted mantle (Kovach et al., 2011).

In summary, the Permian pegmatites have similar Hf isotope
compositions to the juvenile components in the Habahe Group, and
the multi-types of mineralization of pegmatite can be explained by
the heterogeneous components in the Habahe Group.

5.4. Permian metamorphism and implications for pegmatite origin

Currently, anatectic pegmatites are confirmed in the Variscan
(e.g., Dill, 2015a, 2016; Melleton et al., 2012) and Grenville (e.g.,
Müller et al., 2016, 2017) orogens in Europe, the Laxfordian orogen in
Scotland (e.g., Shaw et al., 2016), and the Alleghanian in the United
States (e.g., Simmons and Falster, 2016). The pegmatites commonly
are located in highly metamorphic terrenes such as upper amphibolite
to granulite facies and show temporal and spatial connections to high-
temperature metamorphism (e.g., Melleton et al., 2012; Müller et al.,
2017). The Chinese Altai has undergone two periods of high tempera-
ture metamorphisms at 391–377 Ma (e.g., 720–650 °C, Jiang et al.,
2010) and 299–271 Ma (e.g., 960–800 °C, Li et al., 2014; Tong et al.,
2013;Wang et al., 2009c, 2014b). The Permian high temperature meta-
morphism is featured by granulite facies and shows a linear distribution
in the Qiongkuer domain. Granulite facies metamorphism can cause
crustal anatexis and further to formations of migmatites (e.g., Wei
et al., 2007; Zhuang, 1994), luecogranite dykes (e.g., Wang, 2011) and
pegmatites (e.g., Melleton et al., 2012; Müller et al., 2017; Shaw et al.,
2014). The pegmatites studied in this work (274–253Ma)were formed



Fig. 15. Field pictures of migmatites in pegmatite mining areas (a-g) and enclaves in pegmatites (h and i). Physical contacts between pegmatites andmigmatites in Jiamanhaba (a and b),
Hailiutan (c) and Qiebielin (d) areas. Migmatites exposed inQiemuerqieke (e) and Dakalasu (f) areas. Local pegmatitic leucosome inmigmatite in Qiemuerqieke area (g). Enclaves hosted
in HLT01 (h) and JMHB01 (i) pegmatites.
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slightly late to ultra-high temperature metamorphism (299–271 Ma;
Hu et al., 2006; Li et al., 2014; Tong et al., 2013; Wang et al., 2009c,
2014b), which corresponds to the retrograde metamorphism stage. In
addition, physical contact between pegmatites and migmatites are ob-
served in the Yeliuman (Fig. 15a and b), Hailiutan (Fig. 15c), and
Qiebielin (Fig. 15d) mining areas. In the Qiemuerqieke and Dakalasu
areas, migmatites are also observed and close to the QME01 and
DKLS01 pegmatites (Fig. 15e and f), with local development of pegma-
titic leucosome (Fig. 15g). In the HLT01 and JMHB01 pegmatites, meta-
morphic rock enclaves (Fig. 15h and i) are also observed, respectively.

Migmatite is one of the robust evidences for anatexis of the crust and
widely observed in the Chinese Altai (Wang et al., 2009c; Wei et al.,
2007; Zhuang, 1994). The melts formed during migmatization, can
form intrusive dykes or bodies after concentration, segregation and ex-
traction (e.g., Kriegsman, 2001). The intrusive dykes may undergo melt
loss and fractional crystallization in different level during the mobiliza-
tion process (e.g., White and Powell, 2002). In the Chinese Altai, abun-
dant luecogranite dykes are proved to form by low degree partial
melting of pelitic rocks during crust anatexis (Liu, 2016; Wang, 2011;
Zhang et al., 2012). Some luecogranite dykes juxtapose with rare
metal pegmatites in theXiaokalasu andDakalasumining areas, show in-
creasing numbers with metamorphism grades. The recent chronology
studies revealed that the luecogranite dykes have three generations
with zirconU-Pb ages of 255–280Ma, 216–233Ma and 197–204Ma, re-
spectively (Liu, 2016; Wang et al., 2011), which are consistent with the
ages of the Permian, Triassic and Jurassic pegmatites (Ren et al., 2011; Lv
et al., 2012; Zhang et al., 2016; this work). The luecogranite dykes are
rich in Si (73.55–81.78%) and Al (ASI = 1.0–2.16), poor in Fe, Mg and
Ca (mostly below 1%), and varying in K and Na. According to the trace
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element compositions (without analysis of Li and Be) of the dykes
(Liu, 2016; Wang, 2011), three types of dykes are identified. The type
1 is rich in Cs, Rb, Ta, Zr, Hf and Sn, and depleted in Ba, Sr and REEs. Tet-
rad effect is hard to determine in the REE patterns due to the extremely
low contents of REEs. The type 2 is rich in Th, U and REEs, but depleted in
Ba, Nb and Sr, and shows development of tetrad effect in the REE pat-
tern. The type 3 has lower contents of Cs, Rb, Ta, Zr and Hf, and higher
contents of REEs than the type 1, with development of tetrad effect
(Fig. B.1). Although the whole rock compositions of the rare metal/
earth pegmatites are hardly to determinate due to internal zonation
and large size of rock-forming minerals, they are comparable to the
three types of luecogranite dykes in geochemistry based on their min-
eral associations (Table 2). Some luecogranite dykes in the Xiaokalasu
areahost pegmatitic feldspar and quartzminerals (Liu, 2016), indicating
the lithoface transition from luecogranite to pegmatite. Similar case is
also observed in the Alpine orogenic belt. The rare metal pegmatites in
the Austroalpine unit, Eastern Alps, Central Europe, have been demon-
strated to have a genetic relationship with the adjacent leucogranite
dykes, according to the geology, petrography, geochemistry and geo-
chronology studies. They both are suggested to form by crustal anatexis
rather than crystal fractionation of parental granite melts during the Al-
pine orogeny (Knoll et al., 2018).

It is necessary to emphasize that the source protolith has dominating
controls on the mineralization types of both anatectic and granite-
related pegmatites (e.g., Müller et al., 2017; Shearer et al., 1992). The
studied pegmatites in this work show distinct types of mineralization
and Hf isotope compositions (Fig. 13), which is a strong support. In ad-
dition, varying degrees of partial melting during crustal anatexis may
also affect the abundance of rare elements inmelts due to the discrepant
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decompositions of carrier minerals under different P-T conditions
(Shearer et al., 1992). For example, Shearer et al. (1992) propose that
high degrees of partial melting (> 40%) of the sedimentary protoliths
in Black Hills, South Dakota, will contribute to formation of abundant
granitic melts and granites, but low degrees (5–20%) partial melting fa-
cilitates to generation of LCT pegmatite-formingmelts. Analogously, the
NYF pegmatites in the Evje-Iveland pegmatite field, southern Norway,
are suggested to form by 15–30% partial melting of gneisses and
metagabbros (Snook, 2014). According to the phase equilibriummodel-
ing, the Permian pelitic migmatites in the Chinese Altai can produce
about 30% melt under the metamorphic peak condition with P =
6.0–6.3 kbar and T = 815–825 °C (granulite-facies). During the pro-
grade metamorphism, about 4%, 14.1% and 29.41% melt are expected
to generate by thewater-saturated solidusmelting,muscovite dehydra-
tion melting and biotite dehydration melting, respectively (Wang,
2011). As the product of partialmelting, the luecogranite dykes exposed
in Xiaokalasu and Dakalasu mining areas are comparable with the
Permian pegmatites in geology, formation time, major (rich in Si,
metaluminous to peraluminous) and trace (rare metal/earth elements)
compositions (Table 2; Fig. B.1), indicating a genetic relationship. With
consideration of (1) the max percentage of melt produced by dehydra-
tion melting of muscovite and biotite (e.g., 10% and 30%, respectively,
White et al., 2001); (2) the critical degree of partial melting required
for melt connectivity (e.g., about 4%, Lupulescu and Watson, 1999);
and (3) the dominating carrierminerals of rare elements inmetasedim-
entary rocks, such asmuscovite for Li, Be, Rb and Cs, biotite for Be, Nb, Ta
and LREE, Ti-rich minerals (e.g., ilmenite) for Nb and Ta, and monazite,
xenotime, apatite, garnet, zircon, pyroxene and amphibole for REEs
(e.g., London, 2008; Müller et al., 2017), it is reasonable to deduce that
dehydration melting of muscovite and biotite could be main mecha-
nisms responsible for generation of rare metal/earth pegmatites. There-
fore, we suppose that the Permian pegmatites with Li-Be-Ta-Nb
mineralization (SEJK01, QME02 andBC01) could be formedbydehydra-
tion melting of muscovite with melting degrees of ca. 5–10%. Compara-
tively, the pegmatites with mineralizations of Be-Nb-Ta-REE (JMHB06,
AKB01, TEL01 and DKLS01) and REE (HLT01, YLM15 and QME01)
show increasing Fe, Ti and REE, and more depleted Hf isotope composi-
tions (Table 2; Fig.13), indicating more mafic components involved in
their source protoliths. In addition, some elliptic biotites surrounded
by magnetite, quartz and microcline were observed in the TEL01 and
DKLS01 pegmatites, indicating biotite has been involved in partialmelt-
ing. Furthermore, the REE-rich pegmatite has a larger quantity than the
Li-rich pegmatite in the Chinese Altai, which requires enhancing de-
grees of partialmelting. They are thus supposed to produce by dehydra-
tion melting of biotite with melting degrees of ca.10–30%.

Except the Permian high temperature metamorphism, the connec-
tion of pegmatite with migmatite and luecogranite dyke in the Chinese
Altai (see Section 5.4), there are some other evidences to support the
anatexis origin of the Permian pegmatites. Firstly, our previous study
on fluid inclusions demonstrated that the BC01, SEJK01, YLM15 and
the Xiaokalasu Li-rich pegmatite were emplaced at depths of 11.4–
14.5 km (Huang et al., 2016). These depths are significantly deeper
than the typical depths of 4–8 km for rare metal pegmatites
(Ginsburg, 1984), indicating deep sources from the middle or lower
crust. Secondly, recent Li isotope study suggests that the pegmatites in
the Qinghe field originated from low degrees of partial melting of host
rock of schists involving muscovite dehydration melting (Chen et al.,
2020). Thirdly and most importantly, the studied rare metal/earth peg-
matites are distinct from the granite-related pegmatites on mineralogy
and mineralization. The pegmatites formed by crystal fractionation of
graniric melts are lack of restite minerals due to the efficient extraction
of melts from themostly crystallinemagmas (e.g., London, 2005). How-
ever, the studied pegmatites contain a certain amount of exotic min-
erals, such as biotite restites in the TEL01 and DKLS01 pegmatites,
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inherited zircons in the AKB01 and BC01 pegmatites (Fig. 3e and j).
Moreover, metamorphic rock enclaves are also observed in the
JMHB06 and HLT01 pegmatites (Fig. 15h and i). In addition, compare
with the granite-related pegmatites, the anatectic pegmatite are almost
lack of W ± Sn mineralization (Dill, 2015a, 2015b). For example, the
Shangkelan pegmatite is the only confirmed granite-related pegmatite
in the Chinese Altai so far. It was formed at early Jurassic and shows
temporal-spatial and differentiation connections with neighboring
muscovite-albite granite, and Be-Nb-W mineralization (Zou and Li,
2006). Analogously, W ± Sn mineralization is also widely observed in
the highly fractionated granites and their derivatives, such as theMeso-
zoic Jiajika rare metal pegmatites in Songpan-Ganzi orogenic belt
(e.g., Hao et al., 2015), and the Neoproterozoic Fanjingshan and
Yuanbaoshan Nb-Ta-Sn-W leucogranites (e.g., Xiang et al., 2020) and
Mesozoic Limu Ta-Nb-Sn-W pegmatites (e.g., Huang et al., 2020) in
South China. Comparatively, W ± Sn mineralization is almost missing
in the isolated rare metal/earth pegmatites in the Chinese Altai, and
only observed as W- or Sn-rich trace minerals in few pegmatites
(e.g., Sn-rich minerals in the QME02 pegmatite). All of these evidences
support the anatexis origin of the studied pegmatites, although more
works need to be re-evaluated in future works.

In summary, we suggest that the Permian pegmatites could be gen-
erated by anatexis (low-percentage partial melting) of the newly ac-
creted sediments in the Habahe Group, and the mineralization type of
the pegmatite evidently depends on the sources from the Habahe
Group and partial melting degrees of source.

5.5. Tectonic setting and petrogenesis of the Permian pegmatites

Several tectonic models for the Permian Chinese Altai have
been proposed by previous works, such as post-orogenic ex-
tension (e.g., Tong et al., 2006; Wang et al., 2009b, 2014a) and
mantle plume (e.g., Tong et al., 2014; Zhang et al., 2012). How-
ever, these models are insufficient for explaining the magmatic-
metamorphic-tectonic events in the Permian Chinese Altai
(e.g., Cai et al., 2016; Wan et al., 2013; Xiao et al., 2008, 2009,
2015, 2018). For example, all the known Permian magmatic-
metamorphic events are restricted in the Qiongkuer domain and
South Altai with a zonal arrangement (Fig. 9), indicating a local
tectonic thermodynamics motion, such as arc-arc collision. As a
part of the accretionary orogenic belt of CAOB, the Chinese Altai
has undergone prolonged accretion processes and multiple exten-
sion events which including the Permian post-accretion extension
(e.g., Cai et al., 2016; Xiao et al., 2015, 2018). On the basis of
Permian magmatic-metamorphic-tectonic studies (Fig. 16), a
Permian tectonic scenario for the Chinese Altai and a petrogenesis
model of the pegmatites are proposed below:

With the continuous subduction of the Ob-Zaisan ocean plate,
the East Junggar arc converged with the eastern Chinese Altai dur-
ing the early Permian (Broussolle et al., 2018; Cai et al., 2016). The
arc-arc collision resulted in upright folding and perturbation of the
mantle lithosphere's thermal structure (Broussolle et al., 2018) as
well as high-temperature metamorphisms (e.g., Hu et al., 2006;
Wang et al., 2009c, 2014b). Afterward, the clockwise rotation of
the Mongolia collage (Xiao et al., 2018) induced sinistral strike-
slip along the Irtish tectonic belt (Li et al., 2014) and the break-off
of the subduction slab (Li et al., 2012a) owing to intense extrusion
stress. The upwelling of the asthenosphere via a slab window in-
duced the extension of the southern Chinese Altai and significant in-
jections of heat energy and mantle-derived materials. This give rise
to the generations of ultramafic and/or mafic rocks in the
Kalatongke and Qiemuerqieke areas (Cai et al., 2016; Li et al.,
2012a; Wan et al., 2013), high-temperature metamorphism
(e.g., Li et al., 2014; Tong et al., 2013) and abundant I- and A-type
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granites in the southeastern Chinese Altai (e.g., Liu et al., 2018; Tong
et al., 2014). In the Qinghe area, local anatexis of the Habahe Group
metasedimentary rocks induced by decompression resulted in the
formation of the BC01 rare metal pegmatite (Fig. 17a). Compara-
tively, the oblique arc-arc collision between the West Junggar arc
and the western Chinese Altai lagged behind and might have oc-
curred during the middle Permian, followed by regional uplift
(270–265 Ma) of the southern Chinese Altai (Li et al., 2015). After-
ward, the lasting clockwise rotation of the Mongolia collage and
the roll-back of the subduction slab (Xiao et al., 2018) resulted in
the extension of the southwestern Chinese Altai. This in turn gave
rise to anatexis of various components from the Habahe Group
and formation of pegmatite-forming melts (Fig. 17b). These melts
might have been partly mixed during mobilization process along
faults and lithological boundaries and have intruded into the fis-
sures of upper sedimentary rocks and the joints of Paleozoic gran-
ites to ultimately form the late Permian pegmatites in the
Qiongkuer domain, Chinese Altai.

With respect to the differences on the two types of pegmatites
formed under slab breakoff and slab rollback setting, respectively, no
study has performed to reveal that so far. Therefore, we try to make it
clear in this work. According to the Fig. 9 and 16, the early Permian peg-
matites were rarely formed in the southeast Altai, whereas high tem-
perature metamorphism, and abundant I- and A-type granites and
mafic rocks were synchronously generated during slab breakoff. It indi-
cates that the significant input of materials and heat from mantle via
slab window (e.g., Li et al., 2012a), and high degrees of partial melting
dominated the reworking of middle-lower crust. If pegmatites were
formed by crystal fractionation of the granitic melts, they should have
a NYF affinity. However, the BC01 pegmatite shows a LCT affinity. In
Fig. 16. Age statistics on the Permian magmatic-metamorphic-te

22
contrast, the late Permian pegmatites were largely formed during the
retrograde stage of high temperature metamorphism and extension in-
duced by slab rollback in the northwest Altai, whereas the synchronous
granites and mafic rocks were almost absent (Fig. 9), indicating limited
input of mantle materials in late Permian. All these suggest that the sig-
nificant input of mantle materials in crust adverses to the formation of
pegmatites. It is maybe the reason for LCT pegmatites overwhelm NYF
pegmatites in quantity on Earth. About the differences on geochemistry
and source of the two types of pegmatites, it is hard to distinguish from
themineral associations (Table 2) and Hf isotope compositions (Fig. 13)
of the BC01, QME02 and SEJK01 pegmatites. But the late Permian peg-
matitesweremuchmore formed and studied than the early pegmatites,
more sources derived pegmatites (e.g., JMHB06, AKB01, TEL01, DKLS01,
HLT01, YLM15andQME01) are definitely distinct to the BC01pegmatite
on mineralogy and geochemistry.

6. Conclusion

(1) The studied pegmatites have zircon U-Pb ages of 274–253 Ma,
with the dominant age being late Permian, which demonstrates
the occurrence of the Permian pegmatites in the Chinese Altai.

(2) ThePermianpegmatiteshave threemineralization types including
Li-Be-Ta-Nb±Sn,Be-Nb-Ta±REEsandREEs. Thefirst and second
types are comparablewith the Triassic andDevonian-Carbonifer-
ous pegmatites inmineralization andHf isotope composition, re-
spectively, and the latter is unique in the Permian generation,
indicating the dependency ofmineralization on source.

(3) A comparative study between the Permian pegmatites and gran-
ites show decoupling spatial-temporal and differentiation-source
correlations, which disproves their genetic relationship.
ctonic events in the Chinese Altai. Age date refers to Table 3.



Fig. 17. The petrogeneticmodel for the Permian pegmatites in the Chinese Altai at Early Permian (290–270Ma) (a) and Late Permian (265–250Ma) (b). Modified from Jiang et al. (2016),
Li et al. (2012b), and Lv et al. (2018a).
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(4) The comparable Hf isotope compositions of the pegmatites with
the juvenile components in the Habahe Group indicate a source
connection between them. Combing with the connection of the
pegmatites with migmatites and luecogranite dykes in the Chi-
nese Altai and previous magmatic-metamorphic-tetonic works,
we suggest that the Permian pegmatites were likely generated
by anatexis of the Habahe Group metasedimentary rocks under
a post-accretion extensional setting following the arc-arc collision
between the Junnger arcs and the Chinese Altai.pt
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