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Numerical modeling of anisotropy paradoxes
in direct current resistivity and time-domain
induced polarization methods*

Song Tao'?2 Liu Yun*?, Wang Yun?* and Li Bin®

Abstract: Based on an analytical solution for the current point source in an anisotropic
half-space, we study the apparent resistivity and apparent chargeability of a transversely
isotropic medium with vertical and horizontal axes symmetry, respectively. We then provide
a simple derivation of the anisotropy paradoxes in direct current resistivity and time-domain
induced polarization methods. Analogous to the mean resistivity, we propose a formulation
for deriving the mean polarizability. We also present a three-dimensional finite element
algorithm for modeling the direct current resistivity and time-domain induced polarization
using an unstructured tetrahedral grid. Finally, we provide the apparent resistivity and
apparent chargeability curves of a tilted, transversely isotropic medium with different angles,
respectively. The subsequent results illustrate the anisotropy paradoxes of direct current

resistivity and time-domain induced polarization.
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Introduction

The direct current (DC) resistivity methods have
been widely used in environmental and engineering,
hydrological and mineral exploration surveys(Loke
et al., 2013). Several modern DC resistivity acquiring
systems can obtain time-domain induced polarization

(TDIP) data and derive more useful information from
underground sources (Dahlin and Loke, 2015). The
modeling and inversion techniques in TDIP that are
based on isotropic media are well-developed (Pelton
et al., 1978; Huang et al., 2003). Anisotropy of the
Earth’s subsurface is universal (Linde and Pedersen,
2004); however, and existing research showed that if
the electrical anisotropy of the subsurface is ignored in
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Numerical modeling of anisotropy paradoxes

the presence of inverted anisotropic data, large errors, and
even false conclusions may occur (Asten, 1974; Kenkel et
al., 2012). Therefore, studying the response characteristics
of an anisotropic subsurface is important for understanding
anisotropic media and the interpretation of anisotropic data.

Numerical simulation is the primary method used for
studying the distribution law of electrical detection data and
also plays an important role in understanding the physical
mechanism of the method, while the forward simulation
of the DC resistivity method serves as the basis of TDIP
simulation. Many studies on DC resistivity anisotropic
modeling have been published. One-dimensional (1D) DC
resistivity layered arbitrarily anisotropic media modeling
and inversion was carried out by Yin and Weidelt (1999),
Yin (2000), and Yin and Maurer (2001). Additionally, three-
dimensional (3D) DC resistivity modeling in anisotropic
media was studied by Li and Spitzer (2005) and Zhou et al.
(2009). The singularity removal technique was reviewed by
Lowry et al. (1989) and Zhao and Yedlin (1996), while the
mesh-generating technique was investigated by Riicker et
al. (2006) and Ren and Tang (2010). Anisotropy modeling
was adopted by Wang et al. (2013) to achieve a higher
accuracy and modeling topography, as well as complex
models.

A commonly studied and important phenomenon in the
study of anisotropic media in DC resistivity modeling is
known as the anisotropy paradox, a phenomenon that was
verified by numerical simulations but is seldom studied
in terms of its validity. Liiling (2013) provided proof of
this phenomenon’s existence using Coulomb’s law in
anisotropic media and explained this counterintuitive
phenomenon using electric logging and surface surveys.

However, little research exists on anisotropic induced
polarization (IP) modeling. Zhdanov (2008) introduced
the generalized effective medium theory of induced
polarization, which considers electromagnetic-induction
and IP effects related to the relaxation of polarized charges
in rock formations, and extended its use to anisotropic
media (Zhdanov, 2008; Zhdanov et al., 2008). The 2D
modeling technique and IP response for anisotropic
complex conductivity were studied by Kenkel and Kemna
(2017), Kenkel et al. (2012), and Winchen et al. (2009).
These studies indicated that if anisotropic data were
interpreted by isotropic inversion, a poor relationship arose
with the proposed geological models, even in the presence
of good data fitting. Recently, Liu et al. (2017) developed
a program for modeling TDIP and FDIP responses to a 3D
anisotropic medium using the finite volume method and
found that the anisotropy paradox phenomenon also existed
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in the response of TDIP modeling.

In this paper, we provide a simple proof of the
existence of the anisotropy paradoxes in direct
current resistivity and TDIP and define the mean
chargeability in TDIP modeling from the proof
process. To verify our proof, we also developed a
program for DC resistivity and TDIP modeling in 3D
anisotropic medium using the finite element method
with unstructured grids.

Anisotropy paradoxes in DC
resistivity and TDIP methods

An analytical solution for the point source
potential in an anisotropic half-space

The resistivity of an anisotropic medium can be
represented by a 3 x 3 tensor, as shown in equation (1)
(Yin, C., 2000; Yin, C. et al., 2018):

Pu P Pi
Po=|Pu Pn Pul| (1)
Py Pn P

The electrical potential from a current point source
in an anisotropic half-space can be written as shown
in equation (2) (Li and Uren., 1997a, 1997b):

1, | Py |l/2 1 1
v(r) = + . 2)
dr AD, AD,

In the above equation, /, is the point current source

AD, =B =/(r=1,)" -p, -(r—r1,), which can be labeled as

the anisotropic distance (Liiling, 2013). This distance
includes the effect of the anisotropy and is distinct
from a Pythagorean distance, while 4D; represents
the anisotropic distance between the image source
and the measurement point.

For the traditional DC resistivity method, the
source point is located at the earth’s surface;
therefore, the location of the image point source is the
same as for the source point, and equation (2) can be
simplified into equation (3):

3)
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Anisotropy paradox in DC resistivity method

By placing the current point source at ry= (0, 0, 0),
notation B in equation (3) can be simplified into equation

(4):

B=1/rT-p0-rT. 4)

While all three principal axes of the resistivity tensors
coincided with the coordinates, the resistivity of the half-
space could be expressed as py= p,/ p,/ p,. Accordingly,
equation (3) can be simplified into equation (5):

I\ P.P,P.

v= .
27Z\/pxx2 + pyy2 +p.2°

®)

For DC resistivity method, the measurement
electrodes are located at the surface, and, as such, z = 0;
then, the potential can be expressed as in equation (6):

Lo\ PP, P

27r\/pxx2 + ,oyy2

\%

(6)

For an azimuthal anisotropy medium, when the
resistivity of the x—y plane is the same, i.e., p;, and the
resistivity along the z-direction is pr, the resistivity of
the half-space can be expressed as py= p;/ pL/ pr; this
is also known as the vertical transverse isotropic (VTI)
medium. Then equation (6) can be written as equation

7):

1o\ PLPY

[ (7
27X+’

Equation (7) is also the analytical solution to
the isotropic half-space, the resistivity of which

is P:Pm:m. This means that, for this type of
anisotropic half-space, we cannot derive any anisotropic
information of the medium while the measurement
electrodes are located at the surface.

For a transversely isotropic medium, while the
resistivity of the x—z plane is the same, i.e., p;, and the
resistivity along the y-direction is pr, the resistivity of
the half-space can be expressed as py= p;/ pL/ pr; this
is also called the horizontal transverse isotropic (HTI)
medium.Then equation (6) can be written as equation (8):

IO Y} pszT (8)
27+ ,0sz + pryz

The measurement electrodes are located along
the x-direction, which means the location of the

vy =

measurement point is r = (x, 0, 0).Then equation (8) can
be written as equation (9):

Lpipr

27X

)

X

The above equation indicates that the measured
apparent resistivity along the x-direction

is P=P, =+/P.Pr, which is the mean resistivity of the
anisotropic half-space, while the true resistivity along
the x-direction is py.

If the measurement electrodes are located along
the y-direction, which means the location of the
measurement point is r = (0, y, 0), equation (8) can be
written as equation (10):

I
y, =L (10)

Y 2my

Equation (10) also express the potential of a half-
space, while the resistivity of the half-space is py;
therefore, the apparent resistivity along the y-direction
is pr, while the true resistivity along the y-direction is
pr. This is known as the paradox of anisotropy, which
several scholars have verified using numerical testing
(e.g., Li and Spitzer 2005; Wang. et al., 2013).

Anisotropy paradox of chargeability in TDIP

method

In the finite volume algorithm for TDIP (Liu et al.,
2017a, 2017b), both the resistivity and the chargeability
of the medium are anisotropic and the numerical results
of an HTI medium along the x- and y- are, similar to our
results . That shows the anisotropic paradox of apparent
resistivity. There also exists a paradox of the anisotropy-
like phenomenon concerning apparent chargeability.
Hereto, we provide a simple proof of the paradox of
anisotropy in TDIP.

To simplify the problem, we assumed that all three
principal axes of resistivity and chargeability were
coincident with the coordinates. Similar to resistivity,
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the chargeability tensor can be simplified as n= 17,/ 5,/
7., and the apparent chargeability can be calculated by
equation (11) (Oldenburg and Li, 1994):

p=-t—t (11)

Vi

In the above, v, is the primary potential without the
IP effect, and v, is the total potential with the IP effect.
For the VTI medium, where the chargeability tensor
is written as = 7./ n;/ nz, the potential without the IP
effect is shown in equation (7); the potential with the IP
effect is expressed as in equation (12):

I\ P, Pr

y = NP (12)
YN

In equation (12), o, =p,/(1~1,) and £} = oy /(=11).
If equations (7) and (12) are brought into equation (11),

the following equation is derived:

_\pip NP
e

n (13)

Equation (13) can subsequently be simplified into
equation (14):

n=n,=1-{0-n){1-n.). (14)

The above equations indicate that the apparent
chargeability is a constant. Similar to resistivity in DC
resistivity method, we refer to this constant, i.e., #,, as
the mean chargeability.

For the HTI medium, where the chargeability tensor
is written as n =7/ 5y/ 3, the potential without the IP
effect is shown in equation (8); the potential with the IP
effect is expressed as equation (15):

I (P)) pr

2z p iyt

(15)

When equations (8) and (15) are brought into equation
(11), we derive the following equation:

11— \/PLZPT(PLXZ +pr°)) .
O Pr(p,x + ey

(16)
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When the measurement electrodes are located along
the x-direction, the location of the measurement point is
r = (x, 0, 0), and equation (16) can be written as equation

(17):
P, prp;
R N (an
(PL) Py

Equations (17) can subsequently be simplified into
equation (18):

77x:77m:1— (I_UL)(I_UT)- (18)

Equation (18) is the same with the mean chargeability
as shown in equation (14); this phenomenon is similar to
that of DC resistivity method.

Likewise, for the surveyed line along the y-direction,
the apparent chargeability is shown in equation (19):

2 1]
Pr PrPr
n,=1- | (19)
YN ey

Equation (19) can subsequently be simplified into
equation (20):

n, =1 (20)

Equation (20) implies that the measured apparent
chargeability is 7;, while the true chargeability along the
y-direction is 7.

In conclusion, the above calculation tells that the
measured apparent chargeability is different from the
chargeability along the surveyed line in anisotropic
media, this phenomenon is the paradox of anisotropy in
TDIP.

The paradoxes of anisotropy in DC resistivity and
TDIP are both caused by the different distribution of
current density in each direction, which is also the
physical basis to detect the electrical anisotropy.

Three-dimensional forward modeling
of anisotropy paradoxes in DC
resistivity and TDIP

The forward modeling of TDIP is based on the
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simulation of DC resistivity method. The boundary
value problem of the DC resistivity method with a point
current source in anisotropic media is shown in equation
(21) (see Wang et al., 2013; Li and Spitzer, 2005):

V-(le)=—15(r—r0) e
p
@20 el . 21
on
l@+qv=0 el
p on
. |r—r0|cos(r—r0)/\n
In equation (21), g = ,and B =

B
(r—r)"p-(r-xo).

In a study conducted by Li and Spitzer (2005), the
mixed boundary condition was compared with the
Dirichlet boundary condition. The mixed boundary
condition is the third part shown in equation (21) define
the potential on the infinite boundary I',, and Dirichlet
boundary condition is generally expressed as v = 0 on
I',, which means the potential on the infinite boundary is
0. Their result showed that the mixed boundary condition
could derive better results, regardless of whether the
vicinity of the source or near the boundary. Additionally,
the potential using the Dirichlet boundary condition
included larger errors while the measurement point is far
from the source point. Accordingly, the mixed boundary
condition was adopted in the simulation.

By applying equation (11), we found that dual forward
modeling of the point current source was needed, once
for v, when the resistivity was p and without the IP
effect, and once for v, when the resistivity was p [1-n]" ;
then, the apparent chargeability could be calculated.

According to Li and Spitzer (2005), the solution for
equation (21) is equivalent to minimizing the following
integral:

F(v)= % jg[w : (i Vv)— 215(A)v} dQ

T (22)
-i—EJ.rou qv dar

SF(v)=0

We used FEM to solve equation (22), as well as the
unstructured grids created by Gmsh (v4.5.6) (Geuzaine
and Remacle, 2009), which can generate high-quality
tetrahedral grids and is non-commercial software. Figure

1 shows a grid generated by Gmsh; the meshes in the
central area, where the electrodes are located, are refined
in the image.

s Y
Fig. 1. Grid generated by Gmsh.

3

Fig. 2. Tetrahedral element.

The basic element of the grid shown in Figure 1 is
tetrahedral, as shown in Figure 2.

Assuming that the electrical field at the nodes of
the tetrahedral element is v,v,,vs,v,, respectively,
the potential in the tetrahedral element is linearly
interpolated; then, the potential at any point in the
element can be obtained by linear interpolation with
the potentials of these four corner points as shown in
equation (23) (Riicker et al., 2006).

v=Ny +N,v, + Nyv; + N,v,

4
=Y Ny, =N'v=v'N. (23)

i=1

In the above equation, NT = (N|,N,,N;,N,), vI =
(v1,V2,v3,v4) and N, is the shape function. In the discrete
element shown in Figure 1, equation (23) is placed in
equation (22) to obtain the element matrix; then, the
system of linear equations can be obtained by combining
the element matrix shown in equation (24).

Kv="P. 24)
After solving the linear system, the potential vector
121
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was obtained. Based on the DC resistivity forward
modeling and equation (11), we can implement the
forward modeling of TDIP method by doing DC
resistivity modeling twice.

Numerical tests

Verification of modeling accuracy

Figure 3 shows a two-layer model with azimuthal

z
jJ.
X
X p,=p,=1000m p=100m
a=p=y=0

p,=p,=10Qm
a=p=y=0
Fig. 3. A two-layered model with azimuthal anisotropy.

p,=1 Qm

(@)
100

—— Liand Spitzer's result
—*~ FEM result

Apparent Resistivity (Qsm)

1 10 100
r(m)

anisotropy, which we used to verify the correctness of
our algorithm.

The principal resistivity of the first layer is p, = p. =
100 Q'm, p, = 10 Q'm, and the basement half-space is
pr=p.=10 Q'm, p, = 1 Q-m; for both layers, a ==y
= 0°. The apparent resistivity of the, and the basement
half-space is pole—pole array along the x-direction was
calculated and compared with Li and Spitzer’s (2005)
solution (see Figure 4).

Our solution showed good agreement with that
derived by Li and Spitzer for the entire distance of r,
and the relative error was below 1%. The results showed
that apparent resistivity was p, = 36.1 Q-m when the
electrode spacing (r) was short, and p, = 36.1 Q'm
when r was large. The apparent resistivity for short and
large electrode spacing was the geometric mean of the
resistivity for each layer.

05} A

1 ’"'
| PR

Relative Error (%)
o

0.5+

--e~ Measurement point

1 10 100
r(m)

Fig. 4. Apparent resistivity and relative error of the pole-pole array along the x-direction for a two-layered model with azimuthal
anisotropy, compared with Li and Spitzer’s results.

Anisotropic half-space

To study the characteristics of apparent resistivity,
derived from the surface resistivity survey, a half-
space with azimuthal anisotropy was assumed, and
the principal resistivities were p, = 0.5/0.5/2.0 Q-m,
respectively. The current source and measure points are
shown in Figure 5.

The Euler angles, i.e., #=0°, y=0° and a = 0°/30°/90°,
respectively, were calculated separately. The measured
apparent resistivity for each electrode (shown in Figure 5)
of the pole—pole array is shown in Figure 6.

Where a = 0°, the apparent resistivity shown in Figure
6 presents as a circle with a radius of 1 Q-m , equal
to the mean resistivity of the anisotropic half-space;
accordingly, no information about this anisotropic half-
space is available. When a = 90°, the medium can be
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Fig. 5. Electrodes’ distribution above the azimuthal
anisotropy half-space. The red solid circle indicates the
source electrode, which injects a current (1A) into the
ground; the 41 black solid circles indicate the measurement
electrodes. These measurement electrodes are distributed
evenly across the circle, the center of which is the source
electrode, and its radius is 1 m.
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expressed as py = 0.5/2.0/0.5 Q-m, respectively, and the
apparent resistivity (Figure 6, the blue circle) presents
as an ellipse with a semi-major axis equal to 1 Q'm
(x-direction), and a semi-minor axis equal to 0.5 Q-m
(y-direction); this result is consistent with the conclusion
above. When a = 30°, the apparent resistivity between

p,/Qm
o

0.5F

p,/Qm

Fig. 6. Apparent resistivity of the pole-pole array for three
Euler angles, i.e., a = 0°/30°/90°, respectively, while g = 0°,
y = 0°and p, = 0.5/0.5/2.0 Q'm, respectively.The red solid
circles indicate the location of the current source. The
distances between the current source and other circles are
the apparent resistivities, and their orientation is consistent
with what is shown in Figure 5, and the same to Figure 7.

The curve for apparent chargeability similar to what is
shown in Figure 6 and also agreed with our conclusion
presented in the section discussing the paradox of
anisotropy in TDIP. The calculated result represents a
constant—-mean chargeability of the half-space when
surveying along the x-direction for three models, which

in this instance is 7, =1-,/(1-0.1)x(1-0.6) =0.4. For

Fig. 8. Mean resistivity varies with p, and p; when
normalizing the resistivity.

o=0"and a=90".

With the same configuration as for the homogeneous
half-space, when the chargeability tensor is n, =
0.1/0.1/0.6, respectively, the relevant calculated apparent
chargeability is shown in Figure 7.

G
0 4o a=30° = -
—o— =90 1
i
1
02r 0.4 1
|
]
1
0L L i
y= .
02+ 1
04+ E
L L L L L y

0.4 0.2 0 0.2 0.4

Fig. 7. Apparent chargeability of the pole—pole array for three
Euler angles, i.e., a =0°/30°/90° , respectively, while 8 = 0°,
y=0°, p,=0.5/0.5/2.0 Q'm and n, = 0.1/0.1/0.6, respectively.

a = 90°, the apparent chargeability is #, = 0.1 when
surveying along the y-direction.

To investigate the characteristics of mean resistivity
and mean chargeability, we normalized the resistivity,
i.e., p; and prranging from 0:1; then, we drew p;, pr and
P in Figure 8.

Figure 8 shows that the mean resistivity is always
close to the smaller values of p; and p;. The mean
chargeability, i.e., #7,, and 7, is shown in Figure 9.

We found that the mean chargeability was always

Fig. 9. Mean chargeability varies with n, and n.
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close to the larger values of #; and 7, which differed
from mean resistivity.

A two-layer anisotropic model

To test our FEM code and to study the response of the
layered anisotropy models, we created the model shown
in Figure 10.

First, we set two Euler angles f/y = 0°/0°; then, let a as

z

X p=p,= 50 Q'm
p,=200Q'm

n,=n= 10%
n, = 30% 5m

p=10Q'm n=60%

Fig. 10. A two-layer model with an anisotropic covering layer
over an isotropic half-space. The three principal resistivities
of the covering layer are p,/ p,/ p, = 50/50/200 Q'm, and the
three principal chargeability values are n,/ n,/ n,=0.1/0.1/0.3.
The resistivity and chargeability of the isotropic half-space
are 10 Q'm and 0.6, respectively.

0°/30°/45°/90° separately in the first layer. The apparent
resistivity and chargeability of the pole—pole array along
the x and y-directions are shown in Figure 11 and Figure
12, respectively.

We conclude that with large electrode spacing, all

100

80

60

p,/Q'm

40

20

0.1 1 10 100 1000
r(m)

Fig. 11. Apparent resistivities along the x- and y-directions
for the pole—pole array with different Euler angles.

of the measured data are close to 10 Q-m, which is the
resistivity of the isotropic half-space, and the influence
of the anisotropic covering layer becomes intense when
the electrode spacing is small.

When a = 0°, it is similar to the half-space model
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described in equation (7). With small electrode spacing,
the apparent resistivity is g, /o, p. =100Q-m, both
along the x- and y-directions, which represent the mean
resistivity of the covering layer and indicates good fitting
with equation (7).

When a = 90°, it is similar to the half-space model
described in equation (8). With small electrode spacing,
while measuring along the x-direction, the apparent
resistivity is close to 100 Q-m, which represents the
mean resistivity of the covering layer and indicates good
fitting with equation (9). While measuring along the
y-direction, the apparent resistivity is close to 50 Q-m,
which represents the resistivity of the x-direction and
is consistent with equation (10). For a = 30°/45°, the
measured data are always between a = 0° and o =90°.

Similar to apparent resistivity, the apparent

0.8 T T T

0.6

< 04

0.2

0.1 1 10 100 1000

Fig. 12. Apparent chargeability along the x- and y-directions
for the polem—pole array with different Euler angles.

chargeability (see Figure 12) shows that with large
electrode spacing, all of the measured data are close to
0.6, which represents the resistivity of the isotropic half-
space; the influence of the anisotropic covering layer
becomes intense when the electrode spacing is small.
When a = 0°, the covering layer is the VTI. With
small electrode spacing, the apparent chargeability
is 7, = 0.2, both along the x and y-directions; this
is the mean chargeability of the covering layer

(7, =1-y(1-0.1)x(1-0.3) »0.2) and indicated good

fitting with equation (14).

When a = 90°, the covering layer is the HTI. With
small electrode spacing, while measuring along the
x-direction, the apparent chargeability is almost 0.2;
this represents the mean chargeability of the covering
layer and indicated good fitting with equation (18).
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When measuring along the y-direction, the apparent
chargeability is close to 0.1; this indicates the resistivity
in the x-direction and is consistent with equation (20).

Three-dimensional anomalous target

Figure 13 shows a model of an anisotropic cube
embedded in a half-space.

v

Py 5m y

3m P

3m

3m

Fig. 13. A 3D anisotropic cube in a homogeneous isotropic
half-space. The principal resistivity of the cube is given by p;,
I 1yl p1, = 100/100/500 Q'm, and the background resistivity is
po = 10 Q'm; the principal chargeability of the cube is given
by i/ Nyl mi, = 0.6/0.6/0.3, and the background chargeability
is Ny =0.01.

(a) Apparent Ms

(@7

5 10 15 20 25 30 35
Distance (m)

The survey line was deployed along the x-direction,
and the dipole—dipole array was adopted. The Euler
angles, o =y=0°, #=0°/30°, and the pseudo-sections of
the apparent chargeability are shown in Figure 14(a) and
(b), respectively.

As shown in Figure 14, with a change in the Euler
angle, the anomalous body also presents a specific
angle in the apparent chargeability pseudo-section; this
illustrates the influence of the anisotropic Euler angle on
the observation data of the apparent chargeability. But in
this model, the anisotropy paradox is not obvious.

Conclusions

In this paper, we test and verify the anisotropy
paradoxes in the DC resistivity and TDIP methods
using analytical and numerical solutions. The following
conclusions were drawn.

1. For the VTI medium, the apparent resistivity
was consistent when measurements were made on the
surface, and its value was equal to the mean resistivity

(b) Apparent Ms

-

15 20 25 30 35 0

Distance (m)

10

Fig. 14. Apparent chargeability pseudo-section of the model that is illustrated in Figure 13.

of the uniform half-space; While for the HTI case,
the apparent resistivity was the mean resistivity of
the uniform half-space when measured along the
x-direction; when measured along the y-direction, the
apparent resistivity obtained was the resistivity in the x-
and z-directions.

2. The definition of the mean chargeability differed
from that of the mean resistivity, which is always close
to the larger value of the transverse and longitudinal
chargeabilities.

3. By conducting numerical simulations and analyses,
the anisotropy paradoxes in resistivity and chargeability
were verified, and through simulation it is found that
the euler angles has a great influence on the apparent

chargeabilities.
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