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ABSTRACT

The exploration of next-generation materials and the underlying mechanisms for high ionic conductivity have been the mainstay of the study
in the solid state ionic field, but with limited success. Here, we performed closely integrated in situ high-pressure structural and electronic
characterizations on SrCoO2.5, a typical material for solid fuel cell application. We discovered that the activation energy for ionic transport
decreased by approximately 47% at 13.6GPa upon compression, demonstrating a large enhancement of conductivity. Such a desired func-
tional behavior is strongly interlinked with the pressure-driven isostructural phase transition at which negative linear compressibility occurs
along c-lattice, weakening the interaction between Co and O atoms and then enhancing the ionic diffusion. Our results provide fundamental
insight of the solid ionic mechanism and materials-by-design for future high-performance oxides.
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Oxygen deficiency strontium cobalt oxides (SrCoO3�d), which
transport ions via the oxygen diffusion mechanism, play a significant
role in various energy storage and conversion applications.1–4 Due to
the highly tunable compositional and structural characteristics, the
SrCoO3�d system features rich and diverse physical properties and,
thus, the functional performance. For example, a ferromagnetic–anti-
ferromagnetic phase transition was convinced as perovskite phase
SrCoO3 converts to brownmillerite phase SrCoO2.5, where the latter is
a promising active material for oxygen permeating membranes, sen-
sors, and cathodes in solid oxygen fuel cells (SOFCs).5–12 The ionic
transport behavior in the brownmillerite oxide family including
SrCoO2.5 and BaInO2.5 is strongly dependent on the well-ordered
oxygen-vacancy channels and rich polyhedral configurations, which is
structurally preferred at elevated temperatures.13–16 As such, an
improvement in ionic conductivity at room temperature (RT)

becomes a formidable materials science challenge,17,18 and under-
standing the root cause from a structural viewpoint is urgently needed.

As an additional thermodynamic dimension, pressure plays a
crucial role in continuously tuning the crystal lattice and electronic
wave functions; thus, it has been demonstrated as a powerful and
clean tool for materials engineering and reliable detection of structure–
property relationships.19 Pressure also controls various functional
materials across conventional barriers between insulators and metals
and between order and disorder states.20,21 Considering that the acti-
vation energy and ionic conductivity are highly dependent on the crys-
talline lattice in oxides,22–24 pressure engineering could be an
alternative route to tune and improve the functionality of SOFC-
related materials including the SrCoO3�d system. Upon compression,
Xu et al. observed a pressure-induced semiconductor-to-insulator
transition in Li0.9CoO2, which originates from the Co–O bond length
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shrinkage in the CoO6 octahedron.25 In LixFePO4, pressure-
suppressed valence fluctuation with an activation volume for polaron
hopping of þ5.8 Å3 was found, accounting for a correlated motion of
polarons and Liþ ions.26 In addition, Liþ migration barrier energies
along [010] and [001] directions were demonstrated to increase under
compression, further suggesting a deterioration of ionic conductivity
that is discovered in high-pressure research on Ba–Ce–Y ternary
oxides.27–29

Previous results imply that pressure usually leads to an increase
in the activation energy and, thus, inhibits the ionic conductivity, rais-
ing a question that is the pressure engineering truly inapplicable for
high-ionic-conductive materials. In this work, by employing advanced
synchrotron-based characterizations and the diamond-anvil-cell
(DAC) technique, we observed an unusual pressure-induced isostruc-
tural phase transition with a negative linear compressibility along the
c-axis in SrCoO2.5. A considerably low activation energy for ionic
transport was then convinced at phase transition pressure, �13.6GPa,
demonstrating a favored ionic conductive behavior. A detailed analysis
on structural evolution is also proposed, promising for future materials
design in a broad context.

The SrCoO2.5 polycrystalline sample was synthesized by a tradi-
tional solid state reaction method. Starting material SrCO3 (�99.0%)
and CoO (�99.0%) powders were mixed with a 1:1 molar ratio of Sr
and Co in an agate mortar with a pestle. The mixtures were thoroughly
ground and pressed into pellet and sintered in a muffle furnace at
1000 �C for 24 h, which is followed by furnace cooling with shutting
off the power.

Synchrotron angle-dispersive x-ray diffraction (XRD) patterns of
SrCoO2.5 under high pressure were collected with a wavelength k of
0.4340 Å at the beamline 13BM-C of the Advanced Photon Source
(APS), Argonne National Laboratory (ANL). Two 300lm culet dia-
mond anvils, a rhenium gasket, and the silicone oil were used in a
symmetric diamond anvil cell (DAC) for generating high pressure.30

The XRD patterns were analyzed with the General Structure Analysis
System (GSAS) and graphical user interface EXPGUI package to refine
the crystal structures at various pressures.31

In the electrical transport measurements, the rhenium gasket
chamber was covered by prepressed cubic boron nitride (c-BN) pow-
der around the rhenium gasket chamber to ensure insulation. For AC
impedance measurements, the two-probe method was used. Two Pt
foils (around 100� 100lm2) were placed at the top and bottom of the
sample. A Zahner impedance analyzer was utilized to probe the AC
impedance spectrum in the frequency range of 0.01Hz–4 MHz.

Simulation of the AC impedance spectrum with various circuits
provides an effective way to explore the electronic and ionic conduc-
tive behavior in materials. In general, the ideal impedance spectra of
dominant ionic conductors can be readily interpreted by use of the
standard Debye circuit and show a straight line namedWarburg tail at
low frequencies, when an ion blocking electrode is applied.32–34 Mixed
ionic and electronic conductors may also show only one or two semi-
circles without a Warburg tail.33,35,36 The arcs in impedance spectra of
mixed conductors are asymmetric, exhibiting a characteristic
Warburg-like shape that has no low frequency tail, as the interfacial
capacitance is shunted by the electronic current at low frequencies.

The AC impedance spectrum at selected pressures and tempera-
tures of SrCoO2.5 is shown in Fig. 1. The diameter of the semicircle
decreases with the increasing temperature indicating an enhancement

in charge/ion carrier density and/or mobility. From previous research,
the Brownmillerite SrCoO2.5 phase exhibits a semiconducting behavior
while the SrCoO3 compound is metallic.9,37 Electronic and ionic con-
duction are coexistent in SrCoO2.5 at ambient pressures.38 In our in
situ high pressure study, both contributions from electronic and ionic
conduction can be found between room temperature and 333K at
around 1GPa as shown in Figs. 1(a) and S1 in the supplementary
material, judged by the impedance spectra. In the higher temperature
zone (above 330K) at 1.0GPa, the AC impedance spectrum of
SrCoO2.5 shows a dominant ionic conductive behavior since it follows
a straight up behavior at the low frequency region39 as shown in
Fig. 1(a). As pressure increases, the ionic conductivity is gradually sup-
pressed untill 8.2GPa, where the Warburg tail at low frequency has
already disappeared at room temperature [Fig. 1(c)]. As temperature
increases, instead, a mixture of ionic and electronic conduction can be
seen at the highest temperature 353K. This can be understood as the
decreasing interatomic distance makes the migration of oxygen ions
more difficult, thus reducing the oxygen ion conductivity upon com-
pression. Unexpectedly, at 13.6GPa after the structural phase transi-
tion takes place around 10GPa, AC impedance spectroscopy shows
the re-emergent of a mixture of ionic and electronic conducting behav-
iors at room temperature. Importantly, the dominant ionic conduction
can be observable at 353K. The structural investigation indicates that
this enhancement of the ionic conductivity originates from a structural
phase transition occurring at around 10GPa, which will be discussed
later. Upon further compression up to 22.6GPa, the ionic conduction
is suppressed again at higher pressures as shown in Fig. 1(f).

To make more quantitative analyses, the impedance data were
modeled by one equivalent series circuit consisting of the resistor (R),
the constant phase element (CPE), and the Warburg element (W).40

Using ZView impedance analysis software,41 we fitted the data and
obtained the grain and grain boundary contribution to the AC resis-
tance at various pressures and temperatures. For the impedance spec-
trum with the Warburg tail of dominant ionic conductivity in
SrCoO2.5, we used two RC elements connected in series and one
Warburg element in series as an equivalent circuit to fit. For a mixed
electronic and ionic conductor, two RC elements connected in series
were used to fit the impedance plots. The resistance obtained from
two RC elements is from the bulk and grain boundary. The equivalent
circuits are shown in Figs. S1(b) and S1(c). We present two typical fit-
ting results for 303 and 343K measurements at 1.0GPa in Fig. S1.
Total resistivity including bulk and grain boundary parts vs pressure at
room temperature (RT) is plotted in Fig. S2. It turns out that there is a
sharp drop in resistivity around 10GPa, where the structural phase
transition takes place.

More physical insights into the conductive mechanism were
obtained from the analysis of the activation energy Ea, a key parameter
in all thermally activated processes, which refers to the energy barrier
that a system needs to overcome for the process to take place. For ionic
diffusion, the relationship between Ea and ionic conductivity can be
described by the Arrhenius equation42,43

rT ¼ r0exp
�Ea
kBT

� �
; (1)

where r is the ionic conductivity at given temperature T, kB is
Boltzmann constant, and r0 is a temperature independent pre-factor.
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Here, we employed resistivity q (q¼ 1/r) in Eq. (1) to calculate
Ea. Figures 2(a) and 2(b) show ln(q/T) vs 1/T at pressures 5.9 and
13.6GPa, respectively. There are two distinguished segments in
ln(q=T) vs 1/T . Considering the fact that at high temperatures the
ionic conductive mechanism dominates the whole transport process,
we fit the data points obtained above 324–334K to estimate the activa-
tion energy describing the ionic contribution (denoted as Eai) and that
at a low temperature range (up-right data points) related to the

mixture contribution from ionic and electric transport mechanisms
(denoted as Ea). At 5.9GPa, the Eai and Ea are 0.53 and 0.28 eV,
respectively. At 13.6GPa, a much lower activation energy contributed
from ionic part (Eai) is convinced, being on the order of 0.28 eV. The
similar procedure is applied to all measurements up to 22.6GPa as
detailed in Fig. S3 in the supplementary material. The activation
energy Eai points are summarized in Fig. 2(c). The activation energy
Eai of ionic parts changes from 0.49 eV at 1.0GPa to 0.53 eV before

FIG. 2. Arrhenius plot and activation energy Eai in SrCoO2.5 at high pressures. (a) and (b) are the fitting results using Eq. (1) from the ln(q=T ) vs 1/T curves at 5.9 and
13.6 GPa. (c) Eai as a function of pressure.

FIG. 1. AC impedance spectrum of SrCoO2.5 at selected pressures and temperatures. Panels of (a), (b), (c), (d), (e), and (f) are the AC impedance spectrum at 1.0, 3.4, 8.2,
13.6, 18.0, and 22.6 GPa at temperatures between 303 and 373 K, respectively. The solid lines are the fitting results by the equivalent circuit.
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8.2GPa, as the interatomic distance decreases with pressure.
Surprisingly, the activation energy Eai shows a 47% reduction to
0.28 eV, and overall conductivity improved by an order of magnitude
(see Fig. S2 in the supplementary material) at room temperature and
13.6GPa. At higher pressures above 18GPa, the ionic conductivity is
suppressed again and the Eai increases to 0.40 eV at 18GPa [see Figs.
1(e) and S3(c)]. Eventually, no dominant ionic conductivity was moni-
tored at all detected temperatures at 22.6GPa [see Figs. 1(f) and
S3(d)].

In the previous study,44 Gao et al. discussed the physical parame-
ters that can affect the ion transport property, including lattice volume,
coordination, local disorder and distortion, defects, and lattice dynam-
ics. Among those factors, the effect of lattice volume on ionic conduc-
tivity is very obvious in our study, as the activation energy of ionic
parts increases with the decreasing of lattice volume before 10GPa.
Previous results suggest a pressure induced phase transition, yet the
crucial and detailed structural information of a high pressure phase is
not clarified.45 Nevertheless, the change in coordination and local
environment of oxygen ions should largely affect the ion transport
channel, which results in a large modification on ionic conductivity.
We can analysis those effects from the lattice changes and distortion of
the polyhedron. For this, we performed the structural evolution study
with applied pressure in SrCoO2.5. At ambient pressures, the crystal
structure of SrCoO2.5 crystalizes in the brownmillerite structure with
Ima2 space group, which is an ordered oxygen vacancy structure from
the perovskite SrCoO3 by removing 1/6 oxygen atoms.4 Consequently,
SrCoO2.5 consists of layers of CoO4 tetrahedra alternating with layers
of CoO6 octahedra along the a axis, while the Sr atoms are located in
the voids among the polyhedra.4,10 Here, the in situ synchrotron-

based XRD measurements on SrCoO2.5 were conducted up to 51GPa,
and selected diffraction patterns are displayed in Fig. 3(a). No new dif-
fraction peaks emerged up to the highest pressure we reached.
However, the relative intensities and positions of lattice planes (411)
and (002) showed a sharp change around 10GPa. To obtain the accu-
rate atomic positions, we carried out the Rietveld refinements to all the
XRD patterns. Two typical profiles at 2.3 and 21.9GPa are shown in
Fig. 3(b). Although the crystalline symmetry remains the same, both
lattice parameters and unit cell volume show a discontinuity at 10GPa
[Figs. 3(c) and 3(d)]. The a-lattice shortens sharply while the c-lattice
shows an anomalous expansion. Overall, a substantial volume collap-
ses about 1.8% at 10GPa, signifying the occurrence of a typical
first-order isostructural phase transition. It should be noted that this
transition is reversible upon released pressure. We fit experimental
P–V data by a third-order Birch–Murnaghan equation of state
(EOS).46 Below 10GPa, we obtained volume V0¼ 474.12 Å3, bulk
modulus B0¼ 91(4) GPa, and its pressure derivative B00¼ 9.5. For the
high-pressure phase, it yields V0¼ 462.44 Å3 and B0¼ 153(4) GPa
with B00¼ 5.5.

We then consider the effect of such a first-order isostructural
transition and the c-lattice expansion on the conduction property.
Figure 4(a) depicts the distinctive atomic structures of brownmillerite
SrCoO2.5 from the cubic SrCoO3. Clearly, after the removal of 1/6 oxy-
gen atoms from SrCoO3, a distinguished open diffusion channel for
oxygen ions along the [001] direction can form in brownmillerite
phase SrCoO2.5. We then consider the pressure dependence of the
bonding length and angles between Co and O atoms. According to the
refinements of XRD patterns, it is clear that applying pressure has a
significant impact on both bond lengths and bond angles of the CoO4

FIG. 3. Structural evolution of SrCoO2.5 under high pressure probed by synchrotron x-ray diffraction. (a) Selected x-ray diffraction patterns at room temperature and high pres-
sures. Incident x-ray wavelength is k¼ 0.4340 Å. (b) Representative Rietveld refinement profiles at 2.3 and 21.9 GPa. (c) Lattice parameters vs pressure. (d) P–V equation of
state up to 51 GPa.
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tetrahedra [Figs. 4(c) and 4(d)] vs pressure extracted from the Rietveld
refinements. Co2-O3 bond length shows a sharp drop at around
10GPa accompanying by an apparent increase in the bond angle of
Co2-O3-Co2 and O2-Co2-O2. These changes in the bond length and the
bond angle weaken the distortion of CoO4 tetrahedra, which potentially
increases the overlap of the Co3þ 3d and O2� 2p orbitals.1 Also, the
stretching along the c-axis induces a weaker interaction between Co
and O atoms, which would enhance the ionic diffusion along this direc-
tion. As a result, it promotes the oxygen diffusion between two CoO4

tetrahedra along the c-axis, leading to the decrease in the activation
energy and improvement in ionic conductivity. Figure 4(b) sketches
the pressure-effect on the ionic conducting channel before and after the
phase transition triggered by applying external pressure.

In conclusion, combining multiple in situ high-pressure with
high-temperature characterization tools, we investigated the structural
and ionic transport properties of SrCoO2.5. The pressure-induced first
order isostructural phase transition was observed around 10GPa
accompanied by unusual c-lattice expansion and suppressed distortion
of CoO4 tetrahedra, decreasing the activation energy by 47% and
largely enhancing the ionic conductivity. Our study demonstrates that

the high pressure regulating effect on the lattice can largely enhance
the ionic conductivity from a phase transition mechanism, contrary to
common belief; thus it should be paid attention in the future. We also
expect the lattice expansion induced activation energy suppression for
better ionic conductive materials and device performance could be
extended to other oxide families beyond SrCoO2.5.

See the supplementary material for the fit of the experimental AC
impedance data at 1.0GPa and the resistivity of SrCoO2.5 at high pres-
sure and room temperature.
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