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ABSTRACT

Mining activities lead to elevated levels of antimony (Sb) and arsenic (As) in river systems, having adverse effects
on the aquatic environment and human health. Microbes inhabiting river sediment can mediate the transforma-
tion of Sb and As, thus changing the toxicity and mobility of Sb and As. Compared to river sediments, natural wet-
lands could introduce distinct geochemical conditions, leading to the formation of different sedimentary
microbial compositions between river sediments and wetland sediments. However, whether such changes in mi-
crobial composition could influence the microbially mediated geochemical behavior of Sb or As remains poorly
understood. In this study, we collected samples from a river contaminated by Sb tailings and a downstream nat-
ural wetland to study the influence of microorganisms on the geochemical behavior of Sb and As after the Sb/As-
contaminated river entered the natural wetland. We found that the microbial compositions in the natural wet-
land soil differed from those in the river sediment. The Sb/As contaminant components (Sb(III), As(III), As(V),
Asexe) and nutrients (TC) were important determinants of the difference in the compositions of the microbial
communities in the two environments. Taxonomic groups were differentially enriched between the river
sediment and wetland soil. For example, the taxonomic groups Xanthomonadales, Clostridiales and
Desulfuromonadales were important in the wetland and were likely to involve in Sb/As reduction, sulfate
reduction and Fe(IIl) reduction, whereas Burkholderiales, Desulfobacterales, Hydrogenophilales and Rhodocyclales
were important taxonomic groups in the river sediments and were reported to involve in Sb/As oxidation and
sulfide oxidation. Our results suggest that microorganisms in both river sediments and natural wetlands can
affect the geochemical behavior of Sb/As, but the mechanisms of action are different.
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1. Introduction

Antimony (Sb) and arsenic (As) are considered to be global contam-
inants and have been listed as priority pollutants by the US Environ-
mental Protection Agency (Callahan et al., 1979) and the European
Union (Communities, 1976). Extensive mining and smelting activities
discharge Sb and As in adjacent river systems, causing serious harm to
people (He et al., 2012). In general, Sb and As co-occur in sulfide ores
and co-contaminate mining areas (Sun et al., 2017). Due to their chem-
ical similarities, Sb and As share the same oxidation states (trivalent and
pentavalent states) in natural environments (Filella et al., 2002). Both
Sb and As in pentavalent states were predominantly found in relatively
oxic environments and trivalent states in anoxic environments (Filella
etal, 2002). The toxicities of Sb and As were dependent upon oxidation
states (Filella et al., 2002). The trivalent state of Sb and As (Sb(IIl) and As
(IIT)) was considered much more toxic and carcinogenic potential than
pentavalent states (Sb(V) and As(V)) (Filella et al., 2002). In addition,
the mobility of Sb and As was strongly dependent on their oxidation
states (Vodyanitskii, 2013). Therefore, it is necessary to investigate the
transformation of Sb and As in the surrounding river systems.

Existing evidence has shown that microorganisms inhabiting river
sediment have important roles in Sb and As biotransformation pro-
cesses (He et al., 2019). For instance, Sb(Ill)-oxidizing bacteria such as
Acinetobacter and Pseudomonas and Sb(V)-reducing bacteria such as
Sinorhizobium have been identified from Sb-contaminated sediments
(Hamamura et al., 2013; Nguyen et al., 2019). In addition, microbially
mediated Sb(V) reduction was observed in Sb mining areas and uncon-
taminated environments (Kulp et al.,, 2013). A prior study showed that
microorganisms with anaerobic metal-reducing capacity could mobilize
sedimentary As from an As-contaminated watershed in West Bengal
(Islam et al., 2004). Furthermore, microbial-mediated anaerobic As(III)
oxidation has been reported in the bottom water from Mono Lake
(Oremland et al., 2002). Microbially mediated Sb and As transformation
could reduce the toxicity, mobility, and bioavailability of Sb and As and
eventually influence their accumulation or transfer in river systems
(Sundar and Chakravarty, 2010). Therefore, microbially mediated trans-
formations of Sb and As could be targeted as promising methods for
remediating environments contaminated by Sb and As. Recent evidence
has showed that the distribution of microorganisms involved in Sb and
As biotransformation processes is shaped by physical and chemical
properties in the environment. However, the understanding of the bio-
geochemical cycling of Sb and As in river systems has not been well
elaborated (Filella et al., 2002). It is still less clear whether microbially
mediated Sb and As cycling changes with distinct geochemical condi-
tions in river systems.

Wetlands account for 6-11% of the world's land area and undergo
many important geochemical cycling processes, such as the cycling of
carbon and other major and trace elements (Vriens et al., 2014). Com-
pared to river sediment, natural wetlands could introduce distinct geo-
chemical conditions, i.e., pH, total organic carbon (TOC), and iron
content (Soldatova et al., 2021), leading to the formation of distinct sed-
imentary microbial compositions between river sediments and wetland
sediments (Mateos et al., 2006). Importantly, these bacteria have also
been reported to be involved in metal(loid) biochemical cycling pro-
cesses (Aguinaga et al,, 2018; Zhang et al., 2017). As a result, it is pro-
posed that the sedimentary microbial community structure may be
different when rivers flow into wetlands, leading to differences in mi-
crobial Sb/As cycling. However, the changes in microbially mediated
Sb/As cycling when rivers flow into wetlands remain poorly under-
stood.

In this study, we examined the changes in microbially mediated Sb/
As cycling that occur when rivers flow into wetlands in an Sb/As-
contaminated river system. Here, we aimed to investigate (i) the differ-
ences in Sb/As and other environmental variables between river sedi-
ment and wetland environments; (ii) the relationship between
environmental variables and the microbial community; and (iii) the
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difference in the microbial mediated Sb/As cycling between river sedi-
ment and natural wetland systems. These findings can provide new in-
sights into the migration and transformation of Sb/As in river systems.

2. Materials and methods
2.1. Site description and sampling

This watershed was located in Dushan County, Southwest China and
receives underground drainage from an Sb tailing reservoir and flows
approximately 1 km into a natural wetland (Fig. S1). We selected a
total of four sampling sites in this study and distributed these sites
into two areas according to whether they entered the wetland. The sam-
pling site before the watershed flows into the natural wetland was de-
noted BP. The other three sampling sites in the natural wetland were
denoted according to their location within the wetland: front (SH1),
middle (SH2), and back (SH3) (Fig. S1). A total of 21 samples were col-
lected for this study. Six river sediment samples were collected from BP,
and 5 wetland soil samples were collected from SH1, SH2 and SH3, re-
spectively. The water depth of this watershed is approximately 0.5 m.
The Eh of all samples ranged from —120.3 to —347.5 mV. We used a co-
lumnar sediment sampler to collect the surface (0-10 cm) sediments
(approximately 300 g) at each sampling site and placed the sediments
in ice bags in situ. After being transferred to the laboratory, all samples
were immediately stored in a freezer for geochemical analysis (<
—20 °C) and DNA extraction (<—80 °C).

2.2. Analysis of geochemical parameters

All samples were freeze-dried in the laboratory for 48 h before
chemical analysis and then sieved (2 mm) to remove the plant roots,
gravel and leaves. The samples were thoroughly grounded and then
sieved with a 200 mm mesh prior to chemical analysis. The pH of the
sediment samples was determined using a pH meter (HACH, Loveland,
USA) after mixing 10 g of soil with 25 mL of MQ water in a 50 mL conical
flask (Xiao et al., 2021b). To determine the concentrations of nitrate and
sulfate, we mixed a 10 g soil sample with 50 mL of MQ water, stirred the
mixture for 5 min and equilibrated it for 4 h. After centrifugation
(3500 rpm) and filtration, sulfate and nitrate concentrations were de-
termined using ion chromatography (Dionex ICS-40, Sunnyvale, CA,
USA) (Xiao et al., 2016b). We used an elemental analyzer (Vario
Macro Cube, Elementar, Hanau, Germany) to determine the levels of
total carbon (TC), total hydrogen (TH), total nitrogen (TN), total sulfur
(TS), and total organic carbon (TOC), where the TOC was measured
after using 10% HCl to remove the inorganic carbon. Using
spectrophotography (UV-9000s, Shanghai METASH) with 1,10-
phenanthroline at 510 nm, the levels of total Fe and Fe(II) were tested
(Tamura et al., 1974).

2.3. Analysis of Sb and As

After completely digesting a 50 mg sediment sample with a mixed
acid (5 mL of 10 M HF and 15 mL of 15 M HNO3), we used inductively
coupled plasma mass spectrometry (ICP-MS) (Agilent, 7700x, Santa
Clara, CA, USA) to determine the levels of total Sb (Sby.) and total As
(Asior) (Xiao et al,, 2016b). The standard soil reference material
(GBW07310) was utilized to control the quality. A modified five-step
sequential extraction procedure was applied in this study to extract
the Sb and As in the sediment samples (Gault et al., 2003; Wenzel
et al., 2001). Five extractable Sb and As fractions were classified into
(1) the easily exchangeable fraction (Meye, extracted by 0.05 M (NH,4)
»,S04, where M stands for Sb or As); (2) specifically sorbed surface-
bound fraction (Mg, extracted by 0.05 M NH4H,PO,); (3) amorphous
hydrous oxides of iron-aluminum fraction (Mg, extracted by 0.2 M
ammonium oxalate buffer (pH 3.0)); (4) crystalline Fe and Al oxide-
bound fraction (Mcy, extracted by 0.2 M ammonium oxalate buffer
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(pH 3.0) and 0.1 M ascorbic acid); and (5) sulfides and organics-bound
fraction (Msop, extracted by 5% (w/v) KClO4 in concentrated HCI).
Detailed information on the extraction conditions, reaction times, and
regents was in accordance with our previous study (Xiao et al., 2016b)
and is provided in Table S10. In the current study, we only considered
the easily exchangeable fraction (Mex) and specifically sorbed
surface-bound fraction (Ms.,) due to their bioavailability to soil
microorganisms (Sun et al., 2019). After each extraction stage, the
supernatant was centrifuged at 3000 rpm for 15 min. The
concentrations of Sb and As were determined by ICP-MS (Agilent,
7700x, California, USA). The redox species of Sb and As (M(IIl) and M
(V), where M represents Sb or As) in sedimentary pore water were ex-
tracted by citric acid solution (100 mM, pH = 2.08). The redox species
of Sb and As were determined by hydride generation atomic fluores-
cence spectrometry (HG-AFS; AFS-920, Jitian, Beijing) (Sun et al.,
2017). M(III) and M(V) were obtained by using proportional equations
corresponding to two different measurement conditions, which
followed the modified procedure proposed by Chen et al. (2014) and
Gonzalvez et al. (2009). Specifically, M(III) was directly determined by
feeding sample extracts diluted with HCl. Total M was determined by
pre-reduction with thiourea and ascorbic acid for 30 min. M(V) was ob-
tained by subtracting M(III) from total M. Notably, this method cannot
test for organic species of Sb and As. According to standard quality con-
trol procedures, we used standard quality control procedures using in-
ternationally certified reference materials (SLRS-5), internal standards
(Rh at 500 mg/L), and duplicates, which was better than +10% (Xiao
et al,, 2021a). In this study, we used the term “Sb and As contaminants”
to refer to the total Sb/As (M), bioaccessible Sb/As fractions (Mexe and
Msrp), and redox species Sb/As as described above.

2.4. 16S rRNA gene sequencing analysis

DNA of sedimentary soil microbes was extracted by a MoBio Power
Soil DNA Extraction Kit (MO BIO Laboratories, Carlsbad, CA, USA) fol-
lowing the manufacturer's instructions. The concentration and purity
of the extracted DNA were examined by running the extracts on a
1.2% agarose gel. We used the universal primers 515F (GTGCCAGC
MGCCGCGGTAA) and 926R (CCGTCAATTCMTTTRAGTTT) to amplify
the V4-V5 region of bacterial 16S rRNA genes (Xiao et al., 2016b). We
then sequenced the purified PCR amplicons on an Illumina MiSeq in-
strument at Novogene (Beijing) Co., Ltd. The obtained paired-end
reads were merged by using FLASH (Mago¢ and Salzberg, 2011) and
then filtered by QIIME (Bokulich et al., 2013). After comparison with
the GOLD database, we obtained raw sequences and then removed chi-
meric sequences by using UCHIME (http://www.drive5.com/usearch/
manual/uchime_algo.html) (Haas et al., 2011). Operational taxonomic
units (OTUs) were obtained after clustering based on 97% similarity.
The phylogenetic taxonomy was assigned by using the RDP classifier
(Version 2.2, http://sourceforge.net/projects/rdp-classifier/) and the
Green Genes database (http://greengenes.lbl.gov/cgi-bin/nph-index.
cgi) (Wang et al,, 2007).

2.5. Statistical analysis

Analysis of variance (ANOVA) was used to determine differences in
microbial diversity indices between the BP and SH groups, including
the Shannon, ACE and Chaol. In this study, p values < 0.05 were consid-
ered statistically significant. We analyzed the enrichment or depletion
of OTUs between the two environmental habitats by using the
“tidyverse” and “DESeq2” packages in R software (Love et al., 2014).
To identify differences in microbial composition, we drew Venn dia-
grams, alpha diversity (Shannon, ACE, and Chao1) boxplots, and princi-
pal coordinate analysis (PCoA) plots by using microbiome analysis and
visualization in R (Liu et al., 2021; Zhang et al., 2019). Permutational
multivariate analysis of variance (PERMANOVA) using the Bray-Curtis
distances was used to determine differences in microbial communities
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among group. Random forest (RF) analysis was then used to determine
the major edaphic predictors of microbial properties in sedimentary
soils (Liu et al., 2018). The random forest analysis is an ensemble tree-
based method that combines multiple decision trees (classification or
regression) to give a prediction (Breiman, 2001). In this study, the ran-
dom forest type was regression model and the number of decision trees
was 1000. Two co-occurrence networks were constructed to confirm
the interaction between environmental variables and specific OTUs by
using the interaction platform Gephi (Berry and Widder, 2014). Both
co-occurrence networks were constructed based on OTUs that were sig-
nificantly enriched in wetland sediment (SH, 340 OTUs) and river sedi-
ment (BP, 363 OTUs). The correlations were visualized when they met
the criteria 0.6 < |r| < 1 and p < 0.05. RF analysis was conducted to fur-
ther evaluate the link between the enriched OTUs and the geochemical
cycles of Sb and As and sorted by Importance to visualize the top 30 im-
portant OTUs (Liu et al,, 2018).

3. Results
3.1. Distribution of geochemical parameters in the watershed

The distribution of the Sb demonstrated zone-specific trends. As
shown in Fig. 1, the content of Sb was higher in the wetland system
than that in the river sediment. Specifically, the contents of Sby, were
higher in the wetland system, averaging 5175.8 + 2087.3 mg/kg, than
in the river sediment, averaging 2668.2 4 641.4 mg/kg (Table S1). The
bioaccessible Sb included easily exchangeable (Sbexe) and specifically
sorbed surface-bound Sb (Sbyp,). The concentrations of Sbeyxe ranged
from 19.2 to 30.8 mg/kg in river sediment and from 17.9 to
52.7 mg/kg in wetland ecosystems. The concentrations of Sbs, ranged
from 48.5 to 69.3 mg/kg in river sediment and from 38.9 to
106.9 mg/kg in wetland ecosystems. Notably, the average proportion
of bioavailable Sb in the wetland system (2.02%) was relatively lower
than that in river sediment (3.27%) (Table S1). Moreover, the contents
of Sb(Ill) and Sb(V) in pore water were determined. The average
levels of Sb(Ill) in the wetland (ranging from 120.2-461.9 mg/kg)
were higher than those in the river sediment (ranging from
118.3-196.2 mg/kg) (Fig. 1 and Table S1). Furthermore, the
proportions of redox species of Sb and As in the pore water of
sediment were relatively low. Notably, the proportions of redox
species of Sb in BP were 7.0-17.6%, whereas they were 2.1-20.5% in
SH (Table S1).

In addition to Sb, the contents of As, and its bioaccessible fractions
were determined. As shown in Fig. 1, the contents of As,,; Were higher in
the wetland system, averaging 127.7 4 402.7 mg/kg, than in the river
sediment, averaging 76.8 4+ 125.7 mg/kg (Table S1). The
concentrations of Aseye ranged from 0.3 to 0.4 mg/kg in river sediment
and from 0.3 to 0.6 mg/kg in wetland ecosystems. The concentrations
of Asgp, ranged from 0.5 to 0.7 mg/kg in river sediment and from 2.3
to 6.1 mg/kg in wetland ecosystems. The average proportion of
bioavailable As in the wetland system (2.11%) was relatively higher
than that in river sediment (1.06%) (Table S1). The levels of As(III)
(ranging from 4.8-18.5 mg/kg) and As(V) (ranging from
1.8-7.2 mg/kg) in the wetland were higher than those in the river
sediment (Fig. 1). Moreover, the average levels of As(Ill) (average
12.53 mg/kg) and As(V) (average 3.71 mg/kg) in the natural wetland
ecosystem were 19.6 and 14.3 times those in river sediment,
respectively (Table S1). Within the natural wetland, the
concentrations of As, were higher in SH1 (278.8-402.7 mg/kg)
than in SH2 (166.2-271.6 mg/kg) and SH3 (127.7-212.4 mg/kg),
whereas Sby, was not significantly different among them. The
contents of oxidation species of Sb (Sb(IlI) and As(IIl)) were higher in
SH2 than in SH1 and SH3. Moreover, the bioavailable Sb and As
fractions (including Sbexe, Sbsrp, ASexe and Asgp), Sb(V), and As
(V) were not significantly different among SH1, SH2 and SH3 (Fig. S3
and Table S1).
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Fig. 1. The contents of Sb and As between BP and SH groups. The group name of SH refers to wetland ecosystem; BP refers to river sediment. Different lowercase letters indicate the
significant difference between two groups, whereas same letter indicate no significant difference between groups. The numbers of replicated samples in this figure are 5 in BP and 15
in SH. Abbreviations: Sbyot/Astot (total content of Sb/As); Sbexe/Asexe (€asily exchangeable forms of Sb/As); Sbg,/Assp, (specifically sorbed forms of Sb/As).

As shown in Fig. S2, the levels of nutrient parameters (TOC, TN, TC),
Fe(II), and Fe in the wetland ecosystem were significantly higher than
those in the river sediment. Specifically, TOC averaged 0.42 + 0.26% in
BP and 1.09 + 0.46 % in SH, and TN averaged 0.04 4+ 0.05% in BP and
0.1 + 0.04% in SH (Table S1). Furthermore, the contents of Fe, and Fe
(I) in pore water were higher in samples taken from wetlands than in
those taken from river sediment systems. As shown in Fig. S2, Eh, pH,
and SO3~ in all sediment samples were not significantly different
between the river sediment and natural wetland ecosystems. Sb and
As contaminant fractions were significant correlated to TC, TOC, and
TN (Fig. S9).

3.2. General information for the 16S rRNA gene sequencing analysis

A total of 1,268,912 high-quality sequences were obtained from 21
sediment samples. After filtering the raw reads, we obtained
1,157,841 valid reads, with the number of reads per sample varying
from 34,246 to 93,749, which were clustered into 13,219 OTUs for mi-
crobial community analysis (97% identity) (Table S2). Notably, in the
current study, we chose 3572 representative OTUs (over 95% of the
total number of reads) for further analysis. Alpha diversity indices, in-
cluding the Shannon, Chaol and ACE, were significantly different be-
tween the two different environments and were significantly higher
in the wetland system than in the river sediment (Fig. 2 and Table S3).

AVenn diagram was used to illustrate the shared and unique OTU distri-
bution between BP and SH (OTUs relative abundance > 0.05%). As
shown in Fig. S4, the Venn diagram showed that BP had 39 unique
OTUs (account for 9%), whereas SH had 143 unique OTUs (account for
33%). Notably, 258 OTUs (account for 59%) were shared between BP
and SH (Fig. S4). The PCoA based on the Bray-Curtis distances of the mi-
crobial communities demonstrated a disparity between BP and SH
(Fig. S5 and Table S4). PERMANOVA using the Bray-Curtis distances
was in agreement with the PCoA that there are significant differences
in microbial communities between BP and SH (p = 0.001) (Table S11).
To further identify the distribution of OTUs inhabiting BP and SH, we
used linear analysis to test the enrichment of OTUs in BP and SH. The
results showed that 363 OTUs were significantly enriched in BP, and
consisted mainly of Betaproteobacteria, Deltaproteobacteria and
Chloroflexi, whereas 340 OTUs were significantly enriched in SH,
and consisted mainly of Firmicutes, Alphaproteobacteria,
Gammaproteobacteria, Acidobacteria, Actinobacteria and Cyanobacteria
(Fig. 3 and Table S5). Within the natural wetland, the PCoA of Bray-
Curtis distances revealed that the cluster of SH1 separated with SH2
and SH3, indicating that the microbiota among them were different.
PERMANOVA using the Bray-Curtis distances supports the PCoA results
that there are significant differences in microbial communities among
SH1, SH2 and SH3 (all groups p < 0.05) (Table S11). Moreover, Shannon
revealed a significant difference between SH1 and SH2, and microbiota

Shannon ACE Chao1
7000 -
a 7000 - a d
10 b b
6000 -
? 6000 -
i 5000 -
B 5000 -
4000 -
4000
8 4
3000 | 3000 -
BP SH BP SH BP SH

Fig. 2. The distribution of alpha diversity indices between BP and SH groups. The group name of SH refers to wetland ecosystem; BP refers to river sediment. Different lowercase letters
indicate the significant difference between two groups, whereas same letter indicate no significant difference between groups. The numbers of replicated samples in this figure are 6 in BP

and 15 in SH.
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of SH2 had higher diversity than SH1 and SH3. Furthermore, ACE and
Chaol were showed no difference among SH1, SH2 and SH3 (Fig. S10
and Tables S3 and S4).

3.3. Relevance of the microbial communities to fractionated Sb and As

In the current study, we performed various analyses to understand
the relationship between sediment physicochemical properties and mi-
crobial community structure. First, RF analysis showed that bioavailable
Sb/As (including As(III), Sb(III), As(V), Sb(V), ASexe and Asg,) and TC
were important predictors of microbial diversity (Fig. 4 and Table S6).
Among them, As(III) and Sb(III) best explained the differences in the
microbial diversity indices, including the Shannon and Chao1, respec-
tively (Fig. 4). Second, two bacterial networks were constructed to fur-
ther identify the link between bacteria and edaphic factors (Fig. 5 and
Table S7). The results showed that the topological parameters displayed
obvious differences between the two constructed bacterial networks.
Specifically, the numbers of edges were 6616 and 7574 in the BP and
SH networks, respectively. The average degree and closeness centrality
parameters were higher in the wetland than in the river sediment. In
contrast, the betweenness centrality and clustering were lower in the
wetland network than in the river sediment network. Notably, the
OTUs with the top 10 degree values fell into different phyla. Specifically,
the taxonomic compositions at the phylum level of those OTUs in the BP
network were Actinobacteria, Chloroflexi, Proteobacteria and TPD-58, and
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Fig. 3. Volcano plot showing OTUs enriched in BP and SH. Each dot represents a single OTU
and OTUs significantly enriched in BP and SH are represented by blue and green,
respectively. Pie charts show the bacteria taxonomic composition of those OTU that are
significantly enriched in BP and SH groups. The numbers of replicated samples in this
figure are 6 in BP and 15 in SH.
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those in the SH network were Firmicutes, Proteobacteria, Clostridia and
Bacteroidetes (Fig. 5). To further determine the relationship between
microbial attributes and redox species of Sb/As, we performed RF anal-
ysis to identify the importance of the OTUs significantly enriched in the
wetland for the redox species of Sb and As (Fig. 6 and Table S8). The re-
sults showed that the 30 most important predictors of Sb(IIl) and As(III)
were predominantly affiliated with Acidimicrobiales, Rhizobiales, iii1-15,
Chroococcales, Solirubrobacterales, Pirellulales, 0319-7L15 and
Acidimicrobiales, Legionellales, Rhizobiales, Gaiellales, iiil-15,
Sphingomonadales, and Syntrophobacterales, respectively. In addition,
the 30 most important predictors of Sb(V) and As(V) were predomi-
nantly affiliated with Acidimicrobiales, Clostridiales Chloroflexales,
Rhizobiales, Xanthomonadales, Gaiellales, Legionellales, Pirellulales,
Rhodospirillales and Acidimicrobiales, Rhizobiales, Xanthomonadales, iiil-
15, Sphingomonadales, Pirellulales, Solirubrobacterales, and 0319-7L15,
respectively. Notably, among these OTUs, most were also identified as
OTUs that were significantly correlated with Sb and As from the SH bac-
terial network (blue in the RF model) (Figs. 5 and 6). Furthermore, our
results showed that most of these OTUs positively correlated with Sb/
As contaminants (Fig. S8).

4. Discussion
4.1. Sb and As in the watershed

This watershed was characterized by elevated Sb (as high as
1942.9-3688.3 mg/kg) and As concentrations (as high as
76.8-125.7 mg/kg), which were remarkably higher than the back-
ground concentrations of Sb (0.80-3.00 mg/kg) (He et al., 2012) and
As (4.10-12.46 mg/kg) (Xu et al., 2017) in China's river sediment. The
elevated contents of Sb and As in the watershed were mainly due to
the reception of Sb-rich tailings from an Sb tailing pond along the
Xiaohe River. In general, the concentrations of sedimentary Sb and As
decrease dramatically over the distance to the tailings pond (Wang
et al,, 2011). In the current study, however, the levels of total Sb and
As in river sediment (BP), which is closer to the tailings pond, were sig-
nificantly lower than those in the natural wetland ecosystem (SH)
(Fig. 1). This result suggests that natural wetland ecosystems have a sig-
nificant role in the immobilization of Sb and As in the watershed, which
is in accordance with previous studies (Filella et al., 2002). In general,
the mobility and bioaccessibility of metal(loid) were correlated with
the binding type with the sample matrix (Savonina et al., 2012). In the
current study, we used sequential extraction to obtain the bioaccessible
Sb and As in sediments. Overall low levels of bioaccessible Sb and As
have also been reported in previous studies (Flynn et al., 2003; Gal
et al., 2007), indicating that Sb and As are relatively immobile in the
river environments. Notably, the averaged contents of bioavailable Sb
were relatively higher in the wetland ecosystem, whereas bioavailable
As were relatively lower in river sediments (Table S1). This result was
consistent with a recent study conducted by Xu et al. (2020b), which
showed that this phenomenon was mainly due to microbial mediated
Sb and As cycling. In this study, the averaged proportions of Sb(III)
and As(III) were higher relative to Sb(V) and As(V) in river sediment
and wetland ecosystems (Table S1). This may be because all sediment
samples were characterized by low Eh (below —100 mV) (Ascar et al.,
2008). Surprisingly, the contents of Sb(V) and As(V) were elevated in
whole samples where Eh was negative (Table S1). This phenomenon
was also reported by Xu et al. (2020b) who proposed that this may par-
tially be due to microbially mediated Sb and As cycling.

The other environmental variables demonstrated zone-specific pat-
tern. For instance, both TC, TN, and TOC were higher in the wetland eco-
system than in the river sediments (Fig. S2 and Table S1). This is
expected, as TC, TN, and TOC contents are often higher in wetland eco-
systems than in river sediments due to the growth of plants (Sung et al.,
2015). These environmental variables were significant correlated to Sb
and As contaminant fractions (Fig. S9), suggesting their important
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Fig. 4. RF analysis of microbial diversity indices (Shannon and Chao1) predicted by metal(loid)s, nutrients and other chemical parameters for bacterial community between BP and SH. The

numbers of replicated samples in this figure are 5 in BP and 15 in SH.

roles on Sb and As geochemical cycling. This result was consistent with
prior studies that the TN and TOC could impact the geochemical behav-
ior of Sb and As via adsorption and complexation in the river sediment
(Filella et al., 2002). More important, TN and TOC could facilitate
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microbial growth and indirectly impacts the geochemical behavior of
Sb and As (Y. Li et al., 2021b). Notably, we also identified that the distri-
bution of As, Sb(Ill), and As(IIl) differed within natural wetland
ecosystems, suggesting the heterogeneity within wetlands. The
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changes in environmental variables further shape the microbial
community, which is critical for Sb and As biogeochemical cycling in
the environment (Mateos et al., 2006; Gao et al., 2021).

4.2. Relevance of environmental variables on the overall microbial
community

Previous studies have shown that sedimentary bacteria respond dif-
ferently to distinct environments in river systems (Zhang et al., 2020),
adopting different survival strategies to improve their fitness
(Goddard and Bradford, 2003). Recent evidence has shown that such
changes in the sedimentary microbial community may potentially
play important roles in Sb/As biogeochemical cycling in certain environ-
ments (Y. Lietal, 2021a). Indeed, we identified that the microbial alpha
diversity was significantly higher in natural wetland soils than in river
sediment (Fig. 2 and Table S3), which is consistent with a prior study
showing that sedimentary microbial diversity indices could be in-
creased when rivers enter a constructed wetland (Cao et al., 2017).
Existing evidence suggests that the distributional patterns of microbial
communities may be relevant to the differences in plant growth in nat-
ural wetland ecosystems (Wang et al., 2010). Generally, the status of
chemical factors in sedimentary soils can be altered by the growth of
plants, and microbial communities can sensitively respond to these var-
iations (Shahzad et al., 2015). Consistent with this, we determined dif-
ferences in nutrient and Sb/As statuses between the SH and BP groups
(Figs. 1 and S2) and such changes could reasonably explain the distinct
distribution of the sedimentary microbial community. This idea was
also supported by the fact that TC and metal(loid) parameters (such
as Sb(II), As(IIl), Sb(V), As(V) and Aseyxe) parameters were important
predictors of the bacterial community composition (Fig. 4 and Table S6).

Likewise, the prevalence of the dominant bacterial taxa is also a re-
flection of the changes in the nutrient and metal(loid) statuses of the
sedimentary soils. For example, taxonomic classification of the signifi-
cantly different OTUs at the phylum level demonstrated that Firmicutes
and Alphaproteobacteria were significantly enriched in SH, whereas
Beta- and Deltaproteobacteria were enriched in the BP sedimentary soil
samples (Fig. 3 and Table S5). These taxonomic groups are believed to
be ubiquitous and abundant bacterial phyla and are generally found in
different metal(loid)-affected environments, such as soils (Xiao et al.,

2021a, W. Sun et al., 2020), river sediments (Xu et al., 2020a, 2020b),
and tailings (Sun et al., 2017; X. Sun et al., 2020). It has been reported
that Beta- and Deltaproteobacteria are versatile heterotrophs with an ol-
igotrophic lifestyle (Trivedi et al., 2013), whereas Alphaproteobacteria
and Firmicutes are able to utilize a variety of carbon sources for fast-
growth (i.e., copiotrophs) (Trivedi et al., 2013). The enrichment of
Beta- and Deltaproteobacteria was consistent with their colonization
ability in nutrient-limited river sedimentary samples, and these taxa
can contribute to improving the soil nutrient status (Inceoglu et al.,
2010). Overall, these results suggested that natural wetlands affect the
selective enrichment of sedimentary soil microbes.

4.3. Microbially mediated Sb/As cycling differs between river sediment and
natural wetlands

As discussed above, natural wetlands could form distinct environ-
ments with different nutrients and metal(loid) statuses compared to
river systems, which subsequently influence the selective enrichment
of sedimentary microbes. To determine whether these changes influ-
ence Sb and As biogeochemical cycling, we tested the linkage between
the microbial community and Sb and As. In this study, we observed
that Sb and As components play important roles in the distribution of
sedimentary microbial community structure (Figs. 4 and S6). The inter-
actions between Sb and As contaminants and microorganisms could be
involved in multiple processes, mainly microbially mediated redox pro-
cesses and biotic adsorption by microorganisms, which could poten-
tially alter their toxicity and mobility (Xu et al., 2020a). Importantly,
we identified that the OTUs in module 0 (Oxford blue) related to Sb/
As fractions in the natural wetland were widely identified in various
plant roots or rhizosphere soils and reported to promote plant growth
via nutrient cycling, i.e., nitrogen fixation (Rhizobiales, order level), nitri-
fication (Xanthomonadaceae, family level) and denitrification
(Proteiniclasticum, genus level) (Fig. 5 and Table S7). Therefore, our re-
sults suggest that the assemblage of microorganisms is mainly influ-
enced by plant colonization in natural wetlands. This result is
consistent with prior studies showing that the microbial composition
in a wetland was mainly regulated by the resident plants (Zhang et al.,
2010; Zhao et al., 2012). Importantly, we also identified that the
enriched OTUs at SH1, SH2, and SH3 were affiliated with
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Xanthomonadales (order level), and Rhizobiales (order level), suggesting
their different distributional patterns within wetland systems. Notably,
these groups have been widely reported in various Sb/As-contaminated
environments (Tomczyk-Zak et al, 2013). For instance,
Xanthomonadales was correlated with two bioavailable fractions of As
and Sb (Fig. S7 and Table S9). Although members of Xanthomonadales
have previously been described as As-metabolizing bacteria and encode
As(V) reductase-arsC (Yuan et al., 2020), Xanthomonadales has also
been found to be substantially correlated with Sb fractions in environ-
ments (J. Li et al., 2021; Nguyen et al., 2019). In this study, the OTUs
with the top 50 degree values in module 0 affiliated with
Xanthomonadales from the SH bacterial network, such as OTU_2173
and OTU_61, demonstrated a significant correlation with Sb and As,
which were also important predictors of Sb(V) and As(V), respectively
(Figs. 5 and 6). Given that Sb and As share some physicochemical and
toxic properties, we hypothesized that Xanthomonadales might be capa-
ble of bearing and utilizing certain Sb components (Xu et al., 2020b).
Furthermore, we identified that some important OTUs may indirectly
affect the biogeochemical behavior of Sb and As. For instance,
Clostridiales was positively correlated with the As., fractions (Fig. 7
and Table S9). Members of Clostridiales, such as Clostridium, are widely
reported to be sulfate- and sulfur-reducing species (Davis et al., 2012).
Clostridiales was believed to be well adapted to As and Sb contamina-
tion. Extensive studies have demonstrated that microbially mediated
sulfate- and sulfur-reducing species generate S>~, which thereby
quickly precipitates As and Sb to form As,S; and Sb,S; from water
(Kirk et al., 2004; Wang et al., 2013). Furthermore, we identified that
members of Desulfuromonadales were widely reported as Fe(III)-
reducing bacteria (Tang et al., 2020). Usually, microbially mediated Fe
reduction is strongly related to the distribution of Sb and As in river
environments. The statistical analysis consistently showed that the
absolute abundance of Desulfuromonadales was significantly correlated
with ASior, ASexe, and Asg, (Figs. 7 and S7). Taken together, these
results suggested that the plant-induced assemblage of microorganisms
was involved in As(V) reduction, sulfate reduction, and Fe(III) reduc-
tion, which could directly or indirectly immobilize Sb and As in the nat-
ural wetland ecosystem.

Compared to natural wetlands, river sediment lacks plants and ex-
hibits a distinct geochemical status (Figs. 1 and S2). It is therefore be-
lieved that the microbial composition in river sediment may differ
from that in natural wetlands, thereby resulting in different microbial
mediated Sb and As cycling compared to that in natural wetland
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systems. Indeed, we revealed that the OTUs with the top 50-degree
values in both modules 1 and 2 (Oxford blue and orange) that were re-
lated to Sb/As fractions in the river sediment were distinct compared to
those in the natural wetland system (Fig. 5 and Table S7). Among these
OTUs, those belonging to Burkholderiales, Desulfobacterales,
Hydrogenophilales and Rhodocyclales exhibited extensive interactions
with Sb and As contaminants (Fig. 5 and Table S7). More importantly,
these OTUs were identified as important predictors of the distribution
of Sb and As fractions. Therefore, it is reasonable to suggest that these
OTUs play a significant role in microbially mediated Sb and As cycling
inriver sediments. Members of Burkholderiales are capable of sulfide ox-
idation and have been widely identified in Sb- and As-contaminated en-
vironments (Y. Li et al., 2021a). Recent evidences have shown that
microbially mediated sulfide oxidation is usually coupled with the mo-
bilization of Sb and As in river sediments (Loni et al., 2020; Tsaplina
etal, 2013). In the current study, we demonstrated that there was a sig-
nificant negative correlation between the absolute abundance of
Burkholderiales and Asexe (Fig. 7 and Table S9). Furthermore, the OTUs
affiliated within Burkholderiales were strongly correlated with Sb and
As components (Fig. S7 and Table S9). Notably, moderately
thermophilic and acidophilic Thiobacillus, a member of
Hydrogenophilales, has been extensively reported to be a genus of
sulfur-oxidizing bacteria (SOB). It is particularly intriguing that Fe(III)
can catalytically oxidize As(Ill) in the presence of Thiobacillus
ferrooxidans (Mandl and Vyskovsky, 1994). Recently, arsenate oxidase
and reductase were found in a Thiobacillus-affiliated bin (X. Sun et al.,
2020). In this study, the absolute abundance of Thiobacillus was nega-
tively correlated with As(III) (Figs. 7 and S7). These results indicate a po-
tentially important role for Thiobacillus in the cycling of As. Moreover,
our previous report showed that Thiobacillus spp. was present in Sb tail-
ings (Xiao et al., 2016a). T. ferrooxidans has been reported to be capable
of oxidizing Sb(Ill)-bearing minerals (Silver and Torma, 1974). A study
by Lialikova (1972) demonstrated that T. ferrooxidans was only able to
utilize the released energy from Sb(IIl) oxidation to grow autotrophi-
cally. Consistent with this, the absolute abundance of Thiobacillus also
exhibited a significant negative correlation with the Sb(IIl) content in
the current study (Figs. 7 and S7). These results suggested that
Thiobacillus may be important in the cycling of Sb and As in river sedi-
ment. Moreover, Desulfovibrio (genus level) and Dechloromonas
(genus level) were characterized as abundant groups in Sb- and As-
rich environments (Hery et al., 2015). Some highly similar genes for
As metabolism, such as arrA and acr3, were observed in the genomes
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of certain Desulfovibrio spp. (Hery et al., 2015). Consistent with this, we
demonstrated a significant negative correlation between the absolute
abundance of Desulfovibrio and the content of Asy (Fig. 7 and
Table S9). Another study reported that members of Dechloromonas,
containing the aroA gene, were capable of growing by linking As(III)
oxidation with ClO3™ reduction (Sun et al., 2011). Consistent with this,
we demonstrated that the absolute abundance of Dechloromonas was
significantly negative correlated with As(Ill) (Figs. 7 and S7).
Collectively, these results suggested that members of the taxonomic
groups Burkholderiales, Desulfobacterales, Hydrogenophilales, and
Rhodocyclales can tolerate high levels of Sb/As contamination in river
sediments and participate in sulfide oxidation and As(III) and Sb(III)
oxidation to directly or indirectly mobilize Sb and As in river sediment.

5. Conclusions

In the current study, we analyzed the changes in the microbial com-
munity and microbially mediated potential Sb and As cycling that occur
when rivers flow into wetlands in Sb- and As-contaminated river sys-
tems. Our results suggested that there are distinct geochemical condi-
tions between river systems and natural wetlands, which significantly
impact the distribution of sedimentary microbial communities in the
two environments. This study identified that microbial-mediated Sb
and As cycling was shifted when rivers flowed into wetlands. Impor-
tantly, the microorganisms inhabiting natural wetlands could immobi-
lize Sb and As via Sb/As reduction, sulfate reduction and Fe(III)
reduction. The findings of this study have important implications for fu-
ture bioremediation of Sb/As-contaminated rivers by constructing natu-
ral wetland ecosystems. Notably, we acknowledged that this study
investigated the microbe-mediated Sb and As cycling based on statisti-
cal analysis, and further experimental studies are needed to confirm
these processes. Despite this limitation, this study improves our under-
standing of microbially mediated Sb and As cycling in wetland environ-
ments and provides important information for the bioremediation of
Sb/As in river systems.
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