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A B S T R A C T   

Mining disturbances alter soil edaphic factors, modifying soil biogeochemical processes and thus impacting the 
soil microbiome. The objectives of this study were (1) to identify the dominant edaphic factor influencing the soil 
bacterial functions after mining disturbance and (2) to investigate how the soil microbiome was distributed, 
relative to the dominant edaphic factor. We found that soil pH was the most important predictor explaining the 
distribution of microbial attributes, such as microbial diversity, taxonomic composition, and ecological clusters 
along a mining disturbance gradient. Our structural equation model (SEM) indicates that soil pH shaped the 
bacterial community indirectly, by altering soil nutrients and metal availability. Furthermore, the microbial 
functions responded to soil pH, as the soil microbiome was sensitive to changes in nutrient and metal(loid) 
availability. For example, the bacterial community was enriched in core functional genes associated with 
nutrient availability (including nitrogen and phosphorus) in soil with high pH, whereas there were more core 
functional genes involved in metal availability (including metal transport and resistance) in soil with low pH. We 
conclude that soil pH is a key controller of soil bacterial communities, due to its direct and indirect effects on the 
availability of nutrients and metal(loid)s, after mining disturbance.   

1. Introduction 

Soil microbiomes converge toward similar microbial attributes to 
improve their adaptation under identical soil environments. Environ
mental disturbances can influence certain soil biogeochemical processes 
and thus impact soil microbiomes (Xiao et al., 2016b; Chen et al., 2020). 
Mining disturbance changes soil edaphic factors such as soil pH, nutri
ents, and metal(loid) and thus influences the soil microbiome in 
terrestrial ecosystems (Hottenstein et al., 2019; Kane et al., 2020; Chen 
et al., 2020). Nevertheless, the dominant edaphic factor that drives the 
soil bacterial community after a mining disturbance and the mecha
nisms by which it regulates the distribution of the soil microbiome have 
not been clarified. Such information is important for understanding the 
distribution of the soil microbiome after mining disturbances to soil 
ecosystems. 

Soil pH is the dominant edaphic factor that shapes the soil 

microbiome. This distributional pattern holds for both the overall bac
terial community and individual bacterial groups (Krulwich et al., 2011; 
Lauber et al., 2009; Qi et al., 2018). These studies found that soil pH can 
affect the soil microbiome in two ways: (i) soil pH directly affects soil 
microorganisms because most proteins of living cells function with 
distinct ranges of soil pH (Krulwich et al., 2011), and (ii) soil pH can 
indirectly influence the bacterial community by altering metal and soil 
nutrient availability (Lauber et al., 2009; Qi et al., 2018). However, most 
of these studies were conducted on natural soil ecosystems, and few 
studies have focused on mining-disturbed soil ecosystems. Recent evi
dence has demonstrated that the distribution of the soil bacterial com
munity and individual bacterial groups present different patterns 
between natural and mining-disturbed soil ecosystems (Xiao et al., 
2016b; Sun et al., 2017). Whether soil pH dominantly regulates the 
distribution of the soil microbiome after accounting for other edaphic 
factors in mining-disturbed soil ecosystems and the mechanism by 
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which soil pH regulates the distribution of the soil microbiome in 
mining-disturbed soil ecosystems have not been clarified. Empirical 
knowledge about the distribution of microbial functions could be 
important for a comprehensive understanding of the distribution of the 
soil microbiome after mining disturbance. Nevertheless, knowledge 
about how the edaphic factors, such as pH, metal, and nutrients, are 
affected by mining disturbance regulate soil functional traits is still 
ambiguous (Delgado-Baquerizo et al., 2018a). In this study, we used 
shotgun metagenomic sequencing to identify the functional genes and 
their responses to mining disturbance to complementarily investigate 
the pattern of the soil microbiome driven by dominant edaphic factors. 

In the current study, we sought to investigate the distribution of soil 
bacterial communities and their functions after mining disturbance. To 
do so, we collected a total of 78 soil samples from similar vegetation 
types from a historical Hg–Tl mining area. The objectives of this study 
were as follows: (1) to identify the dominant edaphic factors driving the 
soil bacterial community in mining-disturbed soils and (2) to investigate 
the distribution of the soil microbiome driven by dominant edaphic 
factors. Therefore, this study offers new insights into the distribution of 
bacterial communities and functional attributes after environmental 
disturbance in soil ecosystems. 

2. Materials and methods 

2.1. Study area and sampling 

The soil samples were obtained from a typical Tl–Hg mining area 
(0.2 km2) in Guizhou Province in Southwest China. Ongoing weathering 
of sulfide ore has resulted in serious soil contamination in this region. At 
the sampling site, we applied a randomized field design and selected 78 
sampling sites downstream of the mining area along a broad soil pH 
gradient. The texture and physical properties were similar across all soil 
samples. For each sampling site, 3 pseudoreplicates (0–15 cm depth) of 
~20 g of soil were obtained and mixed as a composite soil sample. All 
samples were transported to the laboratory with ice packs (4 ◦C). Each 
sample was divided into two portions based on the intended use as 
follows: one portion for DNA extraction was stored at − 40 ◦C, and the 
second portion for chemical analyses was stored at 4 ◦C. 

2.2. Chemical analysis 

Soil samples were freeze-dried and then passed through a 2-mm sieve 
to remove gravel, leaves, and plant roots. The samples were thoroughly 
ground before passing through a 200-mesh sieve. Soil pH was deter
mined by using a calibrated HACH HQ30d pH meter (HACH, Loveland, 
USA) (Xiao et al., 2016b). Total sulfur (TS), total carbon (TC), and total 
organic carbon (TOC) were determined by an elemental analyzer (vario 
MACRO cube, Elementar, Hanau, Germany) following the procedure we 
previously proposed (Xiao et al., 2016b). To test the content of metal 
(loid)s, the soil was completely digested using concentrated HF and 
HNO3 (1:5, v/v) (Xiao et al., 2016a). An ICP-MS system (Agilent, 7700x, 
California, USA) was employed to measure the concentrations of metal 
(loid)s. The Chinese GBW07310 soil reference and SLRS-5 (National 
Research Council, Canada) were used for the quality control of the 
sample treatments (Xiao et al., 2020). 

2.3. Analysis of soil bacterial communities through Illumina MiSeq 
sequencing 

Genomic DNA was extracted from soil (0.25 g) using the FastDNA® 
Spin Kit (MP Biomedicals, Santa Ana, USA) following the manufac
turer’s protocol. The V4–V5 hypervariable regions of the 16S rRNA were 
amplified using the 515f/907r primer pair. The 16S rRNA amplicons 
were sequenced on the Illumina MiSeq platform at Novogene Bioinfor
matics Company (Beijing, China). After filtering low-quality reads, we 
obtained clean reads. Detailed information on the filtering procedure is 

shown in the Supporting Information. Using UPARSE, we clustered 
OTUs with 97% similarity. Phylogenetic taxonomy for each OTU was 
obtained by blasting the RDP classifier and the Green Genes database 
(Wang et al., 2007). 

2.4. Shotgun metagenomic sequencing and gene analysis 

We selected 12 samples from the 78 samples for shotgun meta
genomic analysis. These samples were selected because they contained a 
wide range of soil pH levels (ranging from 3.47 to 7.47). Shotgun met
agenomic sequencing was then performed on the Illumina PE150 plat
form (Illumina Inc.) at Novogen Inc., Beijing, China. The clean data were 
obtained by preprocessing the raw data using Readfq (V8, https://gith 
ub.com/cjfields/readfq). The assemblage of the clean data was ob
tained by following the procedure proposed by Nielsen et al. (2014). To 
obtain PE reads, we used Bowtie2.2.4 software to compare all samples’ 
clean data with each scaffold. We then performed BLAST searches of the 
unigenes against the KEGG database (Version 201609, http://www. 
kegg.jp/kegg/) using DIAMOND software (V0.9.9) (Minoru et al., 
2014). The gene number table for each taxonomic hierarchy was ob
tained from the functional annotation results and gene abundance table. 

2.5. Statistical analysis 

We selected 1073 OTUs to build a cooccurrence network across all 
soil samples by considering correlation coefficients that were strong (ρ 
> 0.60 or ρ < − 0.60) and significant (p < 0.01) (Supplementary Dataset 
S1) (Delgado-Baquerizo et al., 2018b). 

The network was performed on the interactive platform of Gephi. 
Finally, the ecological clusters (i.e., modules) of the cooccurrence 
network were obtained from the Gephi platform with the default pa
rameters. The relative abundance of each ecological cluster was calcu
lated by averaging the standardized relative abundances (z-score) 
(Delgado-Baquerizo et al., 2018b). Using linear regression models, we 
tested the correlations between soil pH and microbial attributes, 
including soil bacterial diversity, the dominant phyla, the relative 
abundance of ecological clusters, and keystone OTUs. Random forest 
analysis was employed to test the dominant predictor regulating mi
crobial attributes when accounting for other environmental factors 
(Trivedi et al., 2016). The randomForest and rfPermute packages were 
used to conduct the random forest analysis in R statistical software, 
version 3.0.2 (http://cran.r-project.org/) (Breiman, 2001). Further
more, we used similarity of percentage analysis (SIMPER) to identify the 
cumulative contribution of the top KEGG orthologs (KOs) to the 
dissimilarity along the soil pH category. SIMPER was performed using 
PAST software (Li et al., 2018). Furthermore, we employed structural 
equation modeling (SEM) to evaluate the direct and indirect effects of 
soil pH on microbial attributes. First, we built an a priori model based on 
current knowledge of the impact of soil pH and other key environmental 
factors on microbial attributes. Thereafter, we used the 
maximum-likelihood estimation method to fit the model. The criteria for 
each test followed a previous study (Delgado-Baquerizo et al., 2016). All 
SEM analyses were conducted in AMOS 21.0 (SPSS Inc., Chicago, IL, 
USA). 

3. Results 

3.1. Variation in soil properties after mining disturbance 

As shown in Table S1, we observed a typical pH gradient ranging 
from 3.47 (SB-13) to 7.47 (SB-15) among all samples. Nutrient and 
metal(loid) parameters showed similar distinct ranges relative to soil 
pH; for example, TC ranged from 1.78 to 15.5%; TOC ranged from 1.73 
to 15.20%; total S ranged from 0.01 to 0.56%; Hg ranged from 0.4 to 
845.0 mg/kg; Tl ranged from 1.1 to 730.0 mg/kg; and As ranged from 
18.6 to 997.0 mg/kg. The nutrient (such as total C, organic C, and total 

E. Xiao et al.                                                                                                                                                                                                                                     

https://github.com/cjfields/readfq
https://github.com/cjfields/readfq
http://www.kegg.jp/kegg/
http://www.kegg.jp/kegg/
http://cran.r-project.org/


Soil Biology and Biochemistry 157 (2021) 108232

3

S) and metal(loid) (Hg, Tl, and As) contents decreased with soil pH 
(Fig. S1 and Table S2). 

3.2. Soil pH altered soil microbial attributes after mining disturbance 

Soil pH is a dominant predictor of bacterial diversity after accounting 
for nutrient and metal(loid) parameters according to random forest 
analysis (Fig. 1). The alpha diversity indices (including the Shannon and 
Chao1 indices) showed strong correlation patterns with soil pH (Fig. 1 
and Table S3). Soil pH was a major predictor of the dominant phyla 
according to random forest analysis (Fig. 1 and S2). In addition, we 
found significant but different associations between soil pH and the 
relative abundance of some dominant bacterial phyla. For example, the 
relative abundance of Proteobacteria was positively related to soil pH, 
whereas the abundance of Acidobacteria was negatively correlated with 
soil pH (Fig. 1 and Table S4). 

We demonstrated that soil pH shifted the distributional pattern of 
ecological clusters and keystone taxa. For example, the relative abun
dance of module #1 was negatively related to soil pH, while the relative 
abundance of modules #2, #3, and #4 was positively correlated with 
soil pH (Fig. S3). Notably, the bacterial composition (at the phylum 
level) of each cluster was different (Fig. 2b). In the current study, we 
identified 11 keystone OTUs with intermediate/low relative abundance. 
Interestingly, these keystone OTUs were significantly positively corre
lated with soil pH (Fig. S4). As expected, the random forest analysis 
suggested that soil pH was the most important predictor of ecological 
clusters (Fig. S3) and keystone OTUs (Fig. S4). 

3.3. Structural equation modeling analysis revealed the role of soil pH in 
microbial attributes 

We used SEM to clarify the role of soil pH in predicting bacterial 
diversity, the dominant phyla, the relative abundance of ecological 
clusters, and keystone OTUs (Fig. 3a). SEM showed a strong but differing 
direct impact of metal(loid)s and nutrients on these microbial attributes. 
Specifically, we found a negative effect of meta(loid)s on microbial 

diversity and keystone OTUs, while meta(loid)s showed a positive effect 
on the dominant phyla and module clusters. In addition, we found a 
negative effect of nutrients on the module clusters but a positive effect 
on microbial diversity. Interestingly, our SEM analysis showed no sig
nificant direct effects of soil pH on these microbial attributes. Addi
tionally, the results showed that soil pH indirectly impacted these 
microbial attributes by altering metal(loid) and nutrient availability 
(Fig. 3b). 

3.4. Functional genes related to variations in soil pH 

To obtain insight into the physiological characteristics of the soil 
ecological system and the impacts of soil pH on functional attributes, we 
selected 12 typical samples from 3 pH categories (4 soil samples for each 
category) to perform shotgun metagenomic analysis. In total, we 
detected 7387 different bacterial KOs in all samples. After filtering out 
KOs with extremely low relative abundance (below 0.1%), we identified 
the majority of the functional attributes (1402 KOs) (Supplementary File 
Data 2). Using SIMIPER, we found that the top 54 KOs explained more 
than 20% of the cumulative contribution to the dissimilarity among the 
soil pH categories (Fig. S6 and Table S5). Notably, these KOs were all 
positively correlated with soil pH. Most of these genes are likely related 
to ABC transporters, DNA-binding proteins, and transcription regulators 
(Fig. 4). Furthermore, we found several genes encoding two-component 
systems (TCSs), RNA polymerase, carbon fixation pathways, methane 
metabolism, nitrogen metabolism, oxidative phosphorylation, and 
amino acid metabolism (Fig. S7). It is worth noting that the core mi
crobial functional traits involved in nutrient (including nitrogen and 
phosphorus) (Figs. 5 and 6) and metal availability (including metal 
transport and resistance) (Fig. 7) were related to changes in soil pH. 

4. Discussion 

Environmental disturbances can influence certain soil chemical 
processes and thus impact the soil microbiomes. In the current study, of 
the factors examined, soil pH was identified as the most important 

Fig. 1. RF analysis of microbial diversity indices (Chao1 and Shannon) and dominant phyla (Acidobacteria and Protobacteria). Correlations between soil pH and the 
relative abundance of all major bacterial phyla and microbial diversity indices are available in Table S1. 
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predictor driving the distribution of bacterial diversity after accounting 
for metal(loid) and nutrient factors (Fig. 1). This result corroborates the 
findings of several previous studies that reported an obvious effect of soil 
pH on bacterial diversity across a variety of spatial scales (Lauber et al., 
2009; Philippot et al., 2009; Sun et al., 2020; Xu et al., 2020) and 
land-use types (Lauber et al., 2008; Malik et al., 2018). Importantly, 
bacterial diversity and richness indices tend to increase under high pH 

conditions (Fig. 1). A possible explanation for this observation might be 
that a one-way evolutionary filter exists along pH gradients in which 
microorganisms can easily branch from environments with extreme pH 
levels to those with a more neutral pH (Tripathi et al., 2012). Such 
branching would result in greater microbial diversity in neutral-pH soil 
environments than in acidic soil environments, which broadly supports 
the idea that individual bacterial taxa grow within a relatively narrow 

Fig. 2. Microbial co-occurrence network across all samples. (a) Network diagram with OTUs colored by each of the major four ecological clusters (modules); (b) 
microbial composition (phylum level) within four modules. 

Fig. 3. Structural equation models are shown for the whole data set. (a) Direct and indirect effects of soil pH on microbial attributes (microbial diversity, dominant 
phyla, module cluster, and keystone OTUs). Continuous and dashed arrows indicate significant and not significant relationships, respectively. The width of arrows is 
proportional to the strength of path coefficients. (b) Standardized total, direct, and indirect effects were derived from the structural equation models depicted above. 

E. Xiao et al.                                                                                                                                                                                                                                     



Soil Biology and Biochemistry 157 (2021) 108232

5

range of soil pH levels (usually within 3–4 pH units) (Rosso et al., 1995). 
Furthermore, investigators have recently demonstrated that microor
ganisms have lower growth efficiency in acidic pH environments than in 
basic pH environments because of the increased energy investment 
required to alleviate soil pH stress (Tiemann and Billings, 2011). This 
scenario might be another possible explanation for the finding that soil 
pH is positively correlated with bacterial diversity. These observations 
demonstrated the critical role of soil pH in regulating soil microbial 
diversity. 

We also demonstrated that soil pH played an important role in the 
cooccurrence pattern of soil bacterial communities. Thus, we proposed 
that changes in soil pH units led to changes in the module structures of 
the soil bacterial communities. Consistently, the random forest analysis 
demonstrated that soil pH was a significant predictor of ecological 
clusters after taking into account other environmental factors (Fig. S3). 
Moreover, the obvious patterns of the cooccurrence network were 
strongly related to the bacterial composition in each module (Fig. 2b). 
For example, module #1, which was negatively related to soil pH, 
contained several phylotypes from the phylum Acidobacteria. Module 
#2, module #3, and module #4, which were positively related to soil 
pH, belonged to the phylum Proteobacteria. Interestingly, we found that 
the responses of these taxonomic groups to soil pH were different from 
those in other studies. For example, our study found that the relative 
abundances of Acidobacteria tended to increase toward lower soil pH 
levels, whereas other studies have shown that the abundance of this 

phylum increases toward a higher soil pH in soil ecosystems (Yun et al., 
2016). Similarly, we identified a significant positive correlation between 
soil pH and the relative abundances of Proteobacteria, while this pattern 
was not apparent in studies conducted in Changbai Mountain soils and 
tropical forest soils (Liu et al., 2014; Shen et al., 2013; Tripathi et al., 
2014). These contradictory results may be due to the relationship of soil 
pH with other covarying soil factors influencing these phyla (Kim et al., 
2016; Rousk et al., 2010). This assumption is largely based on empirical 
studies reporting that soil pH indirectly changes other environmental 
factors to influence the soil bacterial community. For example, in
vestigators have recently demonstrated that soil pH alters the avail
ability of metal(loid)s and nutrients, thereby indirectly influencing soil 
microorganisms (Qi et al., 2018). Another study conducted by Lauber 
et al. (2009) indicated that changes in soil pH alter soil edaphic factors, 
thereby indirectly affecting the distributional pattern of the soil bacte
rial community. Therefore, it is possible that in addition to direct im
pacts, the indirect effect of soil pH plays a crucial role in regulating the 
distributional pattern of the soil bacterial community, which explains 
the inconsistent impact of soil pH on the soil bacterial community 
observed in different environments. In the current study, it is worth 
noting that nutrient and metal parameters were also considered 
important predictors of microbial diversity (Fig. 1). Furthermore, the 
nutrient and metal contents were significantly correlated with the soil 
pH (Table S1). Based on these facts, we proposed that soil pH may 
indirectly change other environmental factors (such as nutrients and 

Fig. 4. Linear relationships between soil pH and the relative abundance of the dominant functional attributes.  
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metals) to influence the soil bacterial community. 
Indeed, the SEM analysis demonstrated that soil pH indirectly shaped 

the community by altering metal(loid) availability (Fig. 3). In the cur
rent study, mining disturbance resulted in high contents of heavy metals 
in soil samples (Table S1). Notably, the soil pH was negatively correlated 
with the metal(loid) contents in this study. These facts are consistent 
with prior studies in which soil pH was found to strongly influence metal 
availability, thereby impacting the soil bacterial community (Lauber 
et al., 2009; Qi et al., 2018). Accordingly, we found that some KOs that 
included metal sensing were negatively correlated with soil pH (p <
0.05) (Fig. 7). Specifically, KO3088 (rpoE), which was annotated as a 
member of the ECF subfamily, was overrepresented in soils with low pH. 
A prior study demonstrated that rpoE could be triggered by several 
metal(loid)s (such as iron, nickel, cobalt, copper, zinc and cadmium) to 
maintain the metal response and homeostasis of bacteria (Moral
eda-Muñoz et al., 2019). Furthermore, KO2529, which is significantly 
negatively correlated with soil pH, was annotated as LacI, which is 
considered a heavy metal ion responsive transcription regulator for 

synthetic biological heavy metal sensors (Jung and Lee., 2019). These 
observations suggest that decreasing soil pH could trigger microbial 
functionality of metal sensing in soil ecosystems. Importantly, our re
sults also showed that the KOs involved in metal transport were nega
tively correlated with soil pH (p < 0.05). For example, the relative 
abundance of genes related to ABC transporters increased with 
decreasing soil pH, suggesting that decreasing soil pH may stimulate 
enzyme activities responsible for transportation. ABC transporters 
directly utilize the free energy released upon the hydrolysis of ATP to 
pump substrates against a concentration gradient of metal, which plays 
a critical role in transporting metal for bacterial metal(loid) homeostasis 
(Nies, 2003; Silver and Phung, 1996). Furthermore, amino acid me
tabolites are preferentially synthesized to bind heavy metals under soil 
heavy metal stress. For example, glutathione and phytochelatin react 
with metals to form complex metal cations at the cellular level and serve 
as long-distance, metal-chelating compounds (Dave et al., 2013; Richau 
et al., 2010). In general, the turnover of amino acid metabolism regu
lated by soil pH plays an important role in metal(loid) cycles. These 
metal(loid) transport-associated proteins that are overrepresented in 
soils with low pH can be logically associated with their growth because 
the soil microbiome needs to invest in metal transport to alleviate metal 
stress in low pH soils (Nies, 2003). 

Additionally, the SEM analysis also demonstrated that soil pH indi
rectly shaped the community by altering nutrient availability (Fig. 3). 
This result is consistent with previous studies showing that soil pH 
strongly influences nutrient availability, thereby impacting the soil 
bacterial community. For example, Sapek (2000) found that increases in 
soil pH enhance soil nitrogen availability and typically increase soil 
bacterial diversity. Another study conducted by Malik et al. (2018) 
demonstrated that decreases in soil pH promote the breakdown of litter, 
increase the soil organic matter content, and promote the activity of soil 
microorganisms. Consistent with these findings, the KOs involved in 
nutrient availability were overrepresented in soils with high pH. For 
example, the functional attributes of carbon availability, including 
carbon fixation pathways and methane metabolism, increased with soil 
pH (Fig. 4). Such observations are consistent with evidence showing that 
an increasing soil pH decreases the availability of organic carbon, 
thereby activating specific physiological functions to maintain micro
organism growth (Kamble and Baath, 2018; Kunito et al., 2012). 
Furthermore, we found that the pathways involved in nitrogen meta
bolism were also enriched in the high pH soils. Specifically, some KOs 
involved in nitrate/nitrite transport, nitrification, and denitrification 
were significantly enriched in soils with high pH (Fig. 5). This finding 
suggests that elevated soil pH could increase the nitrogen metabolism 
pathway. Notably, we identified various functional attributes of amino 
acid metabolism that were strongly positively correlated with soil pH. 
Amino acids are considered a major source of soil organic N compounds 
(Muruganandam et al., 2009) and serve as the main available N source 
for soil microorganisms (Dippold and Kuzyakov, 2013). We also found 
that many core KOs were involved in phosphorus acquisition processes, 
such as phosphate solubilization and phosphate transport, and phos
phorus regulation. Similarly, all KOs involved in P availability were 
significantly enriched in high pH soils (Fig. 6). Collectively, our study 
provides evidence that increasing soil pH could increase microbial 
functional attributes involved in nutrient availability (carbon, nitrogen, 
and phosphorus). These findings were consistent with the fact that an 
increasing soil pH decreases the availability of nutrients, which means 
that soil microbiomes need to invest in nutrient availability in elevated 
pH soils (Kamble and Baath, 2018). 

This study investigates the distribution of soil bacterial communities 
and their functions after mining disturbance. We found that soil pH 
indirectly impacts the distribution and functions of soil bacterial com
munities, including the alteration of metal(loid)s and nutrient avail
ability. These findings have significant implications for understanding 
the distribution of the soil bacterial community after environmental 
disturbance in soil ecosystems. Nonetheless, this study is based on field 

Fig. 5. Relative abundances of N related genes (the detail information was 
shown in Supplementary dataset S2). Scale, relative abundance of KOs at row 
normalization by removing the mean (centering) and dividing by the standard 
deviation (scaling). The color from green to red represents a relative abundance 
of each KO from low to high. (For interpretation of the references to color in 
this figure legend, the reader is referred to the Web version of this article.) 
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Fig. 6. Relative abundances of P related genes (the detail information was shown in Supplementary dataset S2). Scale, relative abundance of KOs at row 
normalization by removing the mean (centering) and dividing by the standard deviation (scaling). The color from green to red represents a relative abundance of 
each KO from low to high. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 7. Linear relationships between soil pH and the relative abundance of the metal related functional genes (the detail information was shown in Supplementary 
dataset S2). K01990: ABC-2 type transport system ATP-binding protein; K03088: rpoE, RNA polymerase sigma-70 factor, ECF subfamily; K02529: LacI family 
transcriptional regulator. 
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observations. Future laboratory-based studies are needed to verify the 
impact of edaphic factors on the distribution of the soil microbiome. 
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J., Bardgett, R.D., Maestre, F.T., Singh, B.K., Fierer, N., 2018a. A global atlas of the 
dominant bacteria found in soil. Science 359 (6373), 320–325. 

Delgado-Baquerizo, M., Reith, F., Dennis, P.G., Hamonts, K., Powell, J.R., Young, A., 
Singh, B.K., Bissett, A., 2018b. Ecological drivers of soil microbial diversity and soil 
biological networks in the Southern Hemisphere. Ecology 7 (1), 583–596. 

Dippold, M.A., Kuzyakov, Y., 2013. Biogeochemical transformations of amino acids in 
soil assessed by position-specific labelling. Plant and Soil 373 (1–2), 385–401. 

Hottenstein, J.D., Neilson, J.W., Gil-Loaiza, J., Root, R.A., White, S.A., Chorover, J., 
Maier, R.M., 2019. Soil microbiome dynamics during pyritic mine tailing 
phytostabilization: understanding microbial bioindicators of soil acidification. 
Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2019.01211. 

Jung, J., Lee, S.J., 2019. Biochemical and biodiversity insights into heavy metal ion- 
responsive transcription regulators for synthetic biological heavy metal sensors. 
Journal of Microbiology and Biotechnology 29 (10), 1522–1542. 

Kamble, P.N., Baath, E., 2018. Carbon and nitrogen amendments lead to differential 
growth of bacterial and fungal communities in a high-pH soil. Pedosphere 28 (2), 
255–260. 

Kane, J.L., Morrissey, E.M., Skousen, J.G., Freedman, Z.B., 2020. Soil microbial 
succession following surface mining is governed primarily by deterministic factors. 
FEMS Microbiology Ecology. https://doi.org/10.1093/femsec/fiaa114. 

Kim, J.M., Roh, A.S., Choi, S.C., Kim, E.J., Choi, M.T., Ahn, B.K., Kim, S.K., Lee, Y.H., 
Joa, J.H., Kang, S.S., 2016. Soil pH and electrical conductivity are key edaphic 
factors shaping bacterial communities of greenhouse soils in Korea. Journal of 
Microbiology 54 (12), 838–845. 

Krulwich, T.A., Sachs, G., Padan, E., 2011. Molecular aspects of bacterial pH sensing and 
homeostasis. Nature Reviews Microbiology 9, 330–343. 

Kunito, T., Tobitani, T., Moro, H., Toda, H., 2012. Phosphorus limitation in 
microorganisms leads to high phosphomonoesterase activity in acid forest soils. 
Pedobiologia 55 (5), 263–270. 

Lauber, C.L., Hamady, M., Knight, R., Fierer, N., 2009. Pyrosequencing-based assessment 
of soil pH as a predictor of soil bacterial community structure at the continental 
scale. Applied and Environmental Microbiology 75 (15), 5111–5120. 

Lauber, C.L., Strickland, M.S., Bradford, M.A., Fierer, N., 2008. The influence of soil 
properties on the structure of bacterial and fungal communities across land-use 
types. Soil Biology and Biochemistry 40 (9), 2407–2415. 

Li, B., Wu, W.-M., Watson, D.B., Cardenas, E., Chao, Y., Phillips, D.H., Mehlhorn, T., 
Lowe, K., Kelly, S.D., Li, P., Tao, H., Tiedje, J.M., Criddle, C.S., Zhang, T., 2018. 
Bacterial community shift and coexisting/coexcluding patterns revealed by network 
analysis in a uranium-contaminated site after bioreduction followed by reoxidation. 
Applied and Environmental Microbiology 84 (9), e02885-17. 

Liu, J., Sui, Y., Yu, Z., Yu, S., Chu, H., Jian, J., Liu, X., Wang, G., 2014. High throughput 
sequencing analysis of biogeographical distribution of bacterial communities in the 
black soils of northeast China. Soil Biology and Biochemistry 70 (2), 113–122. 

Malik, A.A., Puissant, J., Buckeridge, K.M., Goodall, T., Jehmlich, N., Chowdhury, S., 
Gweon, H.S., Peyton, J.M., Mason, K.E., van Agtmaal, M., Blaud, A., Clark, I.M., 
Whitaker, J., Pywell, R.F., Ostle, N., Gleixner, G., Griffiths, R.I., 2018. Land use 
driven change in soil pH affects microbial carbon cycling processes. Nature 
Communications 9 (1), 3591. 

Moraleda-Munoz, A., Javier Marcos-Torres, F., Perez, J., Munoz-Dorado, J., 2019. Metal- 
responsive RNA polymerase extracytoplasmic function (ECF) sigma factors. 
Molecular Microbiology 112 (2), 385–398. 

Minoru, K., Susumu, G., Yoko, S., Masayuki, K., Miho, F., Mao, T., 2014. Data, 
information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids 
Research 42, 199–205. 

Muruganandam, S., Israel, D.W., Robarge, W.P., 2009. Activities of nitrogen- 
mineralization enzymes associated with soil aggregate size fractions of three tillage 
systems. Soil Science Society of America Journal 73, 751–759. 

Nielsen, H.B., Almeida, M., Juncker, A.S., Rasmussen, S., Li, J., Sunagawa, S., Plichta, D. 
R., Gautier, L., Pedersen, A.G., Le Chatelier, E., Pelletier, E., Bonde, I., et al., 2014. 
Identification and assembly of genomes and genetic elements in complex 
metagenomic samples without using reference genomes. Nature Biotechnology 32, 
822. 

Nies, D.H., 2003. Efflux-mediated heavy metal resistance in prokaryotes. FEMS 
Microbiology Reviews 27 (2–3), 313–339. 

Philippot, L., Cuhel, J., Saby, N.P., Chèneby, D., Chronáková, A., Bru, D., Arrouays, D., 
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