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ABSTRACT

Reduced-rank filtering is a common method for attenuating
noise in seismic data. Because conventional reduced-rank filter-
ing distinguishes signals from noises only according to singular
values, it performs poorly when the signal-to-noise ratio (S/N) is
very low or when data contain high levels of isolate or coherent
noise. Therefore, we have developed a novel and robust re-
duced-rank filtering method based on singular value decompo-
sition in the time-space domain. In this method, noise is
recognized and attenuated according to the characteristics of
the singular values and the singular vectors. The left and right
singular vectors corresponding to large singular values are se-
lected first. Then, the right singular vectors are classified into
different categories according to their curve characteristics, such
as jump, pulse, and smooth. Each kind of right singular vector is

related to a type of noise or seismic event, and it is corrected by
using a different filtering technology, such as mean filtering,
edge-preserving smoothing, or edge-preserving median filter-
ing. The left singular vectors are also corrected by using the
filtering methods based on frequency attributes such as main
frequency and frequency bandwidth. To process seismic data
containing a variety of events, local data are extracted along
the local dip of the event. The optimal local dip is identified
according to the singular values and singular vectors of the data
matrices that are extracted along different trial directions. This
new filtering method has been applied to synthetic and field
seismic data, and its performance is compared with that of sev-
eral conventional filtering methods. The results indicate that the
new method is more robust for data with a low S/N, strong iso-
lated noise, or coherent noise. The new method also overcomes
the difficulties associated with selecting an optimal rank.

INTRODUCTION

Useful seismic signals are usually contaminated by various types
of noise, such as ground roll, single-frequency interferences, multi-
ples, linear noise, or Gaussian random noise. These noises can
cause serious problems during seismic data processing and interpre-
tation. Therefore, seismic signal enhancement and noise attenuation
are critically important and widely used in seismic processing.
Numerous denoising techniques have been proposed to increase

the signal-to-noise ratio (S/N) of seismic data. Many of these meth-
ods have been proposed in the transform domain, including band-
pass filtering, f-k filtering, time-frequency peak filtering (Tian et al.,
2014), and time-frequency filtering based on the wavelet transform
(Gao et al., 2006) or the shearlet transform (Zhang and van der

Baan, 2018). Although these methods have been effective, they can-
not remove the noise energy that overlaps the signal in the transform
domain, and some of these methods present difficulties in terms of
selecting thresholds. Other kinds of well-known methods for seis-
mic data denoising include adaptive filtering (Jeng et al., 2009) and
adaptive prediction filtering, in either the frequency-space (Liu et al.,
2012) or time-space (Liu and Li, 2018) domains. These methods
can automatically adjust filtering parameters and do not require
prior information on noise statistics. However, as a precondition
for using these methods, the noise sequence must exhibit nonauto-
correlation. Moreover, there is also the issue that noise reduction is
often accompanied by signal degradation. Other widely used meth-
ods include median filtering (Huo et al., 2012), variational mode
decomposition (Yu and Ma, 2018), and matched filtering (Cai
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and Ma, 2019). Generally, these existing methods can efficiently
reduce the effect of noise when the S/N is high. Currently, the chal-
lenge is to develop more powerful denoising methods for seismic
data with a low S/N (Wang et al., 2019; Zhang and van der Baan,
2019; Lin and Zhang, 2020). This is particularly relevant for micro-
seismic signals, characterized by wide frequency bands, small mag-
nitudes, and extremely low S/N values; these factors render it
difficult to recover microseismic signals.
Reduced-rank filtering is a kind of method in which an initial data

set is separated into signal and noise subspaces, based on the as-
sumptions that seismic data are of a low-rank structure and noise
increases the rank of the data matrix. These methods have excellent
performance when used for multichannel seismic data denoising.
Some rank-reduction methods are implemented in the frequency-
space domain, including Cadzow filtering (Trickett, 2002, 2008)
and multichannel singular spectrum analysis (Oropeza and Sacchi,
2011). Cadzow filtering can reconstruct several linear events with
different slopes at the same time; however, it produces noticeable
artifacts for isolated large-amplitude noise (erratic noise) and blurs
the discontinuities of seismic events. To attenuate erratic noise,
Chen and Sacchi (2015) improve the classic singular spectrum
analysis method by replacing truncated singular value decomposi-
tion (SVD) with a new low-rank matrix factorization technology. To
separate Gaussian random noise more thoroughly, Huang et al.
(2016) introduce a damping factor into the traditional multichannel
singular spectrum analysis to dampen singular values. The damped
multichannel singular spectrum analysis has since been extended
for 5D seismic data denoising and reconstruction. Zhang et al.
(2017) combine the benefits of the sparsity-promoting transform
and rank-reduction methods. Rank reduction is generally achieved
by using SVD, which requires high levels of computational com-
plexity. Therefore, Gao et al. (2013) use the Lanczos bidiagonali-
zation algorithm rather than SVD to reduce the computation time.
Subsequently, the orthogonal rank-one matrix pursuit algorithm (Jia
et al., 2016) and the fast orthogonal rank-one matrix pursuit algo-
rithm (Liu et al., 2019) have been successively adopted to replace
SVD for reducing the computation time.
Reduced-rank filtering can also be implemented in the time-space

domain. Freire and Ulrych (1988) are the first to apply it for sepa-

rating up- and downgoing waves in vertical seismic profiling via
SVD. They introduce low-pass, band-pass, and high-pass eigeni-
mages according to the range of singular values. This eigenimage
filtering technique has also been used to extract abnormal features
from magnetic resonance (Haggar et al., 1989) and ground-penetrat-
ing radar imagery (Cagnoli and Ulrych, 2001). Global SVD filtering
in the time-space domain requires that effective seismic events are
correlated in the horizontal direction, whereas noise is uncorrelated.
To overcome this limitation, Bekara and van der Baan (2007) propose
a local SVD technique, in which they first extract local seismic data
using a sliding window and apply dip steering to render the coherent
signal horizontally aligned. Then, SVD is performed on these local
data for signal enhancement. Porsani et al. (2010, 2013) use a normal
moveout correction to flatten reflection events, and SVD is thereafter
applied to local seismic data extracted using a sliding window. Gan
et al. (2015) propose a structure-oriented SVD, which flattened seis-
mic reflections according to their local structure.
For all of the reduced-rank filtering methods, the selection of rank

is crucial and difficult. It is important to balance noise attenuation
while preserving an effective signal. A small rank may damage the
signal, whereas a large rank cannot effectively suppress noise. In
practice, the optimal rank may vary with different local seismic
data; therefore, it is difficult to determine the optimal rank for real
seismic data collected under complex conditions. Some studies es-
timate the optimal rank using the maximum turning point of the
singular value curve (Vrabie et al., 2004; Hassanpour et al.,
2012); but the turning point may be difficult to determine or
may not exist when the S/N is low. Cary and Zhang (2009) propose
an adaptive eigenimage filtering method for ground-roll attenuation
by determining the number of ranks according to the S/N. However,
it is difficult to estimate the S/N when the noise is unknown. Indeed,
even the rank-1 matrix corresponding to the dominant signal parts
may be contaminated by noise. Moreover, sometimes signals are
not even contained in the rank-1 matrix. For these reasons, Vrabie
et al. (2004) use independent component analysis to further separate
signals from noise in singular vectors; Hassanpour et al. (2012) and
Moreau et al. (2017) apply Savitzky–Golay smoothing filtering and
Wiener filtering, respectively, to enhance singular vectors before
they were used to restructure the low-rank matrix.

In this paper, an improved local SVD filtering
method is presented for seismic data denoising.
Considering the physical meaning of SVD for
seismic data, the types of noise or seismic events
can be identified according to the frequency
attributes and curve characteristics of the left
and right singular vectors. Therefore, different
filtering strategies are used to correct the singular
vectors. After this processing, we can accurately
reconstruct signals with more singular vectors
without introducing noise, thus rendering the
rank selection easier.

METHOD

SVD

Assume that D is an m × n matrix; it can be
transformed into a product of three matrices us-
ing SVD:

Figure 1. Illustration of dip scanning and the local data extracted using the optimal
window (the red window).
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D ¼ USVT ¼
XR
k¼1

ukσkvTk ; (1)

where T indicates transposition, R represents the rank of D, U de-
notes an m× m unitary matrix, and V indicates an n × n unitary
matrix. The column vectors of U and V are uk and vk, and they
are known as the left and right singular vectors, respectively.
The term S represents a diagonal m × n matrix, and the elements
σk on the diagonal of S are called singular values. Singular values
are typically sorted in decreasing order σ1 ≥ σ2 ≥ : : : ≥ σR. The
singular vectors corresponding to large singular values contain
the main information in matrix D. When D represents seismic data
consisting of n traces andm (m > n) time samples per trace, singular
vectors have a definite physical meaning. Each left singular vector
uk represents a normalized wavelet, and its corresponding right
singular vector vk gives the wavelet amplitude distribution on
the n traces.

Local dip scanning and data extraction

To apply SVD filtering to real seismic data, local seismic data are
usually extracted with a rectangular window, and then the dipping
event in this windowed data is flattened using the dip steering al-
gorithm (Bekara and van der Baan, 2007; Gan et al., 2015). This
process leads to edge artifacts. In the work described here, we ex-
tracted local seismic data with a parallelogram window, which had
two sides parallel to the dip direction of the local event. Assuming
that the center point of the current local data is d(t, x), the local dip
at this point is preestimated using a dip scanning strategy. First, M
trial dips are given as follows:

θi ¼
i × ðθmax − θminÞ

M
þ θmin ði ¼ 1; : : : ;MÞ; (2)

where θmax (sample/trace) indicates the maximum dip angle and
θmin indicates the minimum dip angle. The term M represents
the number of trial dips and determines the scanning accuracy level.
For each trial dip, a local seismic data set of n traces and m time

samples can be extracted:

DðθiÞ¼

2
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;

(3)

where m 0 ¼ ðm − 1Þ∕2 and n 0 ¼ ðn − 1Þ∕2 are the widths of the
half window. To facilitate filtering, m and n are odd numbers.
The singular values of matrix DðθiÞ are computed, and the first
(largest) singular value σi1 is recorded. Then, the M first-singular
values are compared, and the optimal local dip at data point
d(t, x) corresponds to the largest first-singular value
maxðσi1; i ¼ 1; ···;MÞ. Local seismic data extracted along the opti-
mal local dip are composed of horizontal events. In this process, we
can further identify this optimal local dip according to the frequency

attributes of the left singular vectors and the curve characteristics of
the right singular vectors. A simple example of dip scanning is
shown in Figure 1. The window sizes are m = 60 and n = 11. There
are three trial windows for each central point: green, blue, and red.
The red window is the best because it is parallel to the local event.
Local data are extracted with the red window and can be seen on the
right of Figure 1.

Singular vector filtering

The seismic events in the windowed data are horizontally aligned
to ensure that the data matrix can be divided into the signal subspace
and the noise subspace using SVD. In conventional SVD filtering,
the singular value is the only criterion used to identify signal and
noise, under the assumption that a large singular value relates to a

Figure 2. Example of SVD as applied to (a) synthetic seismic data.
(b) The first five left singular vectors and (c) the first two right sin-
gular vectors.
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trace-to-trace correlated seismic event, whereas a small singular
value relates to random noise. Seismic events can therefore be re-
constructed using the first K singular vectors that correspond to the
first K largest singular values as follows:

D ¼
XK
k¼1

ukσkvTk : (4)

The selection of parameter K is difficult. A very small K cannot
reconstruct the signals perfectly, whereas a large K introduces
more noise. In most applications, K is set to a constant value of
either 1 or 2. But in practice, the optimal value of K may vary with
different local seismic data. The optimal value of K is 0 when the
windowed data only contain noise, it is 1 when the windowed data
contain one dip component, and it is 2 when the phase of the
event varies along the x-axis or when the event is discontinuous.
A larger K may also be required for data that are more complicated.
Therefore, it is difficult to determine the best rank for real seis-
mic data.
As mentioned above, a left singular vector uk represents a nor-

malized wavelet, and the corresponding right singular vector vk pro-

vides the amplitude distribution of this wavelet. A typical example
of SVD for synthetic seismic data is depicted in Figure 2. The input
data contain two events, as shown in Figure 2a. The seismic wave-
lets in the first event exhibit the same shape but different maximum
amplitudes, which are [0 0 0 0 0 2 4 4 8] (absolute value). The
seismic wavelets in the second event also exhibit the same shape
but different maximum amplitudes, which are [1 2 3 3 3 0 0 0
0]. Thus, there are two effective left singular vectors in Figure 2b.
The first left singular vector represents the normalized wavelet basis
of the first event, whereas the second left singular vector represents
the normalized wavelet basis of the second event. The first and sec-
ond right singular vectors are [0 0 0 0 0 0.2 0.4 0.4 0.8] and [0.1768
0.3536 0.5303 0.5303 0.5303 0 0 0 0], which are equal to the nor-
malized vectors of the maximum amplitudes of the first and second
events, respectively. It can be seen that a right singular vector pro-
vides the relative amplitude relationship of the wavelets in an event.
When a singular vector is related to a real seismic event, it should
have some characteristics similar to those of the seismic event —
for instance, the amplitude of the wavelet should change slowly
throughout the event. These characteristics of singular vectors also
can be used to distinguish signals from noises, and several such

examples have been illustrated in Figure 3. The
first row in Figure 3 shows the most common
case in which data (Figure 3a) contain a single
event. Thus, only the first right singular vector
(in Figure 3c) is stationary, whereas the other
right singular vectors have random values. The
second row shows a discontinuous data scenario
(Figure 3d); correspondingly, we can see that one
of its right singular vectors has a discontinuous
jump (Figure 3f). The data shown in the third row
(Figure 3g) contain an isolated noisy trace
(erratic noise); because this trace exhibits strong
energy, we can clearly observe that the first left
singular vector represents this noise (Figure 3h).
Consequently, the singular value corresponding
to this erratic noise has a maximum value. This
erratic noise cannot be removed according to the
singular value criterion; however, it can be iden-
tified and removed according to the first right
singular vector that contains a pulse (in Fig-
ure 3i). The right singular vector of coherent
noise may have a curve characteristic similar
to that of an effective signal. As illustrated in Fig-
ure 4, the seismic data contain two intersecting
events, with the dip event being a ground roll
and the horizontal event being a body wave.
Here, we want to remove the low-frequency
ground-roll noise. All of the first five right sin-
gular vectors are smooth (Figure 4c); however,
we can distinguish ground-roll noise according
to the left singular vectors (Figure 4b) because
the dominant frequencies of the left singular vec-
tors are quite different than those of the effective
signal, with the exception of the third left singu-
lar vector (Figure 4d). Based on Figures 3 and 4,
we can observe that even the left singular vectors
corresponding to the dominant signal parts have
been contaminated by noise.

Figure 3. (a, d, and g) Three seismic data sets containing different noise, (b, e, and h) the
corresponding left singular vectors (only the first five vectors are shown), and (c, f, and
i) the corresponding right singular vectors.
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Therefore, in our new approach, we proposed to remove noise by
using the characteristics of the singular values and the singular vec-
tors simultaneously. We first selected the K largest singular values.
It is worth mentioning that the selection of rank number K is more
flexible in our method, and we usually use a larger K than that used
in conventional SVD filtering. Subsequently, the K right singular
vectors corresponding to the K largest singular values are corrected
using different methods according to their curve characteristics. In
this paper, we present a simple strategy for identifying the curve
characteristic of a right singular vector. When the right singular vec-
tor contains a jump, it will be filtered by using edge-preserving
smoothing (EPS) (AlBinHassan et al., 2006). When the right sin-
gular vector contains large pulses, the pulses are first replaced with
the median values of their neighborhoods, and then the vector is
smoothed via mean filtering. As for other types of right singular
vectors, they are directly corrected by using mean filtering.
It is important to note that we did not know the type of each right

singular vector v that may contain a jump, a pulse, Gaussian random
noise, or all of the above. Figure 5 shows three cases. In this
method, we identify the right singular vectors according to their
curve characteristics and correct them using different filtering
methods.
We first determine whether the right singular vector contains

pulses as follows:
First, edge-preserving median filtering (EPMF) is performed on

right singular vector v:

v̄ ¼ EPMFðvÞ; (5)

where EPMF, which can remove impulsive noise and preserve the
jump, as represented by v̄ in Figure 5.
We then calculate the difference between the original vector v and

filtered vector v̄:

∇v ¼ absðv − v̄Þ: (6)

If the right singular vector contains a pulse, the
difference is large at the pulse point, as repre-
sented by ∇v in Figure 5a. When the right sin-
gular vector corresponds to Gaussian noise,∇v
may have some large elements, but the average
value is also large. We therefore divide vector ∇v
by its mean value: A small constant can be
added to the denominator to avoid the zero value.
As shown in Figure 5, v̂ has a large value at the
pulse point and a small value at other points. If
v̂iði ¼ 1; ···; nÞ is greater than the given threshold
α, then the ith element of vector v is a pulse and
will be replaced with the median value of its
neighborhood:

v 0
i ¼

�
v̄i if v̂i > α:
vi else:

(8)

In this way, if the right singular vector corre-
sponds to erratic noise, the impulsive noise in
this vector is removed, as represented by v 0 in
Figure 5a. No changes have been made to other
types of right singular vectors, as represented by
v 0 in Figure 5b and 5c.

Subsequently, we determine whether the right singular vector
contains jumps as follows:
First, EPS is performed on vector v 0:

v̄ 0 ¼ EPSðv 0Þ: (9)

Figure 5. Schematic of the filtering processes for the right singular vector. The term v
indicates the original right singular vector. The terms v̄, ∇v, and v̂ are auxiliary vectors
for identifying pulses, whereas v 0 represents the right singular vector after eliminating
the pulses. The terms v̄ 0, ∂v̄ 0, and v̂ 0 denote auxiliary vectors for identifying jumps,
whereas v 0 0 denotes the final filtering result of the right singular vector.

Figure 4. (a) Small matrix of seismic data, (b and c) the left and
right SVD singular vectors, respectively, and (d) amplitude spectra
of the left singular vectors.
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We then compute the difference sequence by calculating the
differences between adjacent elements of v̄ 0:

∂v̄ 0 ¼ ð∂v̄ 0
i Þn−1i¼1 ¼ absðv̄ 0

iþ1 − v̄ 0
i Þn−1i¼1 : (10)

When there is a jump in the right singular vector, the difference
vector v̄ 0 has a large element at the jump point, as shown by
∂v̄ 0 in Figure 5b. Otherwise, all of the elements in the difference
vector will be very small.
To eliminate the interference of Gaussian noise, divide vector ∂v̄ 0

by its mean:

v̂ 0 ∂v̄ 0

meanð∂v̄ 0Þ : (11)

If at least one element in vector v̂ 0 is greater than a threshold β, the
right singular vector v 0 is considered to contain jumps and will be
filtered by EPS:

v 0 0 ¼ EPSðv 0Þ: (12)

Otherwise, the right singular vector v 0 is smoothed by mean filter-
ing. From Figure 5, we can see that only the right singular vector
containing jumps is filtered by EPS.
In all of the above steps, the idea of mean filtering is to replace

each element value vi with the average value over a neighborhood
centered at the ith element. Mean filtering may blur the jumps. The
idea of EPS is to first find the most homogeneous neighborhood of
the ith element and then replace the ith element with the average
value of the selected neighborhood (AlBinHassan et al., 2006). For
a window of length three, there are three neighborhoods for the ith
element, as follows: (i − 2, i − 1, i), (i − 1, i, i + 1), and (i, i + 1,
i + 2). We calculate the standard deviations for the three neighbor-
hoods, and that with the minimum standard deviation represents the
most homogeneous neighborhood. EPS is not suitable for impulsive
noise. Therefore, we introduce EPMF, which is similar to EPS, but
it replaces the ith element with the median value of the most homo-
geneous neighborhood. For seismic data denoising, the length of the
right singular vector is often small; thus, the window length is set to
three or at most five.
For the first K left singular vectors uk, various conventional filter-

ing methods are available, and one or more can be selected accord-
ing to the specific application. The filtering methods used in our
study included single-frequency filtering, band-pass filtering, and
main-frequency filtering. The idea of main-frequency filtering is
to set the left singular vector to zero when its main frequency falls
outside a given range; otherwise, it remains unchanged. For exam-
ple, when attenuating ground roll, the left singular vector whose
main frequency is lower than 8 Hz represents the ground roll
and thus needs to be set to zero.
Finally, the effective seismic events can be reconstructed from the

filtered singular vectors:

D ¼
XK
k¼1

u 0 0
kσkv 0 0T

k : (13)

where u 0 0 represents the filtered left singular vector and v 0 0 indi-
cates the filtered right singular vector.

EXAMPLES

Test using synthetic data

The improved SVD filtering method was first tested on synthetic
seismic data to demonstrate its effectiveness. Figure 6a shows the
synthetic 2D seismic data derived using the reflectivity method.
These data contain curved events, conflicting events, and disconti-
nuities. The amplitudes of the seismic waves for different events
differ and change laterally throughout the events. The data are con-
taminated by low-passed (0–120 Hz) Gaussian white noise, and the
10th and 50th traces are additionally affected by the 50 Hz power
frequency noise (erratic noise), as shown in Figure 6b. The S/N for
the noisy data shifts from low to high, with some events completely
submerged in noise.
Conventional SVD filtering was first applied to the noisy data,

using window parameters set to n = 9 traces and m = 91 time sam-
Figure 6. Synthetic seismic data (a) before and (b) after adding
noise.

V238 Wang and Wang

Downloaded from http://pubs.geoscienceworld.org/geophysics/article-pdf/86/3/V233/5353298/geo-2020-0169.1.pdf
by Institute of Geochemistry Chinese Academy user
on 25 February 2022



ples. The dip-scanning value ranged from −1 to 5
(sample/trace) with an interval of 0.5. The result
of using only the first singular value (K = 1) and
singular vector to reconstruct the seismic data is
shown in Figure 7a. Erratic noise is not removed,
and some random noises still exist in the area
without seismic signals. Noticeable artifacts ap-
pear near discontinuities and weak events are
only partially recovered. We then set K = 2,
and the corresponding reconstructed data are
shown in Figure 7b. The retrieved discontinuity
is now clear and distinguishable; although, it also
retains more noise, and weak events are still dis-
continuous. Based on Figure 7a and 7b, we ob-
serve that erratic noise could not be effectively
removed according to the singular value. For
the local data between the sixth and fourteenth
traces, and 0.6 and 0.7 s, the largest singular
value corresponds to the signal. However, for
the local data between the sixth and fourteenth
trace, 1.15 and 1.25 s, the largest singular value
corresponds to noise. We then apply Cadzow fil-
tering, with a rank of 2 and a frequency band of
0–120 Hz, to the noisy data. The filtered results
can be seen in Figure 7c. We can see that the dis-
continuity is blurred; the large erratic noise has
not been removed, and there is still considerable
random noise.
Finally, the noisy data were filtered using the

improved SVD filtering method. Low-pass filter-
ing (0–120 Hz) was selected for the left singular
vectors, K was set to 3, and threshold parameters
α and β were set to 3 and 2, respectively. The
other parameters were the same as those used
in conventional SVD filtering. The filtered re-
sults are shown in Figure 7d, where we can
see that the Gaussian noise has been attenuated
and the erratic noise has been successfully re-
moved according to the characteristics of the
right singular vectors. Weak events and disconti-
nuities have been properly recovered.
The filtered results obtained from the im-

proved SVD filtering, for K = 2 and 4, are shown
in Figure 8a and 8b, where the differences be-
tween the results for K = 2, 3, and 4 are very
small. The average energies of the noises re-
tained in the results for K = 2, 3, and 4 are
0.0131, 0.0153, and 0.0172, respectively,
whereas the average energy of the initial noise
is 0.1584. The random noise retained in Figure 8b
(K = 4) is slightly stronger than that in Figure 8a
(K = 2), indicating that the improved SVD filter-
ing method is not particularly sensitive to param-
eterK. When consideringK = 3 and changing the
threshold parameters α and β, we can see the re-
sults for thresholds α = 2.5 and β = 2.5 in Fig-
ure 8c, and for α = 2 and β = 3 in Figure 8d.
There are only slight differences between Fig-
ure 8c and 8d, and Figure 7d; the S/Ns for the

Figure 7. Filtered results achieved using conventional SVD filtering with (a) K = 1 and
(b) K = 2, (c) Cadzow filtering, and (d) improved SVD filtering.

Figure 8. Filtered results of improved SVD filtering for various ranks (K) and thresh-
olds (α and β): (a) K = 2, α = 3, β = 2; (b) K = 4, α = 3, β = 2; (c) K = 3, α = 2.5, β = 2.5;
and (d) K = 3, α = 2, β = 3.
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last event of these three figures are 15.93, 15.66, and 16.02 dB,
respectively, thereby indicating that the improved SVD filtering
method is not sensitive to threshold parameters.
The synthetic example in Figure 9 shows the edge-preserving

ability of the improved SVD filtering method more clearly; here,
synthetic seismic data are noiseless and contain discontinuities (Fig-
ure 9a). Figure 9b shows the filtered result of Cadzow filtering with
a rank of four. It can be seen that Cadzow filtering blurs the dis-
continuities. Figure 9c shows the filtered result achieved using
the improved SVD filtering, and it illustrates that the edges of
the discontinuities are perfectly preserved by using the improved
method.

Field data examples

To illustrate how the improved SVD filtering method performs in
practice, we applied it to two field data sets, and the filtered results
were compared with those of conventional SVD and Cadzow filter-
ing. The improved SVD filtering method uses smooth filtering to

correct the right singular vectors in the SVD domain; therefore, we
also compared its performance with multidirectional median filter-
ing (Huo et al., 2012) that directly applies median filtering to seis-
mic data along the local dip.
Figure 10a shows the first field data that contain coherent ground-

roll interference, erratic noise, and other random noise. The 65th
trace data appeared to have been lost. The parameters common
to each of the SVD-based filtering methods were as follows:
The window parameters were set to n = 11 traces, m = 201 time
samples, and dip-scanning ranged from −1 to 12 (sample/trace)
with an interval of 0.5. Figure 10b shows the denoised data achieved
using conventional SVD filtering with K = 1; it can be seen that
although most of the ground roll has been removed by limiting
the dip-scanning range, considerable ground-roll energy still re-
mains at small offsets. The conventional SVD filtering method also
failed to remove high-amplitude erratic noise.
For the improved SVD filtering method, K was set to 3, and

threshold parameters α and β were set to 3 and 2, respectively.
The main frequency filtering method (10–60 Hz) was used for
the left singular vectors. Filtered data are presented in Figure 10c,
where the ground roll, erratic noise, and other random noises have
been suppressed. Remarkably, the lost 65th trace was retrieved by
the improved SVD filtering. Multidirectional median filtering was
able to remove ground roll and erratic noise, as shown in Figure 10d.
However, the result of multidirectional median filtering contains
more Gaussian random noise than the result of improved SVD fil-
tering. This phenomenon can be seen more clearly from their am-
plitude spectra (Figure 12), where the amplitude spectrum of the
result of multidirectional median filtering is larger than that of
the result of improved SVD filtering at high frequencies (30–
100 Hz). Cadzow filtering was implemented twice: first, with a fre-
quency band of 0–10 Hz to attenuate the ground roll and then with a
frequency band of 0–90 Hz to attenuate random noise. It can be seen
that the filtered data (Figure 10e) still contain ground-roll energy at
small offsets.
Figure 11a presents the differences between the original

field data and the filtered result achieved using the improved
SVD filtering method, in which the signal energy is not found
in the noise section. The low-frequency component (0–10 Hz) of
the filtered result achieved with the improved SVD filtering is
shown in Figure 11b (magnified two times), where it can be seen
that low-frequency component of the body waves has been well
preserved. If high-pass filtering is used to suppress ground roll,
the low-frequency component of body waves will be removed al-
together. The average amplitude spectra for the original data and the
denoised results are shown in Figure 12, where we can see that
application of improved SVD filtering successfully suppressed ran-
dom noise and ground roll, while preserving the signal frequency
bandwidth.
The second field data set was a microseismic data set recorded in

a deep well, as shown in Figure 13. The S/N of these data was very
low, and low-frequency background noise was present. Here, we
compared the results achieved using conventional SVD filtering,
multidirectional median filtering, and improved SVD filtering.
The parameters common to each of the SVD-based filtering
methods were as follows: Windows were set to n = 9 traces and
m = 131 time samples; dip-scanning ranged from −9 to −2
(samples/trace) and from 2 to 9 (samples/trace); and the number
of singular values was selected as K = 1 and K = 4, for the

Figure 9. (a) Synthetic seismic data, (b) results after filtering using
the Cadzow method, and (c) results after filtering using the im-
proved SVD method.
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conventional and improved SVD filtering, respectively. Finally,
main frequency filtering (30–150 Hz) was selected for the left sin-
gular vectors. The results achieved by applying the three filtering
techniques are shown in Figure 14a–14c, where it is quite apparent
that the improved SVD filtering method performed best with this
field data set. The average energy of the remaining noise is
0.1725 for the conventional SVD filtering, it is 0.1184 for the multi-
directional median filtering, and it is 0.0245 for the improved SVD
filtering. The filtering ability of the conventional SVD method was

greatly reduced by the influence of erratic noise. Multidirectional
median filtering could not remove the low-frequency background
noise, and some artificial events were present in the filtered section.
The noise eliminated by the three methods is shown in Fig-

ure 14d–14f, where it is evident that the improved SVD filtering
method removed more noise than the other two methods. We cannot
observe effective signals in the differences section of the improved
SVD filtering, but we can detect minor signal energy leakage in the
difference sections of the other two methods.

Figure 10. (a) Original field data set and filtering results achieved when using (b) conventional SVD filtering, (c) improved SVD filtering,
(d) multidirectional median filtering, and (e) Cadzow filtering methods.
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DISCUSSION

The examples have shown that to fully reconstruct the effective
signal, the new SVD filtering method often worked best when a
slightly larger K was applied. Even if the Kth eigenimage was
not an effective signal, it would only result in a small amount of
noise because when the Kth eigenimage corresponded to random
noise, the elements of the Kth right singular vector had very small
values after smoothing. When the Kth eigenimage corresponded to
coherent noise, the Kth left singular vector was zeroed.
From the filtering process of the right singular vectors, we

know that the threshold parameters α and β determine the type

of filtering method used for a right singular vector. In any case,
one of mean filtering, EPS, and EPMF will be used. In practical
applications, only a few experiments are required to obtain good
threshold parameters. We only need to ensure that most of the
right singular vectors are correctly recognized and filtered;
even if a few right singular vectors with fuzzy features are mis-
classified, it will not have much impact on the filtered seismic
data. For example, a right singular vector containing a small jump
was classified as that containing Gaussian noise, which led it to be
smoothed by mean filtering; however, because the jump was
small, the differences between the results achieved by mean
filtering and EPS were very small. Therefore, the new SVD filter-

Figure 11. (a) Difference between the original
data and the results achieved by applying im-
proved SVD filtering. (b) Low-frequency compo-
nent of the results achieved by applying improved
SVD filtering.

Figure 12. Average amplitude spectrums for the original data (yel-
low), and the data filtered using multidirectional median filtering
(blue), conventional SVD filtering (purple), improved SVD filtering
(red), and Cadzow filtering (green). Figure 13. Original microseismic data.
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ing method is not highly sensitive to the threshold parameters
α and β.

CONCLUSION

We have introduced a new method for attenuating the noise of
seismic data in the SVD domain. Based on the physical meaning
of SVD, the right singular vectors corresponding to erratic noise,
Gaussian random noise, and continuous and discontinuous seismic
events have different curve characteristics, such as pulse, random,
smooth, and jump. Therefore, the right singular vectors are used to
attenuate noise by correcting them with mean filtering, EPS or
EPMF. The left singular vectors are also used to identify and attenu-
ate noise according to their attributes such as main frequency and
frequency bandwidth. When noise is so strong that its correspond-
ing singular value is greater than that of the signal, it can still be
attenuated by this new SVD filtering. The denoising effect of the

new SVD filtering method does not strictly de-
pend on rank selection; therefore, we can select
more singular vectors than those selected using
the classic reduced-rank filtering to ensure that
effective seismic events are accurately recon-
structed. Although the new method requires us-
ing two more threshold parameters, it is not
highly sensitive to these parameters, and only
a few experiments are needed to obtain the good
threshold parameters. Examples show that our
new SVD filtering method is more robust than
conventional SVD filtering, Cadzow filtering,
and multidirectional median filtering, and it
has the ability to remove strong Gaussian noise,
large-amplitude erratic noise, and coherent noise.
The new method can also be used to separate dif-
ferent wavefields by limiting the local dip scan-
ning range, for example, to separate up- and
downgoing waves.
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