
1.  Introduction
On the Moon, the highly evolved lithologies that primarily consist of granophyric intergrowths of silica 
and K-feldspar are commonly called granite (Seddio et al., 2013). This type of rock represents a late-stage 
product of the extreme fractional crystallization of a magma and provides valuable information about the 
history of lunar magmatism (Bonin, 2012; Jolliff, 1991). Granite is rare on the Moon, but it is frequent-
ly found as either clastic fragments or as small, isolated clasts within both the Apollo-returned samples 
and some breccia meteorites (e.g., Apollo 12, 14, 15, and 17 samples; breccia meteorite Northwest Africa 
[NWA] 4,472; Jolliff et al., 1999; Joy et al., 2011; Seddio et al., 2013; Taylor et al., 1980; Warner et al., 1978). 
In addition, the global remote-sensing data has detected a series of silicic volcanisms distributed mostly 
on the nearside of the Moon within the Procellarum KREEP Terrane (PKT) (e.g., Hansteen Alpha, Gru-
ithuisen domes, Helmet, and Lassell Massif on the nearside; Compton-Belkovich on the far side; Glotch 
et al., 2010; Jolliff et al., 2011). However, the currently available lunar samples collected during the Apollo 
and Luna missions only represent ∼4.4% of the lunar surface (Warren et al., 2005), which limits our un-
derstanding of the granitic activity on the Moon, particularly that in the non-sampled regions. In contrast, 
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the randomly ejected lunar meteorites are thought to be more representative of the lithologies of the lunar 
crust, and thus, they provide valuable material for investigating the geological history of the Moon (e.g., 
Gross et al., 2020, 2014; Jolliff et al., 2009; Snape et al., 2011; Zeigler et al., 2017).

Lunar Apollo-granites have been dated using a large range of isotopic methods (e.g., the 40Ar-39Ar, Sm-
Nd, U-Pb, and Pb-Pb systems), which have yielded a range of dates from 3,880 Ma to 4,320 Ma (i.e., from 
Pre-Nectarian to Nectarian; Meyer et al., 1996; Nyquist and Shih, 1992; Thiessen et al., 2018; Turner, 1970). 
These ages indicate that the episode of granitic activity on the Moon occurred over about 450 million years 
(Bonin, 2012). Subsequently, with the acquisition of new data from lunar meteorites, the oldest lunar ba-
saltic rock (∼4,370 Ma, Kalahari 009) and the oldest (i.e., ∼4,380 Ma) zircon evidence for lunar immiscible 
silica-rich melts have been discovered (Snape et al., 2018; Zeng, Joy, et al., 2020). These findings suggest 
that it is very likely that ancient magmatic processes occurred outside of the Apollo landing areas, and these 
magmatic events were capable of producing highly evolved granites. To address this hypothesis, identifying 
and studying ancient lunar granite is critical to revealing the granitic activity and magmatic processes that 
occurred on the Moon.

Regolith breccia NWA 10447 is a lunar basaltic meteorite that has not been well characterized. It is Th-poor 
(i.e., Th = 0.79 ppm; Korotev and Irving, 2021) and is distinctly different from the Apollo-returned samples 
from the PKT regions (i.e., Th > 2–3 ppm; Korotev, 2005; Lucey et al., 2006). Recently, one granitic fragment 
was found in the matrix of this breccia meteorite (Figure 1), providing us with an opportunity to investigate 
the ancient granitic activity on the Moon. Here, we report the petrology, mineralogy, and chronology of this 
lunar granitic fragment with the aims of (1) characterizing the petrological features of granitic fragment 
occurred in the Th-poor lunar basaltic breccia; and (2) discussing the provenance and implications of this 
granitic fragment from NWA 10447.

2.  Sample and Analytical Methods
The breccia meteorite NWA 10447 was provided by Fabien Kuntz, who holds the main mass of this sample 
(Bouvier et al., 2017). In this study, the polished thick sections of NWA 10447, ∼1.5 × 2.5 cm in size, was 
prepared at the Institute of Geochemistry, Chinese Academy of Sciences (e.g., Figure S1). Then, the studied 
granitic fragment (i.e., Clast-GF; Figure 1) in this section of NWA 10447 was characterized using a wide 
range of in situ analytical techniques.

Back-scattered electron (BSE) images of Clast-GF were taken using the FEI Scios dual-beam focused ion 
beam/scanning electron microscope (FIB/SEM) at the Institute of Geochemistry, Chinese Academy of 
Sciences. The conditions were as follows: a 15 kV accelerating voltage, a 3.2 nA beam current, and a 7–8 mm 
working distance. X-ray elemental mapping of Clast-GF was performed using the energy-dispersive spec-
trometer attached to the FEI Scios FIB/SEM, with the same current and voltage setting noted above. Based 
on the BSE and X-ray mapping images, the modal mineralogy (vol%) of Clast-GF was estimated. The pixels 
of each mineral phases in this clast were counted using Photoshop. In addition, the quantitative mineral 
composition of Clast-GF were determined using the JXA 8230 electron microprobe analyzer (EMPA) at 
the Institute of Geochemistry, Chinese Academy of Sciences (Table S1). The operating conditions were as 
follows: a 15 kV accelerating voltage, a 20 nA beam current, and a 1 μm focused beam. Natural minerals 
and synthetic minerals were used as standards. The typical detection limits for most of the elements were 
0.02–0.03 wt%.

Micro-Raman spectroscopy was performed using the Renishaw (RM 2000 and inVia Plus) micro-Raman 
spectrometer at the Institute of Geochemistry, Chinese Academy of Sciences. The laser (532 nm) energy was 
50 mW. Silicon (520.7 cm−1 Raman shift) was used as the standard to calibrate this instrument. The Raman 
spectra for the silica phases in Clast-GF were collected under the following conditions: (1) the ×50 objective 
was used to focus the excitation beam on a ∼1 μm spot; (2) the acquired spectral range was 100–1,200 cm−1; 
(3) the exposure time for each spectrum was 15–50 s (1 times); and (4) the power of the laser energy (i.e., 
0.5–5 mW) was 1%–10%.

The in-situ U-Pb isotopic system of the zircon in Clast-GF was measured using the CAMECA IMS 1280-HR 
secondary ion mass spectrometer (SIMS) at the Guangzhou Institute of Geochemistry, Chinese Academy 
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of Sciences. The detailed analytical procedures were same as those described by Li et al.  (2009) and Xu 
et al. (2020). The O2− primary ion beam was used, with a spot size of 20 × 30 μm and a beam intensity of 
∼10 nA. Zircon standard Plesovice was used to calibrate this instrument (Sláma et al., 2008). Another stand-
ard zircon (SA 01; Huang et al., 2020) was also analyzed as an unknown sample to monitor the reliability of 
the entire procedure. The measured 204Pb was used for the common Pb correction, which was assumed to 
be surface contamination from the sample preparation, and the composition of the sample was calculated 
according to the two-stage evolution model (Stacey and Kramers, 1975). The U-Pb dating results are pre-
sented in Table S2.

3.  Results
3.1.  Occurrence, Petrology, and Mineralogy

NWA 10447 is a basaltic regolith breccia, which is mainly composed of basaltic clasts, impact melt breccia 
clasts, volcanic glass fragments, impact glass fragments, and mineral phrases (Figures  S1 and  S2). Geo-
chemically, this breccia meteorite has a bulk FeO content of 15.15 wt% and relatively low incompatible 
trace element contents (e.g., Th = 0.79 ppm, Sm = 2.59 ppm, and TiO2 = 0.6 wt%), which are chemically 
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Figure 1.  Occurrence, texture, and mineralogy of lunar granite fragment Clast-GF in breccia meteorite Northwest 
Africa (NWA) 10447. (a–b) Hand sample (Courtesy of F. Kuntz) and Back-scattered electron (BSE) images of lunar 
breccia meteorite NWA 10447. The studied granite fragment (Clast-GF) was marked in these images. (c) BSE image 
of Clast-GF. (d) X-ray element distribution maps (i.e., Si, K, Mg, and Zr) overlay on the BSE image of Clast-FG. 
Mineral phases in Clast-GF were labeled: Kfs = K-feldspar, Si = silica, Pl = plagioclase, Px = pyroxene, Ol = olivine, 
An = anorthosite, Zrn = zircon, Ilm = ilmentite, Tro = troilite, Ap = apatite, and Mer = merrillite.
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consistent with other lunar basaltic samples (FeO = 16–22 wt%) and are distinctly different from the com-
position of KREEP-rich (Th > ∼2–3 ppm and Sm > ∼7 ppm) Procellarum KREEP Terrane (PKT) materials 
(Figures S3 and S4). The studied lunar granite fragment in NWA 10447 (i.e., Clast-GF) was to be located in 
the matrix of this meteorite, and the clast is ∼1.2 × 0.5 mm in size (Figures 1a and 1b). Texturally, Clast-GF 
is characterized by micrographic intergrowths of K-feldspar (An3.9−5.7Ab16.4−23.2Or71.0−78.7; ∼60 vol%) and 
silica (∼30 vol%) (Figures 1c and 1d). A few plagioclase grains (An33.7−36.4Ab53.0−54.4Or10.6−11.9) are present 
in minor quantities (i.e., <2 vol%) and are associated with the feldspar-quartz intergrowths. Notably, Clast-
GF contains two strip-shaped zircons that are ∼20 × 300 μm and ∼35 × 200 μm in size. In addition, a few 
(<2 vol%) accessory mineral phrases were also observed in Clast-GF as micron-sized (<15 micron) grains, 
including ilmentite, troilite, apatite, and merrillite (Figures 1c and 1d).

3.2.  Characteristics of Silica Phase

The silica phases in Clast-GF were characterized using the micro-Raman and EPMA techniques. The Ra-
man spectra for these silica phases show that they have Raman peaks at 127 cm−1, 202 cm−1, 353 cm−1, and 
464 cm−1, which are consistent with the Raman spectra of quartz (Figure S5). Texturally, the quartz grains 
in Clast-GF are fractured in a hackled pattern (Figure S6), which are similar to the micro-morphology of 
the quartz particles in the Apollo 12 samples (e.g., 12023,147–10, 12001,909–14, and 12033,634–30; Jolliff 
et al., 1999; Seddio et al., 2015). The minor-oxide (e.g., FeO and TiO2) contents of the quartz grains in Clast-
GF were determined. The FeO and TiO2 contents of the quartz grains are 0.04–0.14 wt% and 0.1–0.18 wt%, 
respectively (Figure S7 and Table S1).

3.3.  U-Pb Isotopic Compositions and Age of Zircon

Two U-Pb analyses were performed on a relatively large zircon grain (∼35 μm in width) in Clast-GF (Fig-
ure 2). This zircon has U and Th contents of 141–241 ppm and 79–149 ppm, respectively (Table S2). The 
SIMS results show that the two U-Pb analyses are concordant, yielding a concordia age of 4,320.6 ± 6.8 Ma 
(2σ uncertainty; Figure  2a). The measured 207Pb/206Pb ages are 4,321.5  ±  5.2  Ma (2σ uncertainty) and 
4,315.8 ± 5.2 Ma (2σ uncertainty), which are identical within the uncertainties (Figure 2b). Since the U-Pb 
system of the zircon within Clast-GF could have been disturbed by impact or thermal events, which are 
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Figure 2.  (a) U-Pb data for the zircon in lunar granite Clast-GF in Northwest Africa 10447. Back-scattered electron 
image was provided showing the two analyzed points. (b) Concordant 207Pb/206Pb ages of the analyzed zircon. Error 
bars for 207Pb/206Pb ages are 2σ.
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pervasive on the Moon, we took the oldest concordant 207Pb/206Pb age (i.e., 4,321 ± 5.2 Ma; 2σ uncertainty) 
as the minimum crystallization age of Clast-GF.

4.  Discussion
4.1.  Non-PKT Origin of Lunar Breccia NWA 10447

NWA 10447 is a regolith breccia meteorite consolidated from the surface materials on the Moon. By com-
paring this meteorite's composition with the global gamma ray spectroscopy geochemical data, the possi-
ble ejection regions of the lunar meteorite have been constrained (e.g., Calzada- Diaz et al, 2015; Gross & 
Joy, 2016; Joy et al., 2010; Zeng et al., 2018; Zeng, Li, et al., 2020). In this study, we used this geochemical 
data (i.e., FeO = 15.15 ± 1 wt%, TiO2 = ± 1 wt%, and Th = 0.79 ± 1 ppm; Korotev and Irving, 2021; Ta-
ble S3) as input parameters to locate regolith samples that are compositionally similar to NWA 10447 (see 
Text S1 for details). The resulting map shows that lunar breccia meteorite NWA 10447 is compositionally 
similar to the regoliths from the south of Mare Fecunditatis and the Mare Crisium outside of the Non-PKT 
regions (Figure 3). This implies that Clast-GF within NWA 10447 is most likely a lithic clast from the lunar 
Non-PKT region where this meteorite was consolidated from. This assumption is further supported by the 
commonly occurrence of granitic clasts in NWA 10,447: other six granitic clasts (see Figure S2) were ob-
served in this breccia meteorite, indicating that the granitic Clast-GF is more likely local origin rather than 
the lithology that was ejected from the PKT region by impact events.

4.2.  Petrogenesis of Clast-GF

The identification of a silica polymorph would give clues to the petrogenesis of the lunar granite samples 
(e.g., Seddio et al., 2015). Quartz grains with a hackle fracture pattern have been commonly observed in 
lunar granites, indicating that they were inverted from a high-temperature, low-pressure polymorph (either 
tridymite or cristobalite; Seddio et al., 2015). The silica phases in Clast-GF were identified as quartz grains 
with a hackled pattern (Figure S6), which is consistent with an orderly transformation from tridymite or 
cristobalite (indicative of rapid cooling) at a later time. Thus, it is reasonable to suggest that Clast-GF repre-
sents an extrusive lunar lithology (i.e., extrusive silicic volcanism).
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Figure 3.  Possible ejection areas for lunar breccia meteorite Northwest Africa 10447 based on its bulk composition (i.e., FeO = 15.15 ± 1 wt%, TiO2 = 0.6 ± 1 
wt%, and Th = 0.79 ± 1 ppm). Locations and the ages of silicic volcanisms identified on the Moon have also been shown in this image (see Table S4 for details).



Geophysical Research Letters

4.3.  Implications for the Silicic Volcanism on the Moon

Compared with the granites collected during the Apollo missions, the 
newly discovered granitic fragment (i.e., Clast-GF) in NWA 10447 ex-
hibits similar textural and mineralogical characteristics to some Apollo 
granites. Specifically, Clast-GF is an unbrecciated lithology with an igne-
ous texture (i.e., micrographic intergrowths of K-feldspar and silica). This 
feature is consistent with texture of Apollo granites 12,032,366–19 and 
12,032,147–10 (Seddio et al., 2014, 2013). In addition, Clast-GF mainly 
consists of ∼60 vol% K-feldspar and ∼30 vol% silica, with less amounts 
of accessory mineral phases (i.e., plagioclase, zircon, ilmentite, troilite, 
and phosphate). Such mineral assemblage is similar to the mineralogy 
of Apollo granite 12,033, 507 (i.e., ∼49 vol% K-feldspar, ∼33 vol%, and a 
few amounts of troilite, ilmentite, plagioclase and phosphates; Warren 
et al., 1987).

Previous studies have shown that lunar magmatic processes that are ca-
pable of producing highly evolved granites or silicic volcanism occurred 
over an extended period of time. Specifically, the Apollo-returned granite 
(or felsite) samples have yielded isotopic dates ranging from 4,320 ± 3 Ma 
(Pre-Nectarian) to 3,884  ±  3  Ma (Nectarian) (e.g., Meyer et  al.,  1996; 
Thiessen et al., 2018; Zhang et al., 2012). Furthermore, the ages of the 
silicic volcanism on the Moon (∼2,500 Ma to 4,000 Ma) (Figure 3) have 
also been estimated using the crater-counting method. Compared with 
these results, the studied granitic fragment (Clast-GF in NWA 10447) has 
a crystallization age similar to the oldest granites sampled by the Apollo 
12 and 17 missions (i.e., ∼4.32 Ga; Figure 4). The existence of ancient 
lunar granite Clast-GF provides new evidence for the existence of more 
ancient (i.e., ∼4.32 Ga) silicic volcanism on the Moon, which produced 
highly evolved lithologies such as Clast-GF.

The occurrence of lunar silicic volcanism has been observed to be mainly distributed in the PKT region on 
the nearside of the Moon and in Compton-Belkovich on the far side of the Moon (Figure 3). Similarly, all 
of the Apollo granites were sampled in/near the PKT regions during the Apollo 12, 14, 15, and 17 missions. 
Few lunar granite samples have been found in the Non-PKT area of the Moon. Clast-GF in breccia meteorite 
NWA 10447 may represent a rare lunar granitic fragment from the Non-PKT region of the Moon (i.e., the 
mare region with low Th and TiO2).

5.  Conclusions

�1.	� In lunar basaltic breccia meteorite NWA 10447, a mm-sized granitic fragment (Clast-GF) was recognized. 
Clast-GF have similar petrological and mineralogical feature similar to some granites (e.g., 12032,366–
19) returned by Apollo missions. This granitic fragment has a crystallization age of 4,321.5 ± 5.2 Ma (2σ), 
which is consistent with the age of the oldest granite sampled during the Apollo 12 and 17 missions.

�2.	� Unlike the regoliths from Apollo landing sites within PKT, the basaltic breccia NWA 10447 has relatively 
low contents of Th and TiO2 and is compositionally similar to the regoliths from the Moon's Non-PKT 
regions (e.g., Mare Crisium). The identification of granitic Clast-GF (and other granitic clasts) in this 
meteorite provides evidence for that lunar granite most likely occurs outside of the PKT of the Moon 
(i.e., the mare region with low Th and TiO2)

�3.	� The granitic Clast-GF adds to the growing evidence of oldest (∼4.32 Ga) silicic volcanism on the Moon. 
This may provide further constraints on lunar ancient silicic magmatism that was not recognized by the 
Apollo missions and remote-sensing observations

�4.	� This work implies that much is unknown about lunar granite and the silicic magmatic activity in the 
Non-PKT region of the Moon. In the future, investigation of more granitic lithologies from other lunar 
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Figure 4.  Comparison of the crystallization age (4.32 ± 0.0052 Ma; 2σ) 
of Clast-GF in Northwest Africa 10447 and the crystallization ages of 
the Apollo granitic samples and the cratering model ages of lunar silicic 
volcanism identified by remote sensing data (see Table S4 for details). Most 
error bars in this image are smaller than the symbols.
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meteorites (e.g., the Th-poor breccias) will be helpful in extending our understanding of the silicic vol-
canism across the Moon

Data Availability Statement
Lunar Prospector data used for the provenance of NWA 10447 is accessible at the NASA Planetary Data 
System (https://pds-geosciences.wustl.edu). The petrological, geochemical, and chronological data used in 
this manuscript are available online (https://doi.org/10.6084/m9.figshare.13571423).
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