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Abstract

Understanding the spatial distribution pattern and driving factors behind ecosystem

health is beneficial to ecosystem management and restoration. However, the litera-

ture shows little in-depth exploration of regional heterogeneity and the factors that

influence ecosystem health on a global scale. This study assesses global ecosystem

health for the period 2000–2015 based on the vigor, organization, resilience, and ser-

vice (VORS) model, and it explores the factors that influence regional differences in

ecosystem health. Our results show that: (a) regions with high levels of ecosystem

health are distributed mainly near the Equator and within the north–south regression

line (0�N–13�N, 0�S–18�S); (b) seven critical zones with high levels of ecosystem

health are identified (13�N–18�S, 45�N–65�N, 35�S–56�S, 47�W–80�W, 120�W–

130�W, 8�E–37�E, 92�E–157�E); and (c) average annual precipitation and soil mois-

ture play a key role in ecosystem health globally, with correlations of 0.574 and

0.399, respectively. Socioeconomic factors act as bridges, linking and reinforcing the

influence of other factors in areas with medium to low levels of ecosystem health.

Our study contributes to better understanding of ecosystem health, fills gaps in

global ecosystem health diagnosis, and provides reference points for management

and recovery of ecosystems.
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1 | INTRODUCTION

The material basis of life, that is, ecological services needed for the

survival and development of human society, are provided by natural

ecosystems (Peng, Wang, Wu, Shen, & Pan, 2011). The sustainability

of human social development is based on healthy ecosystems (Peng

et al., 2011). However, given the rapid development of modern soci-

ety, intense human activity and the variety of reasonable and unrea-

sonable land use patterns, the structure and functioning of

ecosystems have changed greatly (Bingkui, Huilei, Min, & Lu, 2015).

Global ecosystem health is showing a downward trend; thus, it is nec-

essary to monitor the health of ecosystems to achieve greater sustain-

ability (Jian, Yanxu, Jiansheng, Huiling, & Xiaoxu, 2015; Rapport &

Hildén, 2013).

Scholars have differing concepts of ecosystem health. A healthy

ecosystem is resilient to disturbance and does not degenerate over

time; its organization and autonomy are resilient to stress

(Costanza, 1992a, 1992b; Costanza, Mageau, Norton, & Patten, 1998;

Received: 24 February 2020 Revised: 24 October 2020 Accepted: 31 October 2020

DOI: 10.1002/ldr.3813

1500 © 2020 John Wiley & Sons, Ltd. Land Degrad Dev. 2021;32:1500–1512.wileyonlinelibrary.com/journal/ldr

https://orcid.org/0000-0001-9705-5574
mailto:baixiaoyong@vip.skleg.cn
http://wileyonlinelibrary.com/journal/ldr
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fldr.3813&domain=pdf&date_stamp=2020-11-20


Lu & Li, 2003; Mageau, Costanza, & Ulancowicz, 1995; Rapport,

Costanza, & McMichael, 1998). Rapport (1989) was the first to develop

the concept of ecosystem health, pointing out that the pursuit of eco-

system health is the basis for sustainable development (Rapport, 2007).

Studies related to ecosystem health provide a methodological basis for

evaluating the state of the global ecosystem (Rapport et al., 1999), and

they confirm that a healthy ecosystem is critical (Costanza, 2012).

Costanza's (Costanza & Mageau, 1999) three indicators, namely, ecosys-

tem vigour, ecosystem organization, and ecosystem resilience, consti-

tute the VOR ecosystem health index widely recognized in the

ecological community (Ainslie, 1994). Thus far, many ecosystem health

assessment studies on various scales have been carried out based on

the VOR model. Yan et al. (2016) evaluated ecosystem health in the

upstream of the Liaohe River basin based on ecosystem services. Song

et al. (2017) used the analytic hierarchy process (AHP) to assess the

ecosystem health status of marine life in Laizhou Bay. Yang, Song, and

Lu (2020) used a new evaluation framework of pressure, state (vigour-

organization-resilience-function), and response to assess the level of

land ecosystem health in Qiqihaer City. Rui et al. (Xiao et al., 2019) car-

ried out a comprehensive and detailed analysis of ecosystem health in

the eastern coastal metropolitan areas of China; Jian et al. (Jian

et al., 2015; Peng, Liu, Li, & Wu, 2017) used Shenzhen and Lijiang,

China, to evaluate the health status of urban ecosystems, and found

that the contribution of each ecosystem health index to ecosystem

health differed at different scales. Wang et al. explored the effects of

extreme precipitation on urban ecosystem health (Wang, Deng, Zhou, &

Wei, 2018). In addition, there is a body of literature on ecosystem

health focusing on single ecosystems that employed methods other

than the VOR model (Ishtiaque, Myint, & Wang, 2016; Mariano

et al., 2018; Rombouts et al., 2013). Many studies have achieved strong

results, which not only yield a better understanding of the ecosystem

health at different scales, but also make ecosystem health assessment

more accurate by using ecosystem service indicators. However, many

studies focus primarily on small regions or river basins, and there is a

lack of research on the diagnosis of ecosystem health and its spatial and

temporal variation patterns at a global scale. Moreover, the influencing

factors affecting ecosystem health remain unclear.

Accordingly, this paper focuses on the global scale and analyzes

the spatial and temporal distribution pattern of ecosystem health for

the period 2000–2015. The spatial auto-correlation analysis method

shows the reliability of this study, confirming that the results are not

randomly generated. Finally, this study uses the Spearman correlation

analysis model and a geographic detector to understand the individual

drivers that contribute most to ecosystem health and the effects from

their interactions.

The main objectives of this study are as follows: (a) understanding

the spatial and temporal distribution patterns and changes in global

ecosystem health and (b) determining the main factors affecting global

ecosystem health. Our research extended the assessment of ecosys-

tem health to the global scale, provided a reference for preliminary

identification of ecosystem health on a large scale and formed a theo-

retical basis for balancing socioeconomic development and ecosystem

protection.

2 | MATERIALS AND METHODS

2.1 | Data sources and processing

The data required for the spatial quantification of ecosystem health

and its influencing factors include land use and NDVI, GIMMS

NDVI3g is produced by NASA's Global Inventory Modeling and Map-

ping Studies (GIMMS) team based on the Advanced Very High Resolu-

tion Radiometer (AVHRR) images on NOAA series satellites, which are

processed with strict quality control to generate maximum synthetic

products (Deng et al., 2019; Tian et al., 2015). The data used for the

analysis of the influencing factors of ecosystem health include annual

rainfall, temperature, drought index, soil moisture, population density,

GDP, etc, the climate dataset are from NOAA climate prediction cen-

tre with a horizontal resolution of 0.5� × 0.5� longitude. The

remaining required data include global administrative zoning maps

and global climate classification data. The specific sources are shown

in Table 1.

The data were preprocessed using ARCGIS 10.5 and FRAGSTATS

4.2 software. The landscape indices of ecosystems were calculated

using FRAGSTATS 4.2 software. The ecosystem resilience was calcu-

lated using ARCGIS 10.5 and ecosystem services were calculated

using PYTHON.

2.2 | Methods

2.2.1 | Ecosystem health assessment

Ecosystem health of the spatial entities of an ecosystem, which

reflects the ability to maintain healthy structures, to self-regulate, and

to recover under stress, can be divided into ecosystem vigour (EV),

ecosystem organization (EO), and ecosystem resilience

(ER) (Costanza, 1992a, 1992b; Pantus & Dennision, 2005). Therefore,

we employ the widely used EHA model, the VOR model proposed by

Costanza (1992a, 1992b), then, the indicator of ecosystem services

(ES) is added to form a new vigour-organization-resilience-service

model (VORS) to evaluate the global ecosystem health. The ecosys-

tem health index (EHI) is expressed as:

EHI =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EV×EO×ER×ES4

p
,

Ai=
Xi−minXi

maxXi−minXi
,

Where: Ai indicates the dimensionless value of the ith indicator, Xi

indicates the actual value of the ith indicator, maxXi represents the

maximum value of the ith indicator, minXi represents the minimum

value of the ith indicator.

We standardized each indicator to a range of 0–1 based on the

range standardization method, and divided the resulting ecosystem

health index into five grades according to the equal spacing method

(He, Pan, Liu, & Guo, 2019).
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Ecosystem vigour can be expressed as ecosystem metabolism or

net primary productivity (Rapport et al., 1998). In general, we chose

NDVI to represent the indicator of ecosystem vigour (He et al., 2019;

Rapport et al., 1998; Wang & Xu, 2017), which has been shown to be

effective in many studies related to ecosystem health

(Costanza, 2012; Liao et al., 2018; Peng et al., 2017).

Ecosystem organization was obtained based on a landscape pat-

tern index, which reflects the stability of the ecosystem structure

(Costanza, 2012; He et al., 2019). We calculate the indexes of land-

scape heterogeneity (LH), landscape connectivity (LC), and patch con-

nectivity of important ecosystems (IC: forest, water and grassland) to

obtain the index of EO (Howell, Muths, Hossack, Sigafus, &

Chandler, 2018).

Landscape connectivity represents the overall landscape connec-

tivity to important ecosystems (Cheng, Chen, Sun, & Kong, 2018;

Lavorel et al., 2017; Styers, Chappelka, Marzen, & Somers, 2010).

Based on existing studies, we weight the three indexes to 0.35, 0.35,

and 0.3, respectively, and use the weighted aggregation method to

complete the calculation (Frondoni, Mollo, & Capotorti, 2011; Kang,

Chen, Hou, & Li, 2018). The equation is as follows:

EO=0:35LH+0:35LC+0:30IC=0:25SHDI +0:10AWMPFD

+0:25FN1 +0:10CONT+0:07FN2 +0:03COHESION1

+ 0:07FN3 +0:03COHESION2 +0:07FN4 +0:03COHESION3,

SHDI means shannon diversity index; AWMPFD means fractal

dimension index of area-weighted average plaque. FN1 means land-

scape fragmentation index; CONTAG means landscape infection

index. FN2, FN3, FN4, COHESION1, COHESION2, and COHESION3

respectively forest, water, and grass fragmentation index and patch

cohesion index.

A healthy ecosystem is resilient to small disturbances (Rapport

et al., 1998). We use the sum of the area-weighted ecosystem resil-

ience coefficients for all the land use types to measure ER and to miti-

gate the impact of land use on ecosystem resilience (Colding, 2007).

Based on expert knowledge and relevant reference materials, the

ecosystem resilience coefficient (ERC) is obtained (Jian et al., 2015;

Kang et al., 2018; Peng et al., 2017; Tang, Liu, & Zou, 2018). The eco-

system resilience is calculated as follows:

ER=
Xn
i=1

Ai×ERCi,

Where: Ai means the area proportion of land use type i; n is the num-

ber of land use types.

The relative ecosystem service coefficient (RESC) was calculated

based on the forest land, and the threshold is [0,1] (Dobbs,

Escobedo, & Zipperer, 2011; Jian et al., 2015), as shown in Table 2. In

addition, the potential neighbourhoods of land-use types should be

considered into the measurement of ecosystem services (Jian

et al., 2015; Marulli & Mallarach, 2005). Referring to the existing

study, the coefficient of the spatial neighbourhood effect of land use

type (CSNE) on ecosystem services is calculated by the coefficient

matrix. The calculation formula of ecosystem service is as follows:

ES =
Xm
j=1

RESCj × 1+
CSNEj

100

� �.
m,

Where: RESCj is the relative ecosystem service coefficient of the land-

use type associated with the pixel j; CSNEj is the sum of the spatial

neighbourhood effect coefficients of the four adjacent pixels on the

ecosystem service of the pixel j; m means the pixel evaluate the num-

ber of spatial entities.

2.2.2 | Spatial auto-correlation analysis

The significance of spatial auto-correlation analysis is to prove that

the aggregation of spatial distribution has a certain rule, not a random

distribution. We used this to analyze the clustering pattern of ecosys-

tem health index distribution between regions of the world. Moran's

I index is used to analyze the spatial agglomeration of the whole

TABLE 1 Data sources table

Type of data Data sources Website link

Land use type map Land use/land cover: Dataset from the

European Space Agency climate change

initiative

https://www.esa-landcover-cci.org/

Normalized Difference Vegetation Index

(NDVI)

United States Geological Survey http://glovis.usgs.gov.cn/

Rainfall data NOAA Climate Prediction Center http://www.esrl.noaa.gov/psd/

Temperature data NOAA Climate Prediction Center http://www.esrl.noaa.gov/psd/

Index of aridity European climate assessment & data http://climexp.knmi.nl/selectfield_obs2.cgi?

id=someone@somewhere

Soil moisture EARTHDATA https://disc.gsfc.nasa.gov/

Population density Global human settlements https://ghslsys.jrc.ec.europa.eu/download.

php?ds=pop

Global climate classification data Koppen's climatic classification http://koeppen-geiger.vu-wien.ac.at/
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region (Moran, 1950). The Local Moran's I (Anselin, 1995) (LISA)

largely reflects the spatial correlation between spatial attribute values

and their adjacent spatial attribute values.

Moran0sI=

Pn
i=1

Pn
j=1

Wij xi−�xð Þ xj−�xð Þ

S2
Pn
i=1

Pn
j=1

Wij
,

Local Moran0sI=

n xi−�xð ÞPm
j=1

Wij xj−�xð Þ
Pn
i=1

xi−�xð Þ2
,

Where: n represents the number of countries in the world, and m is

the number of countries adjacent to country j in space; i ≠ j,

S= 1=nð ÞPn
i=1 xi−�xð Þ2 ; xi, xj represents ecosystem health value in

counties i and j; Wij represents the space weight matrix of unit i and j;

�x is the average ecosystem health value.

The value of I reflects the degree of correlation of the spatial

autocorrelation, between −1 and 1. When I > 0, there is a positive

spatial correlation; when I < 0, there is a negative spatial correlation;

when I = 0, there is no spatial auto-correlation. There are four types

of local auto-correlation: high-high (HH), low-low (LL), high-low (HL),

and low-high (LH), which means there are a lot of units flock together

which have high (or low) level of ecosystem health. A collection of

units with high (or low)of ecosystem are surrounded by units with low

(or high) ecosystem health value.

2.2.3 | Pearson correlation analysis

For a long time, many scholars have used Pearson correlation analysis

to study the relationship between variables (Li et al., 2020; Yang

et al., 2019), the determination of the relationship between EHI and

influencing factors is mainly accomplished by calculating and verifying

the correlation coefficients (Li et al., 2020; Zhang, Feng, Jiang, &

Yang, 2015). The formula is presented as follows:

Rxy =

Pn
i=1

xi− �X
� �

yi− �Y
� �� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i=1

xi− �X
� �2 Pn

i=1
yi− �Y
� �2s ,

Where: n is the number of samples; �X and �Y are the means of variables

x and y, respectively; and Rxy is the correlation coefficient between

variables x and y. If jRj≤ .5, then the correlation between EHI and

influencing factors is insignificant; if jRj≥ .5, then the correlation coef-

ficients are taken as statistically significant at p = .05.

2.2.4 | Geographic detector model

Using the geographic detector model (GDM) (Wang & Xu, 2017), we

explored the drivers that influence the health of the global ecosystem

and their interactions. This study used a factor detector to measure

the impact of influencing factors on ecosystem health. The formula is

as follows:

q=1−

PL
h=1

Nhσ2h

Nσ2
,

Where: h = 1, and L is the stratification of variable Y or factor X, that

is, classification or partitioning. And Nh is the number of units in layer

h and N is the whole region respectively; σ2h and σ2 are respectively

the variance of the Y value of layer h and the whole region. q is the

explanatory power of independent variables on related variables, the

larger the value is, the stronger the explanatory power of independent

variables on related variables is, otherwise, the weaker, the range is

0�1, and the leading factor of ecosystem health can be identified.

2.2.5 | Statistical analysis

In this paper, we used Data Management Tools (resample) to unify all

the data to 0.5� firstly. In order to give an intuitive view of the spatial

pattern on global ecosystem health, we use range normalization to

standardize the data to 0–1, then, the indexes of ecosystem health

were divided into five grades based on the isometric classification:

Degraded (0–0.2), Unhealthy (0.2–0.4), Average Health (0.4–0.6), Sub-

optimal Health (0.6–0.8), Highest Health (0.8–1.0).

All the figures (Figures 1, 3, and 5) about ecosystem health were

designed using ARCGIS 10.5, and the significance of spatial auto-

correlation (Figure 5) was to prove that the distribution of global eco-

system health is not a random distribution, but a certain rule. Then

based on the spatial analyst tools (Zonal Statistics as Table) to calcu-

lated the ecosystem health index for each climate zone, then using

ORIGIN LAB 2018 to design Figure 4. Moreover, we calculated the

Pearson correlation coefficients between temperature, annual rainfall,

drought index, soil moisture, population density, GDP, and ecosystem

health, the significance of the correlation was tested using Student's

t test at p < .05 level, R platform was used to design Figure 6, the

TABLE 2 Table of relative ecosystem service coefficients for each land use type

Land use type Cultivated land Forest Grassland Wetland Construction land Unused land Water

RESC 0.47 1 0.7 0.93 0.33 0.013 0.85

RAN ET AL. 1503



depth of the colour indicates the degree of correlation between the

factors; ORIGIN LAB 2018 was used to design Figure 7.

3 | RESULTS

3.1 | Spatial and temporal distribution pattern of
global EHI

We observed the spatial distribution pattern of each ecosystem health

indicator from Figure 1. In terms of spatial distribution, high values for

global EV are concentrated mainly near the Equator. EV shows a

downward trend in Russia, Canada, Australia, Brazil, and other regions

over the study period. In Asia, especially in China, there is a significant

increasing trend, as India and China have led global vegetation re-

greening efforts (Chen et al., 2019). The increase in vegetation cover

indicates increasing EV. EO shows an increasing trend on a global

scale, and the increase ranges between 0.1 and 0.2. ER shows a

decreasing trend in Asia and Europe, with a reduction ranging from

0 to 0.1, which is in contrast to EV; it shows a slight increase in

Russia, Canada, and Australia. The spatial distribution of ES shows

significant differences, with the Eastern and Western Hemispheres

forming a boundary. The Western Hemisphere shows a slight down-

ward trend, and the Eastern Hemisphere shows an increasing trend.

The global spatial distributions of ES and ER show extremely simi-

lar patterns. The calculation of both the indicators is based on land

use and is largely subject to land use change. In addition, in spatial

terms, indicators of ecosystem health show significant differences,

and global NDVI is significantly affected by climate factors (Munavar,

Carsten, Christian, Dietrich, & Nicole, 2018; Peng, Kuang, &

Tao, 2019; Yang et al., 2019; Zheng et al., 2018); as the climate

changes, so does the global EV.

From Figure 2, note that the number of countries with higher-

than-average health (subhealth and highest health) in 2000, 2005,

2010, and 2015 was 140, 133, 138, and 134, respectively, accounting

for 14.92, 14.94, 14.20, and 15% of the total global area. The propor-

tion of healthy countries is almost 50%, but the area is far less than

50%. Similarly, in the same 4 years, the number of countries with

below-average health levels (degraded and unhealthy) was 44, 46,

46, and 47, respectively, accounting for 72.13, 71.68, 72.91, and

72.70% of the global total, respectively. Overall, the number of coun-

tries above the global average health level has decreased by 4.2% in

F IGURE 1 The spatial distribution pattern of each ecosystem health indicator [Colour figure can be viewed at wileyonlinelibrary.com]
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the 15-year study period, and the area has shown an N-type change.

The proportion of countries with below average health in the world in

2015 increased by 6.8% in number and 0.57% in area compared

with 2000.

3.2 | Distribution of average latitude and longitude
for average EHI

Combined with the global EHI assessment (Figure 3), the EHIs for

2000, 2005, 2010, and 2015 show very similar spatial distribution

patterns. Therefore, we analyze the distribution of the global average

EHI from 2000 to 2015 through different longitudinal and latitudinal

directions. Seven critical zones are identified. From the perspective of

latitude, the distribution of the average health ecosystem index over

the study period is mainly along the equator, within the Tropics of

Cancer and Capricorn (0�N–13�N, 0�S–18�S). The area with moder-

ate ecosystem health is distributed mainly in the middle latitudes

(45�N–65�N, 35�S–56�S). In terms of longitude, the areas with higher

ecosystem health are distributed mainly in the Western Hemisphere

(47�W–80�W, 120�W–130�W); the Eastern Hemisphere (8�E–37�E,

92�E–157�E) is primarily at the middle ecosystem health level.

3.3 | Distribution of average EHI by climatic zone

Based on the Koppen climatic zone classification, we analyze global

distribution of the average EHI from 2000 to 2015. As shown in

Figure 4a, this climate classification system was proposed by Wladimir

Köppen, a German climatologist. Climatic classification is based on

temperature, precipitation, and distribution of natural vegetation. The

system divides the world into five climatic zones: tropical (equatorial

climatic zone), arid, warm temperate zone, cold temperate zone, and

polar climatic zone. Combined with Figure 4b, the global average EHI

shows significant differences by climatic zone. The average EHI is

0.49 in the tropics near the Equator, higher than other climatic zones;

annual high temperature is elevated, with monthly average tempera-

ture above 18�C. In the warm temperate zone, the average EHI is

0.28. The lowest figure is for the polar climatic zone; its average EHI

is 0.02. This climatic zone comprises northern Greenland, Antarctica,

northeast parts of Siberia, the Qinghai-Tibet Plateau, the Pamirs Pla-

teau, parts of East Africa, and the rocky mountains of the Alps, Andes,

and the Chaya Peak of New Guinea, along with other alpine regions

F IGURE 2 Number and area of countries with different levels of
ecosystem health index [Colour figure can be viewed at
wileyonlinelibrary.com]

F IGURE 3 Spatial distribution of different latitude and longitude average ecosystem health index from 2000 to 2015 [Colour figure can be
viewed at wileyonlinelibrary.com]

RAN ET AL. 1505

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


F IGURE 4 Spatial distribution of different climatic zones average ecosystem health index [Colour figure can be viewed at
wileyonlinelibrary.com]

F IGURE 5 The different clustering patterns of global ecosystem health index [Colour figure can be viewed at wileyonlinelibrary.com]
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of the ice sheet and plateau climate (EF) region. In this climatic zone,

monthly mean temperature is below 0�C, snow is present year-round

and average EHI is almost zero.

3.4 | Spatial auto-correlation analysis

The role of spatial auto-correlation is to show that the obtained distri-

bution of global ecosystem health is not a random distribution, but a

certain rule. When the Moran I index is positive, there is a significant

positive correlation. Similar observations (high or low) tend to spatially

agglomerate. The values of Moran's I in the study area from 2000 to

2015 are all greater than 0: 0.079, 0.069, 0.084, and 0.096, indicating

that distribution of the global EHI has a certain spatial correlation and

aggregation. Z scores are between 30 and 50. Considering that the

value of Moran's I index is positive, we may conclude that the result is

distributed at the right end of the normal distribution, which is the

aggregation type. p value is 0, indicating that the result is not a ran-

dom data generation, and the result is reliable.

Based on the calculation of global Moran's I index, we know that

the distribution of the global EHI is clustered. Local spatial auto-

correlation shows that the spatial clustering of global ecosystem

health from 2000 to 2015 has a similar distribution pattern (Figure 5).

The high-high clustering pattern is mainly distributed in the tropical

zone, and the low-low clustering pattern is mainly distributed in the

tropical desert climate zone and the polar climate zone.

3.5 | Influencing factor analysis

3.5.1 | Single factor correlation analysis

Through analysis of the Pearson correlation coefficient, the influence

of a single factor on EHI change at the global and climatic zone levels

can be determined. As shown in the correlation coefficient diagram

(Figure 6), blue indicates a positive correlation, pink indicates a nega-

tive correlation, and the colour shade indicates the degree of correla-

tion. Whether at the global or climatic zone level, annual average

precipitation has a significant positive impact on EHI, indicating that it

is the root cause of ecosystem health changes. Soil moisture has a

negative impact on ecosystem health in the polar climate zone, and a

positive impact in the rest of the world. Note that average annual pre-

cipitation dominates the regional differences in global ecosystem

health, and its correlation with the EHI is 0.547. In addition, soil mois-

ture is the second leading factor affecting global ecosystem health,

with a correlation coefficient of 0.399.

Note that in the polar climate zone, the main factors affecting

ecosystem health are annual average temperature and population

F IGURE 6 Correlation coefficient diagram of influencing factors of different climatic zones [Colour figure can be viewed at
wileyonlinelibrary.com]
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density (Table 3), whose correlation with the EHI is 0.674 and 0.586,

respectively. The polar climate zone in this study is mainly tundra cli-

mate zone, mainly distributed at the northern edge of North America

and Eurasia, along the coast of Greenland and in the Arctic. On some

islands, the residents are mainly Eskimos, also known as Inuit. We

speculate that in this extremely cold region, if temperature and popu-

lation density increase slightly, ecosystem health will improve.

3.5.2 | Interactive detection analysis

Through interaction analysis of GDM, we observe that the interaction

between driving factors has a significant two-way enhancement or

nonlinear enhancement of ecosystem health. This shows that interac-

tion between influencing factors has greater impact than the individ-

ual or cumulative effect of two independent factors. In accordance

with the results of the interaction detector, we list the top four major

interactions, all with a significance level of explanatory power of 1%.

From the global perspective (Table 4), the interaction between

annual average temperature and annual average precipitation has the

greatest explanatory power for the regional differences in global eco-

system health, which shows double-factor enhancement, with a

q statistic of 39.3%. From the climatic zone perspective (Table 4), in

tropical regions, where ecosystems are relatively healthy, the

interaction between meteorological factors and socioeconomics is

greater than the impact of individual factors on ecosystem health

changes. For example, the interaction between annual average precip-

itation and population density in the tropics (43.1%) is the dominant

factor affecting ecosystem health change in the region. In the warm

temperate zone and cold temperate zone, where ecosystem health is

at a moderate level, the interaction between the two meteorological

factors is the main cause of ecosystem health change. That is, the

interaction between annual mean temperature and average annual

precipitation explains 20.1 and 15.1% of health changes, respectively.

In the arid climatic zone, where ecosystem health is at a low to

medium level, the interaction of the two meteorological factors is

found to be the main cause of changes in ecosystem health. In the

polar climatic zone, where ecosystem health is low, the interaction

between the two meteorological factors shows great significance; the

interpretive power of interaction between the two climatic factors is

as high as 74.5%, and the explanatory power of the interaction

between climate and socioeconomic factors (annual average precipita-

tion and population density) is as high as 68.8%.

In addition, when a factor exists independently, it has little influ-

ence on ecosystem health, but its interaction with social and eco-

nomic factors (GDP and population density) leads to significant linear

or nonlinear enhancement. This shows that socioeconomic factors act

as a bridge linking and strengthening other drivers in these regions.

TABLE 3 Correlation coefficient
table of influencing factors of different
climatic zones

Layer TEMP AMP MI AI GDP POP

Global 0.264** 0.574** 0.399** 0.047** 0.074** −0.112**

Tropical −0.169** 0.52** 0.497** −0.067** −0.487** −0.447**

Arid −0.009** 0.68** 0.303** −0.232** 0.109** −0.122**

Temperature −0.011** 0.366** 0.163** 0.072** −0.186** −0.191**

Cold 0.133** 0.252** 0.301** 0.004** −0.075** 0.041**

Polar 0.674** 0.272** −0.14** 0.244** 0.239** 0.586**

**At 0.05 level.

TABLE 4 Table of interactive influence coefficients of different climatic zones

TEMP AMP MI AI GDP POP 1 2 3 4

Global 0.148 0.286 0.165 0.014 0.002 0.010 TEMP \ AMP TEMP \ MI AMP \ MI AMP \ POP

0.393bi 0.382nonlinear 0.351bi 0.325nonlinear

Arid 0.036 0.052 0.069 0.029 0.013 0.016 AMP \ POP TEMP \ MI AMP \ AI TEMP \ AMP

0.331bi 0.201bi 0.204bi 0.204bi

Tropical 0.063 0.160 0.160 0.041 0.050 0.171 TEMP \ AMP TEMP \ MI AMP \ AI MI \ AI

0.10nonlinear 0.13nonlinear 0.10nonlinear 0.12nonlinear

Temperature 0.049 0.120 0.022 0.021 0.025 0.061 TEMP \ AMP TEMP \ POP AMP \ MI AMP \ POP

0.201nonlinear 0.158nonlinear 0.138bi 0.216nonlinear

Cold 0.113 0.013 0.097 0.007 0.004 0.007 TEMP \ AMP TEMP \ MI TEMP \ AI TEMP \ GDP

0.151nonlinear 0.20bi 0.149nonlinear 0.135nonlinear

Polar 0.612 0.048 0.140 0.046 0.135 0.366 TEMP \ AMP TEMP \ MI AMP \ AI AMP \ POP

0.658bi 0.745bi 0.655bi 0.688bi

Notes: Nonlinear enhanced [q(X1 \ X2) > q(X1)] + q(X2)), bi-enhanced [q(X1 \ X2)] > Max [q(X1), q(X2)].
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4 | DISCUSSION

4.1 | Spatial distribution characteristics and causes
of EHI

Combined with the spatial distribution pattern of ecosystem health in

different longitude and latitude (Figure 3) and climatic zones

(Figure 4), it can be seen that ecosystem health is significantly

affected by climatic and hydrological conditions (Chen et al., 2019;

Yang et al., 2019), because the regions with high value of global eco-

system health belong to the tropical rainforest climate and have abun-

dant rainfall, which is the major and largest tropical rainforest region

in the world. In addition, ecosystem health also showed high values in

areas with high vegetation coverage, such as the plains of Eastern

Europe, the Atlantic coastal plains and the Yunnan-Guizhou Plateau.

The low-value areas of ecosystem health are mainly distributed in arid

and cold regions, where the climate is arid and precipitation is scarce,

and most vegetation types belong to desert steppe, such as the

Qinghai-Tibet Plateau and the Sahara Desert.

4.2 | Difference analysis of driving factors

Based on an analysis of the driving factors affecting ecosystem health,

global average annual precipitation and soil moisture are established

as the leading factors affecting the regional heterogeneity of ecosys-

tem health, this result is evident in Table 3 and Figure 6. He

et al. (2019) explored the regional differences and influencing factors

of ecosystem health in China and conclude that soil moisture is the

main factor influencing the regional heterogeneity of ecosystem

health in China. Similar studies show that climate influences delivery

of ES (Bai, Ochuodho, & Yang, 2019; Lorencová, Harmáčková,

Landová, Pártl, & Vačkář, 2016; Zhang et al., 2018), it is the main

determinant of regional ecological sensitivity (Zhang & Xu, 2017). In

addition, the interaction between driving factors also produces differ-

ent effects, as shown in Table 4, the interaction between climate fac-

tors is usually greater than the influence of a single driving factor.

However, the spatial heterogeneity of the driving factors and the

interaction between driving factors on ecosystem health are often

ignored in the research process. Our research shows that there is syn-

ergy among meteorological factors and socioeconomic factors, and

that the dominance of driving factors differs by region.

4.3 | Characteristics and applicability of the VORS
model

The VORS model used here evolved from the VOR model proposed

by Costanza (2012). Many researchers on ecosystem health continue

to use the more widely accepted classical vigour-organization-

resilience model (Jian et al., 2015; Xue, Wang, & Niu, 2013; Yu

et al., 2013). Later, the index of ES was added and evolved into the

VORS model. Based on an analysis of temporal–spatial change of each

index of ecosystem health (Figure 1), we can see that the fluctuation

of each index of ecosystem health is relatively gentle across time, and

the change trend of the EHI is relatively consistent with the change

trend of EV. Combined with the spatial correlation diagram of each

index of ecosystem health (Figure 7), note that the correlation

F IGURE 7 The diagram of the correlation and temporal changes of each ecosystem health indicators [Colour figure can be viewed at
wileyonlinelibrary.com]
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between EV and ecosystem health is greatest. Some studies show

that spatial differences in ecosystem health are affected mainly by EV

and ES (Yan et al., 2016). It is of great importance to introduce ES into

EHA and improve the overall ecosystem assessment. Some studies

show that EV is the leading factor behind spatial difference and tem-

poral change in urban-scale ecosystem health (Peng et al., 2017). In

addition, other studies show that spatial distribution of ecosystem

health depends mainly on EV and ER (Shen, Shi, Zheng, & Ding, 2016).

There is a positive correlation between every ecosystem health indi-

cator and ecosystem health, and the correlation between EV and eco-

system health is greatest. In addition, there is a significant synergistic

relationship among indicators, showing that they not only play a role

in promoting ecosystem health but also complement each other.

Through correlation analysis of the EHI and ecosystem health

indicators (VORS), we may conclude that the global ecosystem health

is best matched with EV and ER (Figure 7). Thus, the question is

whether it is necessary to include one or more new indicators in the

widely used VOR and VORS models for various targets at different

regional scales, so as to make assessment of ecosystem health more

accurate and more universal.

4.4 | Uncertainty analysis

EV, EO, ER, and ES are important indicators in assessing ecosystem

health. These indicators directly affect the assessment results for eco-

system health. The weights of various indicators in this study are

determined mainly by referring to the existing literature and con-

necting with the actual situation. In addition, using the geographic

detector to quantify the interaction between driving factors and their

impact on ecosystem health, we found that different classification

methods have particular impacts on the obtained results when the

quantized driving factors are discretized. However, there is no clear

standard for the method used to discretize continuous variables.

Although this study has some limitations in data acquisition and

the method used, we nevertheless believe that this study is meaning-

ful. Although the weight determination of each index is not perfect, it

is by no means arbitrary as it stems from consulting a large number of

studies. A geographic detector is a set of statistical methods that

explores spatial variability, revealing the driving forces behind it. The

detector can detect both the largest driving forces behind global eco-

system health (the independent variable corresponding to the maxi-

mum q value) and the local driving forces in different regions.

This paper's results can help researchers understand the spatial

patterns of ecosystem health changes and their influencing factors,

and provide scientific support for the formulation of regional ecologi-

cal protection and restoration policies.

5 | CONCLUSIONS

Based on the VORS model, this study makes a preliminary diagnosis

of global ecosystem health, and uses a geographic detector to detect

key impact factors at the global level and at climatic zone level, as well

as the impact of the interaction between each factor on ecosystem

health. The main conclusions are as follows:

1. Between 2000 and 2015, the environmentally healthier countries

of the world accounted for more than 50% of the total number,

but they accounted for far less than 50% of the total area.

2. Ecosystem health distribution is based on latitude and longitude.

There are seven critical zones, with low latitudinal distribution for

three zones (13�N–18�S, 45�N–65�N, 35�S–56�S), and longitudi-

nal distribution for two critical zones in each of the Eastern and

Western hemispheres (47�W–80�W, 120�W–130�W, 8�E–37�E,

92�E–157�E). The intersection of these critical zones with high

levels of ecosystem health occurs mainly in the north of East

Africa, South America, Southeast Asia, and so on.

3. The global EHI has a similar spatial distribution pattern, and the

EHI in the tropics near the equator (0�N–13�N, 0�S–18�S) is higher

than of all other climatic zones.

4. Annual average rainfall (r2 = .574) and soil moisture (r2 = .399) are

the main factors influencing ecosystem health. Socioeconomic fac-

tors act as bridges, linking and reinforcing the influence of other

factors in areas with medium to low levels of ecosystem health.
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