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A B S T R A C T   

Uranium mill tailings (UMTs) are one critical source of environmental U pollution. Leaching test has been 
extensively used to reveal U release capacity and mechanism from UMTs, while little attention has been paid to 
the effects of re-adsorption process on U release. In this study, the role of U re-adsorption behaviors during 
leaching test with UMTs was comprehensively investigated. Through paired data on mineralogical composition 
and aqueous U speciation, the influence of environmentally relevant factors on U re-absorption capacity and 
mechanism on UMTs with different particle sizes was revealed. Significant amounts of U re-adsorption were 
observed and primarily attributed to the adsorption on chlorite, albite and muscovite as well as combined 
reduction-sequestration by muscovite. Uranium re-adsorption predominantly occurred via inner-sphere 
complexation and surface precipitation depending on leachant pH. Coexisting sulfate or phosphate could 
further enhance U re-adsorption. The enhanced re-adsorption from sulfate occurred when inner-sphere 
complexation governed the re-adsorption process. These findings suggest that the environmental hazards and 
ecological risks of the U containing (waste) solids might have been underestimated due to the ignorance of the re- 
adsorption process, since the re-adsorbed U could be easily re-mobilized. The insights from this study are also 
helpful in developing effective in-situ remediation strategies.   

1. Introduction 

Uranium (U) is a naturally occurring radioactive material, which has 
high toxicity and radioactivity (Kong et al., 2018; Kuhar et al., 2018; Sun 
et al., 2019; Wang et al., 2020; Yin et al., 2021). Uranium-contaminated 
soil and aquifer systems resulting from the legacy of extraction and 
processing of U ore and radioactive waste disposal are a long-term 
environmental problem worldwide (Petrescu and Bilal, 2003; Winde, 
2013; Chang and Zhou, 2017; Yang et al., 2019), posing serious hazards 
to human health and ecosystem stability (Antunes et al., 2008; Sharma, 

2012; Pan et al., 2021). To date, despite intensive research, the processes 
resulting in longevity of high levels of solution and solid U at contami-
nated sites are still not fully understood. As a result, even after extensive 
clean-up efforts, dissolved U concentrations at contaminated sites often 
remain above regulatory limits (Chevychelov and Sobakin, 2017; Wang 
et al., 2017; Godoy et al., 2019). 

Uranium mill tailings (UMTs) are a major U contamination source 
(Abdelouas, 2006; Ballini et al., 2020; Wang et al., 2021). To mitigate 
UMT-induced U contamination, it is necessary to understand the 
behavior and fundamental mechanism of U release from UMTs under 
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environmentally relevant conditions. Leaching test can be an effective 
tool to investigate U release behavior under varied conditions. Using 
leaching tests, the effects of a variety of geochemical factors, including 
pH, temperature, particle size, natural organic matter and mineralogical 
constituent on U release have been investigated (Liu et al., 2017; Kanzari 
et al., 2017; Yin et al., 2019; Li et al., 2019a; Ge et al., 2020). Based on 
the findings, U adsorption on natural minerals presented in the UMTs 
was recognized to be a vital process affecting U solubility and migration 
(Lee et al., 2011). Relevant studies also suggested that re-adsorption 
during leaching is of crucial importance for the release of U and many 
other metals including Cu and Pb from soil (Zhang et al., 1998; Peng 
et al., 2018), and ore materials (Hamza, 2018; Nada et al., 2019). 
Re-adsorption process, therefore, can affect the longevity of heavy 
metals at contaminated sites and the risk of human exposure. However, 
the critical factors and mechanism influencing U re-adsorption process 
on post-leaching UMTs are largely unstudied. 

The objectives of this study were thus to (i) explore the effects of 
environmentally relevant factors encountered at UMTs on U re- 
adsorption behavior and (ii) investigate the interfacial mechanism of 
U re-adsorption on UMTs. Batch re-adsorption kinetic experiments as 
well as adsorption isotherms and pH envelopes were conducted. 
Aqueous U speciation and mineralogical transformation in these batch 
re-adsorption experiments were investigated by several analytical 
techniques as well as solution U speciation modeling. The insights into U 
re-adsorption processes can improve our understanding of the rationale 
of re-adsorption based U (im)mobilization process and also aid in 
developing effective remediation strategy for UMTs/other (waste) solids 
contamination. 

2. Materials and methods 

2.1. Site information 

The Xiazhuang U ore field located in Shaoguan, Guangdong Prov-
ince, China, is a crucial contributor of U resource in China. This ore field 
contains 18 U deposits with total U resource estimated to be 12,000 t 
(Wang et al., 2019). Uranium in the ore deposits is predominantly 
associated with colloidal pyrite, pink microcrystalline quartz, hydro-
goethite, and hematite (Liu et al., 2018). More than 50 years of 
exploitation and hydrometallurgy have resulted in serious contamina-
tion of U and other co-occurring heavy metals (e.g., Th, Cu, Pb and Mn) 
in the surrounding environment, posing detrimental effects on local 
ecosystem (Wang et al., 2012; Liu et al., 2015; Chen et al., 2017). The 
UMT samples were assembled from the tailings dam, which serves as a 
waste container of a large U hydrometallurgy plant. More information 
on the study site and UMT sample collection could be referred elsewhere 
(Yin et al., 2019). 

2.2. Sample selection and pre-treatment 

After being air-dried, the UMTs samples were separated into 
different particle size fractions, i.e., 6–10, 2–6, 0.9–2, 0.45–0.9, and less 
than 0.45 mm using nylon screen with different diameters. Their weight 
proportions are 34.3%, 25.3%, 10.8%, 9.2% and 20.5%, respectively. 
UTMs with particle diameters of 6–10 mm (UMT6–10 mm) and less than 
0.45 mm (UMT<0.45 mm) were selected to perform U re-adsorption ex-
periments in this study. The reasons for choosing these two size fractions 
were that (i) UMT6–10 mm and UMT<0.45 mm are the two most dominant 
fractions in UMTs and represent the maximum and minimum grain sizes, 
respectively; (ii) considerable quantities of carbonate extractable U(VI) 
(the U fraction that can be extracted by Na2CO3/NaHCO3) was observed 
in both UMT6–10 mm and UMT<0.45 mm, which can be mobilized and re- 
adsorbed during leaching; and (iii) the bulk mineral compositions of 
UMT6–10 mm and UMT<0.45 mm are significantly different, which may 
leads to different U re-adsorption capacities and mechanisms (Giammar 
and Hering, 2001; Rout et al., 2015). 

To prepare post-leaching UMTs and avoid the affect of indigenous U 
in UMTs, prior to re-adsorption experiments, UMT6–10 mm and UMT<0.45 

mm were pre-treated with a mixed carbonate solution with 14.4 mM 
NaHCO3 and 2.8 mM Na2CO3 to remove labile U(VI), following the 
procedures of Liu et al. (2013). UMT6–10 mm and UMT<0.45 mm were 
further washed with U-free solutions identical with those used in the 
re-adsorption test until U concentration in the leachate was below 4.2 ×
10− 8 M, which was one order of magnitude lower than the minimum 
initial U concentration used in re-adsorption test. 

2.3. Batch Re-adsorption experiments 

To ascertain how U(VI) re-adsorption on post-leaching UMT pro-
ceeds over time, kinetic experiments were conducted. In each kinetic 
experiment, 0.2 g of air-dried post-leaching UMT sample was dispersed 
in 20 mL of ambient 0.01 M NaCl in a 50 mL polyethylene tube. The 
solid-to-liquid ratio of 10 g L− 1 was consistent with the ratio in ANS 16.1 
leaching test (ANS, 1986). The pH value of the resulting suspension was 
buffered with 0.05 M potassium hydrogen phthalate, monitored by a 
calibrated pH electrode and adjusted to the desired pH value of 4.0 with 
0.1 M H2SO4. H2SO4 was selected to adjust the pH value to 4.0, because 
the sample site is commonly subjected to sulfuric acid rain and the 
common pH value of acid rain in the studied area is around 4.0. Then 
6.3 × 10− 5 M U(VI) was added to the suspension from a freshly prepared 
U(VI) stock solution. The U(VI) stock solution (6.3 × 10− 3 M) was ob-
tained by dissolving UO2(NO3)2•6H2O in Milli-Q H2O. Aliquots (i.e., 
UTM-solution mixture) were removed from the suspension at various 
time intervals over 120 h and filtered using 0.45-μm nylon membrane 
filters. The solution subsamples were acidified to 2% HNO3 and 
analyzed by inductively coupled plasma mass spectrometry (ICP-MS). 

The extent of U re-adsorption on post-leaching UMTs can change 
with U concentration and pH (Hongxia and Zuyi, 2002; Jin et al., 2016). 
Thermodynamic re-adsorption experiments as a function of U concen-
tration at constant pH (isotherms) and as a function of pH at constant U 
concentration (pH envelopes) were therefore conducted. To perform 
isotherm experiments, air-dried post-leaching UMT samples were 
dispersed in 0.01 M NaCl solutions in 50 mL polypropylene tubes. The 
pH value of the resulting suspensions was buffered with 0.05 M potas-
sium hydrogen phthalate and adjusted to pH 4.0. Uranium(VI) was then 
added with initial U concentrations of 4.2 × 10− 7 to 6.3 × 10− 4 M from 
the stock solution. The pH envelopes were conducted on a series of 
buffered U(VI) solutions, in which the added U concentration was 6.3 ×
10− 5 M. The suspensions used in the pH envelopes were created by 
dispersing air-dried post-leaching UMT samples in 0.01 M NaCl solu-
tions and varying pH between 2.0 and 8.0. The pH was maintained with 
0.05 M potassium hydrogen phthalate-H2SO4 (NaOH) and 0.01 M so-
dium borate decahydrate-H2SO4. To investigate the effect of ionic 
strength on U re-adsorption, parallel pH envelopes were performed by 
dispersing post-leaching UMT samples in 0.1 M NaCl. Various ligands 
can form soluble uranyl complexes and/or insoluble minerals with U 
(VI), which affects the U re-adsorption behavior (Fan et al., 2014). To 
reveal the influence of ligand (sulfate and phosphate) type, additional 
pH envelopes between 2.0 and 8.0 were conducted by dispersing 
post-leaching UMT samples in 0.01 M sulfate or 0.01 M phosphate so-
lutions. Sulfate was chosen because sulfuric acid is the leaching agent for 
UMTs (Yin et al., 2019). Phosphate was used because the formation of 
meta-autunite (Ca(UO2)2(PO4)2•3H2O) was previously detected in 
post-leaching UMT (Yin et al., 2019). Sulfate and phosphate in these pH 
envelopes were added as Na2SO4 and Na2HPO4, respectively. All of the 
kinetic and isothermal re-adsorption experiments were performed in 
triplicate, and chemicals used in the experiments were obtained from the 
Chemical Reagent Factory (Guangzhou, China). 
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2.4. Analytical procedures 

2.4.1. Solution-phase characterization 
Dissolved U concentrations in the samples from the batch re- 

adsorption experiments were determined by ICP-MS (Thermal X series 
2) using previously published procedures (Li et al., 2019b). Rhodium 
(Rh) was selected as an internal response standard and used to monitor 
potential instrument drift. To accurately calculate the added concen-
trations of internal response standard and the dilution factors of the 
samples, the ICP-MS samples were prepared by weighing method. A 
4-point standard curve obtained by a multi-element standard was used 
to quantify U concentration. The analytical accuracy of within 3% was 
observed against known reference materials W-2a (Centerville 
Diabase-212) and BHVO-2 (Hawaiian Basalt-1207). 

2.4.2. Solid-phase characterization 
Bulk mineralogy in UMT6–10 mm and UMT<0.45 mm was determined by 

X-ray diffraction (XRD) and the detailed analytical and data reduction 
methods can be referred to Yin et al. (2019). To assess the distribution of 
the re-adsorbed U on post-leaching UMTs, post-re-adsorption UMTs 
were analyzed by back scattered electron imaging as well as energy 
dispersive spectrometer (BSE-EDS). The BSE-EDS analysis was executed 
with a field emission scanning electron microscope (FESEM, SU8010, 
Hitachi, Japan). To reveal solid-phase U speciation, post-re-adsorption 
UMTs were determined by X-ray photoelectron spectroscopy (XPS, 
Thermo Fisher K-alpha). XPS spectra were processed in Thermo Scien-
tific Avantage software following the procedures of Ilton et al. (2005). 
The binding energy (BE) of C 1s line for aliphatic carbon (284.8 eV) was 
used to correct charge. A spin-orbit splitting of 10.89 eV was adopted to 
fit the doublet peaks of U 4f spectra. Uranium speciation was calculated 
based on the U 4f/5 peaks because U 4f/7 peaks were subject to the 
effect of K 2 s 

2.5. Thermodynamic solution speciation modeling 

Solution U speciation can be an important factor decisive to U re- 
adsorption behavior (Fan et al., 2014; Jin et al., 2016). The equilib-
rium solution U speciation in the batch re-adsorption experiments were 
calculated by the geochemical code PHREEQC-2. The reactions and 
equilibrium constants used for the calculation (Table S1) were mainly 
from the standard PHREEQC database llnl.dat, which was further 
updated with the most recent U thermodynamic data from OECD/NEA 
(Guillaumont and Mompean, 2003). Input parameters include pH, Eh, 
temperature, partial pressure of CO2, dissolved U concentration, and the 
type and concentration of the ligand (i.e., chloride, sulfate and 
phosphate). 

3. Results and discussion 

3.1. Re-adsorption kinetics 

As observed in the conducted kinetic experiments, U re-adsorption 
on post-leaching UMTs at pH 4.0 was rapid, and the equilibrium could 
be achieved within 24 h (Fig. 1a). Similar rapid U adsorption was also 
observed on, for example, silica (Guo et al., 2009), muscovite (Arnold 
et al., 2006), illite (Liao et al., 2020) and chlorite (Singer et al., 2009), all 
of which are dominant minerals in the studied UMTs (Yin et al., 2020). 
Pseudo-first order (Eq. (1)) and pseudo-second order (Eq. (2)) equations 
were used to describe the kinetics of U re-adsorption on post-leaching 
UMTs (Ho and Mckay, 1999): 

ln[qe − q(t) ] = ln qe − k1t (1)  

t
q(t)

=
t

qe
+

1
k2q2

e
(2)  

where k1 (h− 1) and k2 (g mol− 1 h− 1) represent the pseudo-first order and 
pseudo-second order rate constants, respectively, qt (mol g− 1) is the 
amount of re-adsorbed U at time t (h), and qe (mol g− 1) is the amount at 
equilibrium. Based on the coefficient of determination (R2), the 
description of kinetic data using the pseudo-second order equation 
(UMT6–10 mm: R2 = 0.996; UMT<0.45 mm: R2 = 0.999) (Fig. 1b) is pref-
erable as compared to the pseudo-first order equation (UMT6–10 mm: R2 

= 0.997; UMT<0.45 mm: R2 = 0.851) (Fig. S1), as is the case for U 
adsorption on granite (Jin et al., 2016). The pseudo-second order rate 
constants (k2) of U(VI) re-adsorption on UMT6–10 mm and UMT<0.45 mm 
were both around 250 g mol− 1 h− 1. The amounts of re-adsorbed U (qe) 
on UMT6–10 mm and UMT<0.45 mm at equilibrium were 3.0 and 
5.3 µmol g− 1, respectively. 

3.2. Effects of different environmentally relevant factors 

3.2.1. Added uranium concentration 
The influence of varied U concentration on U re-adsorption during 

leaching test was investigated through isotherm experiments. For both 
post-leaching UMT6–10 mm and UMT<0.45 mm, the U re-adsorption iso-
therms at pH 4.0 showed substantial re-adsorption at low added U(VI) 
concentrations and a clear asymptote in the amounts of adsorbed U 
(Fig. 2a). Therefore, two-parameter and three-parameter isotherm 
models were chosen to describe the U re-adsorption isotherms in this 
study. Our isotherm data were more effectively fitted with the Langmuir 
equation (Eq. (3)) (Langmuir, 1918) (Fig. 2b) as compared with other 
two-parameter isotherm models (Freundlich and Temkin) (Fig. S2). 
Three-parameter isotherm model, Sips isotherm (Eq. (4)) (Sips, 1948) 

Fig. 1. Re-adsorption kinetics (a) and pseudo-second order rate equation fitting (b) of U (VI) on UMT6–10 mm and UMT<0.45 mm under the conditions of C0 
= 6.3 × 10− 5 mol L− 1, pH = 4.0, m/V = 10 g L− 1, T = 25 ◦C，I = 0.01 mol L− 1 NaCl. 
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(Fig. 2b) can also be well scrutinized for equilibrium data. According to 
the results of Langmuir and Sips isotherm fitting, the maximum adsorp-
tion capacities (qm) of post-leaching UMT<0.45 mm and UMT6–10 mm for U 
(VI) were estimated to be 6.9 (Langmuir) / 7.0 (Sips) and 5.4 µmol g− 1, 
respectively (Table S2), both were significantly higher than that of the 
un-treated granite (2.4 µmol g− 1) (Jin et al., 2016). The exponent 1/n 
value of UMT6–10 mm (0.926) was more closer to unity than that of 
UMT<0.45 mm (0.780), indicating that U re-adsorption on UMT6–10 mm 
best fits Langmuir form and inclines to mono-layer adsorption (Guenay 
et al., 2007). Moreover, Gibbs energy change (△G) at ambient tem-
perature (298.15 K) is used to evaluate the feasibility of adsorption. 
According to the results of Langmuir isotherm fitting (Table S2), the b 
values of UMT6–10 mm and UMT<0.45 mm were 104.4 and 
202.2 L mmol− 1, respectively. Based on Eqs. (5) and (6) (Hai et al., 
2017), △G values were calculated to be − 38.6 and − 40.2 kJ mol− 1 for 
UMT6–10 mm and UMT<0.45 mm, respectively. Therefore, U re-adsorption 
on UMT6–10 mm and UMT<0.45 mm is both favorable. 

Langmuir model: 

qe =
qmbCe

1 + bCe
(3) 

Sips isotherm: 

qe =
qmasC1/n

e

1 + asC1/n
e

(4)  

Where qe (mol g− 1) and Ce (mol L− 1) correspond to the amount of 
adsorbed U and aqueous U concentration at equilibrium, respectively; 
qm (mol g− 1) represents the maximum adsorption capacity and b (L 
mol− 1) denotes the Langmuir constant; as indicates Sips constant asso-
ciated with adsorption energy; When the exponent 1/n = 1, Sips 
isotherm reduces to the Langmuir equation. 

Gibbs energy change (ΔG):  

ΔG=− RTln(KC)                                                                              (5)  

KC=55⋅5×b                                                                                    (6) 

Where ΔG is the Gibbs energy change (J mol− 1), R and T indicate the 
universal gas constant (8.314 J mol− 1 K− 1) and the adsorption temper-
ature (K), respectively, and KC represents the thermodynamic equilib-
rium constant, which can be obtained by multiplying Langmuir constant 
b (L mol− 1) and 55.5 (pure water, mol L− 1). 

With similar concentrations of added U(VI), re-adsorbed U on 
UMT<0.45 mm was constantly higher than that on UMT6–10 mm (Fig. 2a). 
The phenomenon of more extensive U re-adsorption on UMT<0.45 mm as 
compared to UMT6–10 mm was also observed in the re-adsorption kinetic 

experiments (Fig. 1). Based on PHREEQC calculated solution speciation, 
UO2

2+ was always the primary solution species under the experimental 
conditions used in the isotherm and kinetic experiments (Fig. 3). At 
pH < 5.0, UO2

2+ is usually adsorbed on clay minerals (Korichi and 
Bensmaili, 2009). Nevertheless, elevated amount of clay minerals was 
observed in UMT6–10 mm rather than UMT<0.45 mm (Fig. S3). Apart from 
adsorption on clay minerals, there must be another predominant 
mechanism behind the higher U re-adsorption capacity of UMT<0.45 mm. 

3.2.2. pH 
The adsorption of U, like many other metal ions (Sun et al., 2016), is 

pH dependent (Fig. 4). Based on the conducted pH envelopes, the 
amount of re-adsorbed U on UMT<0.45 mm was extremely low at pH 2.0 
and 3.0, and significantly increased when pH was above 4.0 (Fig. 4b). 
Based on equilibrium solution U speciation calculated using PHREEQC 
(Fig. 4c, d), U mainly existed in the form of UO2

2+ in pH 2.0 and 3.0, 
whereas schoepite (4UO3•9H2O) would form at pH > 4.8 and lead to 
significantly elevated amount of re-adsorbed U on UMT<0.45 mm. The 
pattern of U re-adsorption on UMT6–10 mm differed from that on 
UMT<0.45 mm, with significantly less extensive re-adsorption occurring 
at pH > 6.0 (Fig. 4a). The distinctive U re-adsorption behaviors between 
UMT6–10 mm and UMT<0.45 mm might originate from their different 
mineral compositions, which could result in different solution U speci-
ation. For instance, UMT6–10 mm contained a higher amount of calcite 
than UMT<0.45 mm (Fig. S3), (Yin et al., 2020) which can suppress U 
re-adsorption by forming uranyl carbonate solution complexes including 

Fig. 2. Effects of U initial concentration on U re-adsorption to UMT6–10 mm and UMT<0.45 mm (a) and Langmuir model and Sips isotherm fitting (b) under the con-
ditions of m/V = 10 g L− 1, pH = 4.0, T = 25 ◦C, I = 0.01 mol L− 1 NaCl. 

Fig. 3. Aqueous U speciation at different initial U concentrations under the 
conditions of m/V = 10 g L− 1, pH = 4.0, T = 25 ◦C, I = 0.01 mol L− 1 NaCl. 
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(UO2(CO3)2
2− , UO2)2CO3(OH)3

− and UO2(CO3)3
4− (Kipp et al., 2009; 

Qiang et al., 2016). 

3.2.3. Ionic strength 
To unravel the effect of ionic strength on U re-adsorption, pH en-

velopes were performed with background electrolyte of 0.01 M and 
0.1 M NaCl (Fig. 4a, b). Except for UMT6–10 mm at pH 3.0, the weaker 
influences of ionic strength on U re-adsorption in UMT6–10 mm and 
UMT<0.45 mm were found as compared with that of pH. Higher ionic 
strength inhibited U re-adsorption on UMT6–10 mm at pH 3.0. Previous 
studies suggested that, U re-adsorption on UMT6–10 mm and UMT<0.45 mm 
under varied pHs was mainly regulated by internal complexation and 
surface precipitation, while ion exchange and external complexation 
mainly affected U re-adsorption on UMT6–10 mm at pH 3.0 (Shao et al., 
2009; Fan et al., 2011; Jin et al., 2016). Based on PHREEQC calculation 
(Fig. 4c, d), solution U speciation was identical when the concentration 
of the background electrolyte of NaCl was changed from 0.01 M to 
0.1 M. Therefore, the influence of ion strength on U re-adsorption was 
not related to aqueous U speciation. Clay minerals tended to combine 
with U(VI) by cation exchange or surface complexation, while the 
former would be more prevailing in acidic environment (Turner et al., 
1996). Based on XRD results (Fig. S3), muscovite and chlorite were main 
clay minerals in UMT6–10 mm. Moreover, the cooperative relationship 
rather than the competitive effect between cations and UO2

2+ was found 

in U adsorption on muscovite (Lee et al., 2009). Therefore, the elevated 
U re-adsorption on UMT6–10 mm at pH 3.0 was probably controlled by 
cation exchange of chlorite. 

3.2.4. Ligand type 
The type of ligands can affect the U re-adsorption behavior, because 

different ligands can promote the formation of different U-bearing so-
lution complexes or minerals (Kang et al., 2002; Gavrilescu et al., 2009). 
The influences of phosphate and sulfate on U re-adsorption were eluci-
dated in this study (Fig. 5a). Consistent with previous studies (Bostick 
et al., 2002; Pan et al., 2011), enhanced U re-adsorption was observed in 
the presence of 0.01 M phosphate as compared to 0.01 M chloride 
(except in the pH = 2.0 condition). The pH envelopes of U re-adsorption 
on UMT6–10 mm and UMT<0.45 mm were almost identical with more than 
90% of the added U re-adsorbed at pH ≥ 3.0. With 0.01 M phosphate, U 
predominantly existed as soluble UO2(H2PO4)2 at pH < 3.6, while 
(UO2)3(PO4)2•4H2O would precipitate at pH > 3.6 and thus led to high 
fraction of re-adsorbed U (Fig. 5c). Additionally, the formation of 
ternary complexes on UMTs surface, which bear U and phosphate, may 
promote U re-adsorption, which had also been observed on ferrihydrites 
(Payne et al., 1996), goethite-coated sand (Cheng et al., 2004), kaolinite 
(Liang et al., 2010) and montmorillonite (Troyer et al., 2016). As for 
0.01 M sulfate, the amount of re-adsorbed U on UMT<0.45 mm increased 
with pH increasing from 3.0 to 8.0, while the amount of re-adsorbed U 

Fig. 4. Effects of pH and ionic strength on U re-adsorption (a, b) and aqueous U speciation (c, d) in UMT6–10 mm and UMT<0.45 mm at C0 = 6.3 × 10− 5 mol L− 1 under 
the conditions of m/V = 10 g L− 1, T = 25 ◦C. 
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on UMT6–10 mm had a broad maximum at pH 5.0. UO2SO4 and UO2
2+

were the most dominant U species between pH 2.0 and 5.2, while the 
precipitation of schoepite would occur at pH > 5.2, which might have 

led to the maximum of U re-adsorption observed at pH 5.0 (Fig. 5b). The 
decline in U re-adsorption on UMT6–10 mm with further increased pH can 
be attributed to the occurrence of highly soluble UO2(CO3)2

2- (Barnett 

Fig. 5. Variations of U re-adsorption rate (a) and aqueous U speciation (b, c) in UMT6–10 mm and UMT<0.45 mm as a function of pH at 0.01 M SO4
2− and 0.01 M PO4

3−

under the conditions of C0 = 6.3 × 10− 5 mol L− 1, m/V = 10 g L− 1, T = 25 ◦C. 

Fig. 6. Fitted U 4f XPS spectra for UMT6–10 mm (a–c) and UMT<0.45 mm (d–f) after U re-adsorption under different conditions. Raw data was displayed with discrete 
points and fitted curves with solid lines. 
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et al., 2002; Jo et al., 2018), because UMT6–10 mm contained consider-
able amount of calcite and thereby was conducive to the formation of 
uranyl carbonates. In addition, at pH < 5.2, when excluding the effect of 
schoepite, it was found that 0.01 M sulfate promotes U re-adsorption on 
UMT6–10 mm as compared with 0.01 M chloride except for pH = 3.0 
(Figs. 5a, 4a). Therefore, elevated U re-adsorption capacity can be ob-
tained with the occurrence of phosphate or sulfate, which leads to the 
formation of complexes promoting U re-adsorption during leaching test, 
excluding the condition of pH = 3.0, when U re-adsorption was mainly 
controlled by cation exchange of clay minerals. Moreover, remarkable U 
re-adsorption capacity observed in the occurrence of phosphate than 
sulfate can be attributed the better affinity of phosphate on UMTs sur-
face, which had also been observed in U adsorption on kaolinite (Liang 
et al., 2010). 

3.3. Uranium Re-adsorption mechanism 

To identify and quantify solid-phase U speciation, post-re-adsorption 
UMTs were analyzed by XPS. XPS U(4f) spectra of UMT6–10 mm 
(Fig. 6a–c) were slightly shifted to lower BEs as compared to those of 
UMT<0.45 mm (Fig. 6d–f). For both post-re-adsorption UMT6–10 mm 
(Fig. 6a) and UMT<0.45 mm (Fig. 6d) from the experiments with 0.01 M 
chloride, their XPS U(4f) spectra contained a reduced U(IV) faction with 
the low BEs at ~380.5 eV and corresponding shake-up satellites (Teterin 
and Teterin, 2004). Uranium(VI) reduction in both UMT6–10 mm and 
UMT<0.45 mm might result from the existence of muscovite (Fig. S4), 
which contains Fe(II) and has been corroborated to be able to reduce U 
(VI) even in aerobic environment (Ilton et al., 2006; Arnold et al., 2006). 
Moreover, the decreased intensities of muscovite d001 signals were 
observed in post-re-adsorption UMT6–10 mm and UMT<0.45 mm as 
compared to pre-re-adsorption UMTs (Fig. S4), indicating that the 

Fig. 7. BSE images and mapping of UMT6–10 mm (a, c) and UMT<0.45 mm (b, d) after U re-adsorption at C0 = 6.3 × 10− 4 mol L− 1, pH = 4.0. EDS results of brighter 
area indicated the site where U enrichment was observed. Different phases were distinguished by different colors in BSE mapping images. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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interlayer spacing of muscovite had been altered during U(VI) reduc-
tion. Two U(VI) species with separate coordination environments were 
present in post-re-adsorption UMT6–10 mm and UMT<0.45 mm (Fig. 6a, d). 
BSE-EDS analysis was used for the assignation of these U(VI) species 
(Fig. 7). Due to its high atomic number, the distribution of U was easily 
identified in BSE. Meanwhile, the elemental composition of the brighter 
area where U enrichment occurred was determined by EDS. In both 
UMT6–10 mm and UMT<0.45 mm, U re-adsorption on aluminosilicates were 
observed, which were most likely albite and muscovite based on XRD 
results (Fig. S3). In UMT6–10 mm, the distribution of U was also associated 
with the distributions of Fe and Mg, probably with minerals like chlorite. 
The higher U adsorption capacity on chlorite as compared to the 
non-mafic assemblage in granitic rocks has been observed repeatedly 
(Ilton et al., 2004). An elevated amount of chlorite in UMT6–10 mm might 
play a crucial role in U re-adsorption. Based on BSE mapping (Fig. 7c, d), 
elevated U content (U = 0.54%) was present in a phase (yellow color) 
that contained Al and Si, relative to U content (U = 0.04%) in another 
phase (red color) that only contained Si. This observation indicated that 
the affinity to aluminol during U re-adsorption was higher than that to 
silanol edge sites, which is in well agreement with the findings of Ilton 
et al. (2004) and Křepelová et al. (2007). The enrichment of U was also 
associated with elevated Fe contents in different phases, which might 
result from U(VI) reduction by Fe(II) in muscovite (Fig. 7d). Further-
more, U re-adsorption on the interlayer of mica could occur through 
cation exchange (Lee et al., 2009). Therefore, combined U reduction and 
adsorption effects of muscovite probably contributed to the elevated 
re-adsorbed U observed in UMT<0.45 mm during the isotherm and kinetic 
experiments. 

To reveal the underlying U re-adsorption mechanism when sulfate 
was added, UMT6–10 mm and UMT<0.45 mm samples with extensive U re- 
adsorption were analyzed. Their XPS U(4f) spectra were also fitted with 
two U(VI) and one U(IV) components (Fig. 6b and e). ~21% of total 
adsorbed U was U(IV) in UMT<0.45 mm at pH = 8.0, while ~11% was U 
(IV) in UMT6–10 mm at pH = 5.0. Enhanced U(VI) reduction under higher 
pH was also observed in Fox et al. (2013), as a result of enhanced 
electron transfer between Fe(II) and U(VI) at higher pH. The disap-
pearance of muscovite in XRD spectra of both post-re-adsorption 
UMT6–10 mm and UMT<0.45 mm also suggested that muscovite was 
consumed during U adsorption/reduction in sulfate-containing solutions 
(Fig. S4). Both U-bearing phyllosilicates and mineral particles were 
observed in BSE images of post-re-adsorption UMT6–10 mm and 
UMT<0.45 mm in the occurrence of 0.01 M sulfate (Fig. S5). Based on XRD 
results, U-bearing phyllosilicates could be mainly ascribed to muscovite 
and chlorite (Fig. S3). The dominant roles that phyllosilicates’ 
edge-surfaces play in U adsorption under circumneutral conditions 
(Sylwester et al., 2000; Hennig et al., 2002), and the elevated amounts of 
U re-adsorption on muscovite and chlorite relative to quartz and albite 
have been proved (Arnold et al., 2001). Furthermore, these two samples 
were oversaturated with respect to schoepite (Fig. 5b). Therefore, the U 
(VI) components observed in XPS could be assigned to U(VI) 
re-adsorption on phyllosilicates and schoepite. 

The use of 0.01 M phosphate in the experiments narrowed and 
shifted the XPS U(4f) peaks to higher BEs as compared to the 0.01 M 
sulfate and 0.01 M chloride experiments. Two U(VI) components and 
related shake-up satellite were present in the XPS U(4f) spectra of 
UMT6–10 mm and UMT<0.45 mm, whereas no U(IV) peaks were observed 
(Fig. 6c and f). The minor U(VI) contributor located at 382.8 eV could be 
ascribed to (UO2)3(PO4)2.4 H2O precipitate (Teterin et al., 2000), which 
was consistent with the PHREEQC calculation (Fig. 5c). The U-con-
taining particles observed in the BSE images of UMT6–10 mm (Fig. S6a) 
and UMT<0.45 mm (Fig. S6b) were also most likely (UO2)3(PO4)2.4 H2O 
precipitate. Meanwhile, re-adsorbed U(VI) on the surface of UMT6–10 mm 
and UMT<0.45 mm observed in the BSE images probably was the main U 
(VI) contributor in the XPS U(4f) spectra, which accounted for ~90% of 
the total U. 

4. Conclusions and environmental implications 

Uranium containing solids including UMTs, soils, sediments and 
other kind of solid wastes are the primary U contamination sources in 
the environment. Substantial amounts of U and associated toxic metals 
would be mobilized from these solids due to physico-chemical weath-
ering, posing well-known ecological risks. However, previous studies 
only explored the adsorption behavior of U on pure minerals (Guo et al., 
2009; Singer et al., 2009; Estes and Powell, 2020; Yu et al., 2020), the 
re-adsorption behavior of U on actual U containing solids was rarely 
studied. This study showed that a considerable amount of aqueous U 
could be soon re-adsorbed by UMTs during leaching. The environmental 
hazards and ecological risks of these (waste) solids might have been 
underestimated resulting from the ignorance of rapid occurrence of 
re-adsorption, since the re-adsorbed metals would release into the 
environment again. Thus, the re-adsorption behavior and fundamental 
mechanism typical of U from UMTs under environmentally relevant 
conditions can provide updated understanding and more accurate 
assessment on the toxic U/other metals release potential and migration 
capacity from the solids. 

The distinction in mineralogical compositions of UMTs with different 
particle sizes resulted in diverse interfacial conditions and mechanisms 
for promoting/inhibiting U re-adsorption under different conditions. 
The multiple mechanisms behind re-adsorption behavior illustrated in 
this study shed lights on U remediation strategy towards U containing 
(waste) solids. According to our findings, the presence of chlorite, albite 
and muscovite can significantly facilitate the re-adsorption process and 
immobilize U in the UMTs. The waste solids bearing above-mentioned 
minerals can enhance the capability of re-adsorbing U and other 
metals, and consequently mitigate the ecological risk. Moreover, our 
study suggests that the addition of sulfate and phosphate can also 
enhance the re-adsorption of leached U. These insights are helpful in 
developing effective in-situ remediation schemes. 
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