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In mathematics, statistics, and computer science, particularly in the fields of machine learning and inverse problems, regula-
rization is a process of introducing additional information in order to solve an ill-posed problem or to prevent overfitting. .e
Tikhonov regularization method is widely used to solve complex problems in engineering. .e vertical derivative of gravity can
highlight the local anomalies and separate the horizontal superimposed abnormal bodies. .e higher the order of the vertical
derivative is, the stronger the resolution is. However, it is generally considered that the conversion of the high-order vertical
derivative is unstable. In this paper, based on Tikhonov regularization for solving the high-order vertical derivatives of gravity field
and combining with the iterative method for successive approximation, the Tikhonov regularization method for calculating the
vertical high-order derivative in gravity field is proposed. .e recurrence formula of Tikhonov regularization iterative method is
obtained. .rough the analysis of the filtering characteristics of this method, the high-order vertical derivative of gravity field
calculated by this method is stable. Model tests and practical data processing also show that the method is of important theoretical
significance and practical value.

1. Introduction

Regularization is a process of introducing additional in-
formation in order to solve an ill-posed problem or to
prevent overfitting, and Tikhonov regularization has been
invented independently in many different contexts. It be-
came widely known for its application to integral equations
from the works of Tikhonov [1–3] and Phillips [4]. Some
authors use the term Tikhonov-Phillips regularization. .e
finite-dimensional case was expounded by Hoerl who took a
statistical approach, and Foster interpreted this method as a
Wiener-Kolmogorov (Kriging) filter [5, 6]. Following Hoerl,
it is known in the statistical literature as ridge regression.

.e vertical derivative is of important physical signifi-
cance in the data processing of gravity exploration. .e
vertical derivative is used to classify the superimposed

anomalies generated by the anomaly sources in different
depths and different sizes. .e calculation of vertical de-
rivatives is an important part in other processing methods of
gravity exploration, and the results directly affect the ac-
curacy of calculations with these methods.

.e calculation of vertical derivative in gravity field can
be divided into spatial-domain method and frequency-do-
mainmethod..e spatial-domainmethods include the finite
element method and spline function method [7]. .e fre-
quency-domain methods include fast Fourier transform
operator (FFT), Wiener filtering method [8], regularization
method, new regularization method, and wavenumber do-
main iteration method. Other methods include the inte-
grated second vertical derivative (ISVD) method [9], which
combines the spatial domain with the frequency domain to
calculate the vertical derivatives. ISVD method has become
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an important method to calculate the vertical derivatives
stably, and it is widely used in data processing of gravity field
currently.

Because of the disadvantages such as the slow computing
speed of the methods in the spatial domain, the high-order
vertical derivatives of the gravity field are usually calculated in
the frequency domain. However, the derivative response
factor in the frequency domain has a high-frequency am-
plification effect. .e higher the order of the derivative, the
greater the sensitivity of the data to noise, making the obtained
result unstable. In order to suppress the instability of the
calculation results of high-order vertical derivatives, the
Tikhonov regularization iteration method is proposed to
obtain the vertical derivatives of gravity field. .e physical
meaning of the method is clear, the calculation is simple, and
the result is stable..rough the model test and the application
of the actual data, it is proved that themethod has stability and
advantages in calculating the vertical derivatives.

2. Method

2.1. 
e Tikhonov Regularization Iteration Method. In many
applications such as spectroscopy [10], seismology [11], and
medical imaging [12], the data are collected by convolving
noise signals with detectors. .e linear model of this process
leads to the first class of integral equations:

􏽚
1

0
k(s, t)x(t)de � y0(s) + e(s), (1)

where y0(s) + e(s) is the measured signal and y0(s) is the
real signal, e(s) is the uncertain noise, the kernel function
k(s, t) is the response function, and x(t) is the solution of the
equation. Since the measured signal usually has only s finite
values, the linear discrete form of the continuous formula (1)
is

Kx � y0 + e � y, (2)

whereK is a matrix of dimensionm×n, and it is assumed that
m> n. Except for a few deconvolution problems, when a
small change in data causes a serious deviation between the
approximate solution and the true solution, this is an ill-
posed problem. .is is reflected in an ill-posed condition of
matrix K of the discrete model, and it increases with the
increase of the dimension. .erefore, if we try to solve
formula (2) directly, we will get the solution vector seriously
disturbed by noise.

.erefore, some regularization operation is needed to
reduce the influence of noise..e well-known regularization
method is Tikhonov regularization, which is to choose a
solution to solve the minimization problem:

min
x

‖Kx − y‖
2
2 + λ2‖x‖

2
2􏽮 􏽯. (3)

In the above formula, the regularization parameter α
mainly controls the relative size between the solution norm
‖x‖22 and the residual norm ‖Kx − y‖22. .is method depends
on how many regularization parameters of filter weight are
introduced in the regularization calculation. .erefore, the
key to this method is to find a regularization parameter that

can reduce enough noise without losing too much infor-
mation in the calculated solution.

2.2. 
e Selection of Tikhonov Regularization Parameters.
.ere are two ways to select regularization parameters: a
priori and a posteriori. It is based on whether the noise level
of the original data needs to be estimated in advance. It is
difficult to give the noise level of the original data in advance
to obtain the high-order vertical derivatives of the gravity
field. .erefore, the a posteriori method is more practical.
.e most commonly used are the generalized cross-vali-
dation (GCV) criterion and the L curve criterion. .is paper
mainly uses the L curve criterion method to select Tikhonov
regularization parameters.

2.2.1. 
e Generalized Cross-Validation (GCV) [13, 14].
.e basic idea of cross-validation is as follows: if any point yi
of the measurement data is removed, the selected regular
parameter should be able to predict the change caused by the
removed item. Although ordinary cross-validation depends
on the specific ordering of the data, generalized cross-val-
idation is invariant to the orthogonal transformation of the
data vector y. .e generalized cross function to be mini-
mized in this method is defined as

G(λ) �
‖Kx(α) − y‖

2
2

trace I − KK(α)
I

􏼐 􏼑􏼐 􏼑
2, (4)

where K(α)I is an arbitrary matrix mapping y to the solution
x(α) and trace represents the sum of the principal diagonal
elements in the matrix.

Although GCV can solve many problems, it is difficult to
find a good regularization parameter in some cases. One
problem mentioned in the related literature [15] is that the
GCV function can have a very flat minimum value, so the
minimum value itself may be difficult to locate by a number.
Another problem is that GCV sometimes mistakes noise for
useful signals. GCV is quite effective for nonuniformity of
square error and non-Gaussian error. However, if the errors
are highly correlated, the method may not get satisfactory
results.

2.2.2. L Curve Criterion [16–18]. Taking log-log as the scale,
(‖Kx(α) − y‖2, ‖x(α)‖2) forms a monotonously decreasing
curve, as shown in Figure 1(a). Since the shape of this curve
is similar to the letter “L,” it is called the L curve.

In the vertical part of L curve, the regularization pa-
rameter and ‖Kx(α) − y‖2 are small, and the regularized
solution is in good agreement with the measured signal data.
But ‖x(α)‖2 is more sensitive to the change of regularization
parameter, and the vertical part belongs to the under-
regularization state. In the horizontal part of L curve, the
regularization parameter is relatively large, and the regu-
larization error is dominant. With the increase of α,
‖Kx(α) − y‖2 increases correspondingly, but ‖x(α)‖2 almost
does not change, so the horizontal part belongs to the
overregularization state. .erefore, in order to balance
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underregularization and overregularization, the regulariza-
tion parameter is selected at the corner of L curve u(α) (the
angle between vertical part and horizontal part). Usually,
people choose the point with the greatest curvature k(α) (in
Figure 1(b)) on the L curve as the corner of the L curve.

u(α) � log ‖Kx(α) − y‖2,

v(α) � log‖x(α)‖.
(5)

.en the curvature function of L curve with α as the
parameter is

k(α) �
u′v″ − u″v′

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

u′( 􏼁
2

+ v′( 􏼁
2

􏽨 􏽩
3/2, (6)

where ′ represents the derivation of α. .rough the para-
metric expression of L curve, that is, the exact expressions of
functions u(α) and v(α), the maximum of curvature
function can be directly calculated, and then the corre-
sponding regularization parameters can be obtained.

2.3. 
e Basic Principle of Tikhonov Regularization Iteration
Method in FrequencyDomain. Many geophysical estimation
problems are mathematically ill posed because they operate
with insufficient data [19]. Regularization is a technique to
make the estimation problem well posed by adding indirect
constraints to the estimation model [20, 21]. .e regulari-
zation method was first proposed by Tikhonov [22]. It has
become an indispensable part of the inverse problem theory
and has been widely used in geophysical problems [23–26].

.e relationship between gravity field T(x, y) and its
vertical derivative Dm(x, y) (m represents the order) in the
wavenumber domain is

Dm(u, v) � 2π
������
u2 + v2

√
􏼐 􏼑

m
T(u, v). (7)

Dm(u, v) and T(u, v) are the spectra of the Fourier
transform of Dm(x, y) and T(x, y). u and v are wave-
numbers in the x and y directions, respectively.
φm � (2π

������
u2 + v2

√
)m is the vertical derivative operator. Due

to the noise amplification characteristic of φm, the result
Dm(u, v) is unstable, and the higher the derivative order is,
the more unstable Dm(u, v) will be.

For the instability problem of formula (7), Tikhonov
regularization is a widely used method. Solve a minimized
regularization functional; from formula (3),

min φ− m
· Dm(u, v) − T(u, v)

����
����
2
2 + α Dm(u, v)

����
����
2
2􏼚 􏼛. (8)

2 represents the L2 norm. α is the regular parameter, used
to balance the instability and smoothness. .e regular op-
erator in the article is selected according to the form of the
derivative factor of the gravity field. .e solution of the
above minimization problem is

D
α
m(u, v) � φm 1

1 + αφ2m
T(u, v), (9)

where Dα
m(u, v) represents the conversion result of the

regular vertical derivative. According to formula (9),
Tikhonov regular vertical derivative conversion operator can
be divided into two parts: conventional vertical derivative
conversion operator part φm and Tikhonov regular low-pass
filtering function part (1/1 + αφ2m). It is equivalent to
multiplying the conventional vertical derivative conversion
operator by a regular low-pass filter. .en the approxima-
tion of Dm(u, v) (first-order approximation spectrum) after
regular low-pass filtering can be expressed as
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Figure 1: (a) Schematic diagram of L curve. (b) Curve of curvature function.
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D
(1)
m (u, v) � φm 1

1 + αφ2m
T(u, v). (10)

Substitute D(1)
m (u, v) into formula (7) to obtain an it-

erative approximate spectrum of T:

T
(1)

(u, v) �
1

1 + αφ2m
T(u, v). (11)

.en, T(u, v) and T(1)(u, v) correct D(1)
m (u, v) to obtain

the second iteration approximate spectrum of Dm(u, v):

D
(2)
m (u, v) � D

(1)
m (u, v) + φm 1

1 + αφ2m
T(u, v) − T

(1)
(u, v)􏼐 􏼑.

(12)

Repeat the above steps to obtain the nth-iteration ap-
proximate spectrum of Dm(u, v):

D
(n)
m (u, v) � D

(n− 1)
m (u, v) + φm 1

1 + αφ2m
T(u, v) − T

(n− 1)
(u, v)􏼐 􏼑.

(13)

It can be seen from formula (7) that

1
1 + αφ2m

D
(n− 1)
m (u, v) �

φm

1 + αφ2m
T

(n− 1)
. (14)

Substitute it into formula (13):

D
(n)
m (u, v) �

φm

1 + αφ2m
T(u, v) + 1 −

1
1 + αφ2m􏼠 􏼡D

(n− 1)
m (u, v).

(15)

It is easy to obtain the iterated general formula by
mathematical induction:

D
(n)
m (u, v) � 1 + 1 −

1
1 + αφ2m􏼠 􏼡 + · · · + 1 −

1
1 + αφ2m

􏼠 􏼡

n− 1
⎡⎣ ⎤⎦

φm

1 + αφ2m
T(u, v).

(16)

Obviously, [1 + (1 − (1/1 + αφ2m)) + · · · + (1 − (1/1 +

αφ2m))n− 1] is an equivalency sequence, with a common ratio
of 0≤ 1 − (1/1 + αφ2m)< 1; then,

D
(n)
m (u, v) � 1 − 1 −

1
1 + αφ2m

􏼠 􏼡

n

􏼢 􏼣φm
T(u, v). (17)

When the time of the iteration is infinite,

Dm(u, v) � lim
n⟶∞

D
(n)
m (u, v) � φm

T(u, v). (18)

.e above formula shows that the Tikhonov regulari-
zation iteration method proposed in this paper can converge
to the theoretical solution for high-order derivative con-
version. When the order spectral difference is less than the
specified iteration cut-off constant ε or the number of the
iterations reaches the specified iteration number, the

iteration stops, where ε is a small positive number. .e
choice of regularization weight is to use the curvature of the
L curve.

2.4. 
e Convergence and Filtering Properties of Tikhonov
Regularization Iterative Method. Figures 2 and 3 are the
filtering characteristics of Tikhonov regularized iterative
operators for the first vertical derivative and second vertical
derivative, respectively. Figures 2(a) and 3(a) are the filter
response characteristic curves of Tikhonov regularized it-
eration operator of the first vertical derivative and the second
vertical derivative with different numbers of iterations,
respectively.

ω in the x-coordinate is the radial circular frequency.
.e value of regularization parameter of first vertical de-
rivative α is 0.2, and α of the second vertical derivative is
0.01. By comparison and the filtering characteristics of the
theoretical vertical derivative operators φm and Tikhonov
regularization vertical derivative operators, it can be ob-
tained that the theoretical vertical derivative factor rises
sharply with the increase of frequency, and the higher the
derivative order is, the stronger the amplification of the
high-frequency components will be. Tikhonov regulari-
zation operator approximates the theoretical vertical de-
rivative operator in low-frequency band, which ensures the
accuracy of derivative conversion of useful signals in low
frequency, but can suppress the noise in the high frequency.
As the number of iterations increases, Tikhonov regular-
ized iterative operators gradually approach the theoretical
vertical derivative operators.

In order to analyze the influence of the value of regu-
larization parameter α on the filtering characteristics of
Tikhonov regularization operator, Figures 2(b) and 3(b) are
the filtering response characteristics of the Tikhonov reg-
ularized iterative operator of the first and second vertical
derivatives when the number of iterations is 3, respectively.
It can be seen that when the number of iterations is constant,
with the increase of the order, the suppression of Tikhonov
regularized iterative operator in high-frequency components
is gradually enhanced, which ensures the stability of the
high-order derivative’s calculation. .e smaller the value of
regularization parameter α, the weaker the suppression effect
of Tikhonov regularization operator in high frequency.
When the value is 0, it is the theoretical derivative operator.
When the value of regularization parameter α is too large, it
will suppress the low frequency, which will affect the filtering
effect.

It can be seen that the Tikhonov regularization iteration
operator proposed in this paper can accurately approximate
the theoretical derivative operator in the low frequency and
effectively suppress the high-frequency component. .ere-
fore, this method has the advantages of amplitude main-
tenance and stability.

3. Theoretical Model Test

In this paper, the gravity anomaly generated by a 2D vertical
cylinder is used for the numerical tests. .e model body is
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Figure 2: Filtering characteristics of Tikhonov regularized iterative operator for first vertical derivative. (a) α� 0.2. (b) .e number of
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2.0 km wide, and its centre position is 5.0 km. .e top depth
is 2.0 km, and the bottom depth is 3.0 km. .e residual
density is 1.0 g/cm3. Its location and the gravity anomaly Δg
are shown in Figure 4(a). Figures 4(b) and 4(c) are the
theoretical second vertical derivative and third vertical de-
rivative, respectively. .e random noise with 0.1% gravity
anomaly amplitude is added. Figures 5 and 6 are the second
and the third vertical derivatives calculated by the con-
ventional FFTmethod and Tikhonov regularization iteration
method in the case of noise. Figures 7 and 8 are regulari-
zation parameters calculated by the curvature function of L
curve. .e regularization parameters of the second and the
third vertical derivatives are 114 and 26.8, respectively.

From Figures 5 and 6, due to the interference of noise,
the results of the vertical derivative calculated by conven-
tional FFT transform are highly volatile, and the higher the
order of the derivative is, the worse the stability is. It is
impossible to identify the useful anomalies, which is due to
the amplification effect of theoretical derivative operator in
high-frequency components. .e Tikhonov regularization
iterative method is stable in calculating the second and third
vertical derivatives and has a strong ability to suppress noise.
.is is due to the fact that, because of the filtering char-
acteristics of the regularized iterative method, it can better
approximate the theoretical factor in the low-frequency
band and can suppress noise better in the high-frequency
band.

By comparing the second and third vertical derivatives of
the theory in Figures 4(b) and 4(c), it can be seen that, with
the increase of the derivative’s order, the influence of high-
frequency amplification becomes greater. From Figures 5(b)
and 6(b), the derivatives calculated by Tikhonov regulari-
zation iteration method are of the same order of magnitude
as the theoretical vertical derivatives (Figures 4(b) and 4(c)).
.ere is no obvious oscillation in the third vertical deriv-
ative, which shows the accuracy and stability of Tikhonov
regularization iteration method. At the same time, it can be
seen that, with the increase of the calculated derivative order,
the corresponding effect between the zero-point position
and the boundary of the geological body becomes better and
better.

In order to test the application effect of Tikhonov reg-
ularization iteration method on plane data, the combined
cuboid models are adopted in this paper. .e model pa-
rameters are shown in Table 1. We calculate the second
vertical derivative of the gravity anomaly Δg data of the
model. In order to illustrate the noise suppression effect of
this method, add Gaussian white noise with a mean value of
0 mGal and a standard deviation of 0.03 mGal to the the-
oretical gravity anomaly of the model. .e gravity anomaly
and the noise-added gravity anomaly are shown in
Figures 9(a) and 9(b).

Figure 10 shows the results of three methods for cal-
culating the second vertical derivative of the combined
models with noise (Figure 9(b)), where Figure 10(a) is the
contour map of the theoretical second vertical derivative in
the case of no noise.

.e upward continuation method can suppress the
noise. Generally, in order to ensure the stability of the

calculation results, the second vertical derivative is calcu-
lated after the upward continuation of the gravity data.
Figure 10(b) shows the second vertical derivative calculated
by the conventional FFT method after the upward
continuation.

Figure 10(b) is the second vertical derivative calculated
by the ISVD method. Figure 10(d) shows the results by the
method proposed in the paper, and the regularization pa-
rameter is 0.001. Table 2 shows the comparison between the
results calculated by the three methods and the theoretical
second vertical derivative results.

It can be seen from Figure 10 that the three methods can
calculate the second vertical derivative of the model stably.
Among them, the zero-value line of the second vertical
derivative calculated by conventional FFT can roughly
identify the boundary of the model body. However, if the
upward continuation continues, the noise will be suppressed
more strongly, resulting in the reduction of high-frequency
signal, and the boundary morphology of small-scale shallow
geological bodies cannot be identified.

It can be seen from Table 2 that the maximum and
minimum of ISVD are the closest to the theoretical second
vertical derivative among the three methods, and the recog-
nition effect of ISVD on the shallow model body is also good.
Since the error of the method is cumulative in calculating the
vertical derivative of each order, the error increases with the
increase of the derivative order. As can be seen from
Figure 10(c), the noise is relatively large, so denoising must be
carried out before calculating the vertical derivative with this
method.

It can be seen from Table 2 that the root mean square
error of the method proposed in this paper is the smallest,
and the zero-value line of the second vertical derivative
coincides well with the boundary of the model body. .is
method has a strong ability of noise suppression and the
proper selection of regularization parameters can balance
the noise and useful signals.

.rough the comparison of the methods in Figure 10, it
can be concluded that the method based on Tikhonov
regularization iteration method to calculate the vertical
derivative of gravity data has a strong ability to suppress
noise and the results are stable. .e zero-value line of the
second-order vertical derivative can better correspond to the
boundary of the model body, so this method can be applied
to the actual data processing.

4. Real Data

4.1. Geological Background. In order to test the effect of
Tikhonov regularization iteration method on the processing
of actual data, the second derivative of the gravity data of
Qinghai-Tibet Plateau was calculated. Figure 11 shows the
location of the study area and its structural divisions. .e
Qinghai-Tibet Plateau is composed of many terranes, and
each terrane presents a shape that is long from east to west
and narrow from north to south. .e lithostratigraphy and
organisms also have some East-West continuity. It can be
seen from Figure 11 that the suture zone is the contact zone
of each block, that is, the boundary of each block. As
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mentioned earlier, the zero-value line of the vertical de-
rivative can identify the structural boundary of the geo-
logical body. Using the method proposed in this paper, the
second vertical derivative of gravity data in the study area is
calculated, and the zero-value line is used to detect the fault
structure in the study area.

4.2. 
e Calculation of the Second Vertical Derivative Using
Tikhonov Regularization Iteration Method. .e location of
the study area is 74–105° E, 26–40° N, which is the main part
of the Qinghai-Tibet Plateau. .e gravity anomaly results in
the study area are shown in Figure 12. It can be seen that the
gravity value in the middle of the study area is the lowest and
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Figure 4: Gravity anomalies generated by the model and their related theoretical derivatives. (a) .e gravity anomaly and model location.
(b) .e second vertical derivative. (c) .e third vertical derivative.
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Figure 5: .e calculation of the vertical second derivative. (a) Conventional FFT. (b) Tikhonov regularization iterative method.

Mathematical Problems in Engineering 7



1 2 3 4 5 6 7 8 9 10 11
x (km)

–2500
–2000
–1500
–1000

–500
0

500
1000
1500
2000

4
3
2
1

h 
(k

m
)

Δg
/m

G
al

(a)

1 2 3 4 5 6 7 8 9 10 11
x (km)

–2

–1

0

1

2

3

4
3
2
1

h 
(k

m
)

Δg
/m

G
al

(b)

Figure 6: .e calculation of the vertical third derivative. (a) Conventional FFT (b) Tikhonov regularization iterative method.

1 10 100 1000 10000
–0.008

–0.004

0

0.004

0.008

0.012

0.016

c (
α)

α = 114

α

Figure 7: Curvature of L-curve of the second vertical second derivative.

1 10 100 1000
–0.008

–0.004

0

0.004

0.008

0.012

0.016

c (
α)

α

α = 26.8

Figure 8: Curvature of L-curve of the third vertical second derivative.

8 Mathematical Problems in Engineering



Table 1: .e model parameters in Figure 9.

Model number Top/bottom (km) x direction boundary (km) y direction boundary (km) Residual density (103 kg/m3)
A 0.5/1.3 5.0/7.0 2.0/8.0 0.3
B 0.3/0.5 2.0/4.0 2.0/4.0 0.1
C 0.3/0.4 3.0/4.0 7.0/8.0 0.1
D 0.2/0.3 8.0/9.0 5.0/6.0 0.1
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Figure 9: .e plane position and gravity anomaly contour map of the theoretical model. (a) Gravity anomaly of theoretical model. (b)
Gravity anomaly after adding random noise to Figure 9(a).
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Figure 10: Continued.
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Figure 10: .e second vertical derivative results. (a) .e theoretical second vertical derivative. (b) .e conventional FFT method after
upward extension. (c) .e ISVD method. (d) .e Tikhonov regularization iteration method.

Table 2: Comparison of the three methods.

Method Maximum (g.u./km2) Minimum (g.u./km2) Average value (g.u./km2) Root mean square error (g.u./km2)
.eoretical value 55.00 − 29.76 0.31
Conventional FFT 42.95 − 20.31 0.29 4.50
ISVD 54.88 − 30.82 0.04 1.62
Method in this paper 57.61 − 31.77 0.33 1.29
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suture; AKMS: Ayimaqin-Kunlun-Mutztagh suture; SQS: South Qilian suture; KDS: Kudi suture; STDS: South Tibet Detachment System;
MCT: Main Central .rust.
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in the surrounding edge the value is high..ere is an obvious
anomalous gradient zone at the low gravity anomaly
boundary, which corresponds to the structures in Figure 11.

In this paper, the second vertical derivative of gravity
anomaly in the study area is calculated using Tikhonov
regularization iteration method. .e regularization coeffi-
cient is 0.1 and the number of iterations is 5. .e results are
shown in Figure 13 and it can be seen that the position of the

zero-value line of the second vertical derivative is in good
agreement with the position of the gradient zone around the
low density of the original gravity anomaly.

In order to make a clearer comparison, the zero-value
line of the second vertical derivative is extracted, and the
structural map is superimposed with it, as shown in Fig-
ure 14. As can be seen from Figure 14, each suture zone can
also be well reflected from the zero-value line. Although
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Figure 12: Gravity anomaly in the study area.
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Jinsha River suture in the middle part of the study area is not
continuously reflected, it can be outlined by scattered zero-
value lines. For the faults, Altyn fault in the north and Jiali
fault in the south can be identified from the zero-value line of
the second vertical derivative. All of the above shows that the
vertical derivative of gravity calculated by Tikhonov regu-
larization iteration method is reliable and has good appli-
cation effect on the actual data.

5. Conclusion

In order to solve the problem that the calculation of gravity
high-order vertical derivative is unstable in frequency do-
main and sensitive to noise, a new method based on
Tikhonov regularization iteration method is proposed to
calculate the high-order vertical derivative of gravity field.
.e reliability of vertical derivative calculation is verified by
model test. Finally, the structures of the study area are
obtained according to the zero-value line of the second
vertical derivative of Qinghai-Tibet Plateau. We draw the
following conclusions:

(1) .e calculation of gravity vertical derivative is often
carried out in the frequency domain, but the vertical
derivative operator has the amplification effect in the
high-frequency domain, which leads to instability
and sensitivity to noise. .e higher the derivative
order is, the more unstable the calculation result is.

(2) .rough the analysis of the convergence and filtering
characteristics of Tikhonov regularization iterative
method, it can be seen that the method can accu-
rately approximate the theoretical derivative oper-
ator in the low-frequency band and it can effectively
suppress the high-frequency component. .erefore,
the method can suppress the noise, and the

calculated vertical derivative results are stable and
close to the theoretical vertical derivative.

(3) In the algorithm, the smaller the regularization
parameter is, the smaller the suppression effect on
high-frequency components is, and the calculation is
greatly affected by noise. .e larger the regulariza-
tion parameter is, the stronger the suppression effect
is in the high-frequency components, and the low-
frequency components will also be suppressed.
.erefore, choosing the proper regularization pa-
rameter is the advance of the method to calculate the
vertical derivative accurately.

(4) As an effective method to calculate the high-order
vertical derivative of gravity, the Tikhonov regula-
rization iteration method is used to calculate the
gravity second vertical derivative of Qinghai-Tibet
Plateau..e calculated results are in good agreement
with the geological data.
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