2021 年 8 月 August 2021

DOI: 10.11817/j.ysxb.1004.0609.2021-35995

滇西北羊拉铜多金属矿床铅锌 成矿作用初步研究

扫码点击 增强内容

李 波¹, 向佐朋¹, 王新富¹, 黄智龙², 唐 果^{1,3}, 刘月东⁴, 邹国富^{1,3}, 岳 言¹

(1. 昆明理工大学 国土资源工程学院/有色金属矿产地质调查中心,

西南地质调查所,昆明 650093;

2. 中国科学院 地球化学研究所, 矿床地球化学国家重点实验室,贵阳 550081;

3. 中国有色金属工业昆明勘察设计研究院有限公司, 昆明 650051;

4. 云南迪庆矿业开发有限责任公司,香格里拉 674400)

摘 要: 羊拉铜矿床位于金沙江构造带中部,为滇西北地区最为典型的铜矿床,铅锌矿体为近年来的找矿 新发现,铅锌成矿作用及其与铜矿体的成因联系成为亟待解决的科学问题。本文在野外坑道编录及室内岩 矿鉴定的基础上,重点研究了铅锌矿体的稀土元素及 C-O、S、Pb、Zn 同位素地球化学。研究表明:①羊 拉矿床的铅锌矿体主要为矽卡岩型,呈层状、似层状、脉状、透镜体状分布于矽卡岩型铜矿体的边缘,与 砂卡岩型铜矿体共同产出,明显具分支复合、尖灭再现的特征;其次为热液脉型,呈不规则细脉状充填于 构造破碎带内;与铅锌成矿作用相关的方解石可分为早阶段方解石(I)和晚阶段方解石(II)。②早成矿阶段 方解石(I)主要呈他形晶不规则团块状产出, ΣREE 在 24.05×10⁻⁶~104.50×10⁻⁶之间, δEu 显示正异常、δCe 显示弱负异常,稀土元素配分模式为轻稀土富集的右倾型曲线;δ¹³C_{PDB}在-6.52‰~-4.07‰之间,δ¹⁸O_{SMOW} 在 5.04‰~9.94‰之间,成矿物质主要来源于花岗岩质岩浆。晚成矿阶段方解石(II)呈脉状产出, ΣREE 在 28.71×10⁻⁶~114.60×10⁻⁶之间, δEu显示正异常、δCe显示弱负异常,稀土元素配分模式为轻稀土富集的右 倾型曲线;δ¹³C_{PDB}在-3.81‰~-3.53‰之间,δ¹⁸O_{SMOW}在14.36‰~17.30‰之间,成矿物质来自于花岗岩质岩 浆与海相碳酸盐岩的混合。③早、晚成矿阶段方解石均为热液成因,其稀土元素并无明显差异。④38件硫 化物的 δ^{34} S在-2.48‰-2.32‰之间,总硫同位素接近于零值,表明成矿物质来源于地幔和深部地壳,属岩浆 源硫。⑤15件硫化物的铅同位素变化范围小,²⁰⁸Pb/²⁰⁴Pb=38.7501~38.7969,²⁰⁷Pb/²⁰⁴Pb=15.7159~15.7248, ²⁰⁶Pb/²⁰⁴Pb=18.3640~18.3874,表明铅锌矿体中铅主要来源于上地壳。⑥5 件闪锌矿 Zn 同位素的 δ⁶⁶Zn_{JMC} 值 在 0.31‰~0.44‰之间,明显大于其他矽卡岩型铅锌矿床,亦揭示成矿物质 Zn 主要来源于岩浆。⑦羊拉矿 床矽卡岩型铅锌矿体与矽卡岩型铜矿体在赋矿层位、形态产状、矿物组合、矿石组构、围岩蚀变、控矿因 素以及 C-O、S、Pb 同位素组成等方面均无明显差异,反映铅锌矿体与铜矿体均为矽卡岩成因,铅锌矿体 的形成稍晚于铜矿体,分布于铜矿体的边缘。综合上述资料,本文建立了羊拉矿床铜铅锌成矿模式。 关键词:铅锌矿体;方解石;稀土元素;同位素;羊拉铜多金属矿床;滇西北

文章编号: 1004-0609(2021)-08-2279-34 中图分类号: P611; P597 文献标志码: A

引文格式:李 波,向佐朋,王新富,等. 滇西北羊拉铜多金属矿床铅锌成矿作用初步研究[J]. 中国有色金属 学报,2021,31(8):2279-2312. DOI: 10.11817/j.ysxb.1004.0609.2021-35995

LI Bo, XIANG Zuo-peng, WANG Xin-fu, et al. Primary study on lead-zinc mineralization of Yangla copper polymetallic deposit, northwest Yunnan province, China[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(8): 2279–2312. DOI: 10.11817/j.ysxb.1004.0609.2021-35995

基金项目:国家自然科学基金资助项目(41862007, 41402072);云南省万人计划青年拔尖人才资助项目(YNWR-QNBJ-2018-093); 昆明理工大学重点学科建设资助项目(14078384)

收稿日期: 2020-08-05; 修订日期: 2020-11-12

通信作者: 李 波, 教授, 博士; 电话: 15987187981; E-mail: libo8105@qq.com

"三江"特提斯构造带位于特提斯-喜马拉雅 全球构造带东段[1],是我国大陆重要的特提斯构造 带之一[2]。金沙江构造带隶属"三江"特提斯构造 带,位于昌都-思茅陆块东缘、中咱-中甸陆块西 缘^[3]。羊拉铜矿床位于金沙江构造带中段(见图 1(a)),夹持于区域性近 SN 向的金沙江断裂和羊拉 断裂之间,经历了长期的地史演化过程^[4],是区内 探明铜资源储量最大且最为典型的铜矿床。截止目 前,前人对羊拉铜矿床的矿床地质^[5-6]、成矿流 体[7-9]、地球化学[10-12]、构造特征[13-15]、构造地球 化学^[16-17]、成岩-成矿时代^[18-20]、矿床成因^[21-23]等 方面开展了大量的研究,但矿床成因类型仍争议不 断,主要有海底喷流-沉积型(SEDEX)^[24-25]、斑岩

型^[26]、矽卡岩型^[22,27]及复合叠加成因^[3,28]等观点。 近年来,随着矿区勘探程度的深入,在铜矿体深部 陆续揭露到铅锌矿体,铅锌成矿作用机制及其与铜 矿体的成因联系成为亟待解决的新科学问题。基于 此,本文选取羊拉矿床的铅锌矿体开展稀土元素及 C-O、S、Pb、Zn 同位素地球化学研究,讨论铅锌 成矿作用,进而探讨铅锌矿体与铜矿体的成因联 系,并建立了铜铅锌成矿模式。

矿区地质概况 1

羊拉铜矿床位于云南省德钦县羊拉乡境内,主 要由 7 个矿段组成,由北往南依次为贝吾、尼吕、

Fig. 1 Geographical tectonic location map(a) and geology map(b) of Yangla copper deposit^[1] C)1994-2021 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

(C)1

江边、里农、路农、通吉格和加仁矿段^[16],其中富 矿体(KT2)主要分布于里农矿段(见图 1(b))。矿区内 出露地层主要为志留系、泥盆系、石炭系(见图 2),

岩性主要为绢云砂质板岩、大理岩、变质石英砂岩 及玄武岩等。赋矿地层主要为泥盆统江边组(D₁ j) 和里农组(D₂₊₃ l),赋矿岩性以透辉石砂卡岩、石榴

Fig. 2 Profile map of 23 line prospecting lines in Linong ore block, Yangla copper deposit^[29] (C)1994-2021 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cf

石砂卡岩为主,次为大理岩、变质石英砂岩、绢云 砂质板岩、花岗闪长岩以及花岗斑岩。矿体呈层状、 似层状、透镜体状及脉状产出于岩体与围岩的接触带 附近及破碎带内,明显受地层、岩体及构造控制^[29]。 羊拉矿区夹持于金沙江断裂和羊拉断裂之间^[1],受 多期强烈构造活动影响,矿区内褶皱、断层发育。 矿区内江边向斜和里农背斜以及受岩浆侵入活动 所形成的一系列层间断裂和破碎带,为成矿流体运 移和储矿提供了有利空间^[15]。NE向断裂是成矿后断 裂(以 F₄ 断裂为代表),F₄ 断裂早期为压性断层,后 期转变为张扭性正断层,破坏了矿体的南延部分^[30]。

羊拉矿床的铅锌矿体主要分布于里农矿段的 3175 m、3150 m、3100 m、3075 m 和 3050 m 中段, 铅锌矿体走向呈 NNW 向-近 SN 向,倾向 W,倾角 一般为 15°~45°;已控制矿体走向长约 500 m,倾向 延深 50~150 m(见图 2),矿体厚 0.21~9.95 m,铅+ 锌品位 0.74%~21.34%;矿体主要呈层状、似层状、 脉状、透镜体状分布于矽卡岩型铜矿体的边缘(见图 3),与矽卡岩型铜矿体共同产出,明显具分支复合、 尖灭再现的特征;矿体顶、底板围岩均为薄层状绢 云砂质板岩、变质石英砂岩,围岩具强砂卡岩化。 铅锌矿石类型主要为砂卡岩型(见图 3),另有少量为 热液脉型,呈不规则细脉状充填于构造破碎带内。 铅锌矿体中可见粗粒闪锌矿为棕褐色-深褐色自形 晶,呈断续不等的脉状、团块状产出,沿闪锌矿边 部有方解石细脉平行产出,两者为共生关系;铅锌 矿体内亦发育晚阶段方解石脉,明显切穿闪锌矿 脉。方铅矿呈铅灰色亮金属光泽,多呈浸染状分布 于闪锌矿内及方解石脉中,少量呈团块着分布于矽 卡岩型铜矿体的边部;局部地段可见闪锌矿、黄铁 矿、方解石、方铅矿呈细脉状互层产出。

铜矿体上部为弱方解石化、下部为强方解石化 (见图 3 中蓝色虚线所示),铅锌矿体具强方解石化; 铅锌矿体分布于铜矿体的下方,呈现"上铜+下铅 锌"垂向分带模式,有别于传统的"上铅锌+下 铜"矿床垂向分带模式。本文认为形成这种分带模 式可能有两种原因:一种原因是铅锌矿体与铜矿体 为同一期(或成矿阶段)成矿作用而成,铅锌矿体虽 位于铜矿体的下部,但实则为铜矿体的边缘部;这 种可能也就预示着铜矿体逐渐尖灭,其深部的找矿

图 3 羊拉铜矿床 3100 m 中段 18[#]穿脉铅锌矿体素描图

Fig. 3 Drawing of lead- zinc ore body in No.18[#] cross vein at 3100 m level tunnel, Yangla copper deposit (C)1994-2021 China Academic Journal Electronic Publishing House. All rights reserved. http://www

潜力极为有限;另一种原因是铅锌矿体与铜矿体为 不同期(或成矿阶段)成矿作用形成,晚期(或晚阶段) 形成的铅锌矿体叠加在早期(或早阶段)铜矿体上, 这种可能则预示着深部还有较大的找矿潜力。目前 的地质证据显示前者的可能性更大。

砂卡岩型铅锌矿石的结构主要为自形-他形晶 粒状结构、交代残余结构、溶蚀-骸晶结构、碎裂 结构等,矿石构造主要为脉状、块状、团块状、浸 染状、条带状、角砾状等。金属矿物主要为黄铁矿、 闪锌矿、方铅矿(见图 4(a)、(b)、(c)),以及少量磁 黄铁矿、黄铜矿、斑铜矿;非金属矿物主要为石英、 方解石等,绿泥石、白云石、绢云母等次之(见图 4(d)、(e)、(f))。黄铁矿呈自形-他形晶粒状,常被 方铅矿、闪锌矿等矿物所包裹或者交代(见图 4(g)、 (h)、(i));磁黄铁矿形成较早,呈他形粒状集合体(见 图 4(j))。闪锌矿、方铅矿多呈他形晶粒状共生产出, 晚阶段闪锌矿(II)明显切穿早阶段闪锌矿、方铅矿 (见图 4(k));早阶段黄铜矿(I)呈他形晶粒状,被闪

图4 羊拉铜矿床铅锌矿石的宏观、微观特征

锌矿、方铅矿所交代(见图 4(h)),晚阶段黄铜矿(II) 呈乳滴状分布于闪锌矿中(见图 4(l))。

根据羊拉矿床的铅锌矿体特征、矿石特征、矿 物组合以及不同矿物间的穿插、交代关系,本文将 羊拉矿床铅锌矿体的形成划分为成矿前期和成矿 期。其中,成矿期又划分为早成矿阶段和晚成矿阶 段,成矿前期主要形成钙铁榴石、透辉石、绿帘石、 磁铁矿等砂卡岩矿物,钙铁榴石多呈菱形十二面体 或四角八面体的自形-半自形粒状结构,透辉石主 要以他形粒状结构产出,绿帘石呈浅绿色他形晶粒 状填充于干砂卡岩阶段的矿物颗粒间或裂隙中,磁 铁矿则多呈自形-半自形晶粒状结构。早成矿阶段形 成了大量的黄铁矿、黄铜矿、磁黄铁矿、斑铜矿等 硫化物,以及少量的方铅矿和闪锌矿等;非金属矿

表1 羊拉矿床铅锌矿体的矿物生成顺序表

 Table 1
 Mineral formation sequence of lead-zinc orebody in Yangla copper deposit

物主要为石英、绢云母和少量绿泥石(见图 4(d)、(e)、 (f))。晚成矿阶段主要形成闪锌矿、方铅矿、黄铁矿 以及少量黄铜矿等硫化物,非金属矿物主要为方解 石,以及少量的石英、白云母和绢云母等(见表 1)。

2 样品采集与测试分析

本文矿石样品全部采自羊拉铜矿床里农矿段 的铅锌矿体,均为砂卡岩型铜铅锌矿石;采样时尽 量选取不同成矿阶段的代表性样品,并兼顾了空间 上的变化。其中,矿石 3175-d120-5 采自 3175 m 中 段坑道内,矿石中方解石主要呈团块状与大量硫化 物共生产出;矿石 3150-0[#]-1 和 3150-0[#]-2 采自 3150 m 中段坑道内,矿石中方解石主要呈不规则团块状

发育; 矿石 3100-18-3、3100-18-6 和 3100-18-7 采 自 3100 m 中段坑道内, 矿石中发育有多阶段方解 石,可见晚阶段方解石切穿早阶段方解石、铅锌矿 脉; 矿石 3075-9[#]-1、3075-5-2、3075-5-3 采自 3075 m中段坑道内,矿石中方解石呈细脉状和团块状产 出; 矿石 3050-3-2-4 采自 3050 m 中段坑道内, 矿 石中方解石主要呈不规则团块状、脉状产出。羊拉 铜矿床的铅锌矿石中硫化物的生成顺序见表 1, 方 解石主要形成于两个阶段;早阶段方解石(I)呈白 色团块状分布于砂卡岩型铅锌矿石中,金属矿物黄 铁矿、闪锌矿、方铅矿等亦呈团块状分布, 方解石 与金属矿物之间无明显的切穿或交代关系,为同一 成矿阶段的产物(见图 5(a)、(b));晚成矿阶段方解 石(II)呈灰白色脉状产出,明显切穿早阶段闪锌矿-方铅矿-黄铁矿-方解石,晚成矿阶段方解石脉中可 见自形--半自形晶黄铁矿、黄铜矿、方铅矿、闪锌 矿呈浸染状分布(见图 5(c)、(d))。

家重点实验室完成,所用仪器型号为德国耶拿分析 仪器股份公司生产的 Plasma Quant-MS Elite 型电感 耦合等离子体质谱仪,样品分析数据相对精度优于 10%。实验流程如下:先称取粒径 < 74 µm 样品 50 mg,放入 Teflon 坩埚中,加入 1 mL HF 和 1 mL HNO₃,加盖拧紧放入钢套中,置于烘箱内升温 185 ℃分解 40 h;取出冷却后低温蒸干;然后加入 1 mL HNO₃后继续蒸干;于坩埚中准确加入 200 ng 的 Rh 内标溶液, 2 mL HNO₃、3 mL 去离子水,置 于电热板升温 150 ℃加热 5 h。冷却后取出坩埚, 摇匀,取 0.4 mL 溶液,在用去离子水稀释定容至 10 mL 待测。详细流程及分析方法参照^[31]。

2.2 C-O 同位素测试

方解石 C、O 同位素组成在中国科学院矿床地 球化学国家重点实验室完成,分析采用 100%磷酸 法。在 25 ℃温度下,将样品与磷酸发生反应后释 放出的 CO₂ 在 Finnigan MAT 251 EM 型质谱仪上进 行 C、O 同位素组成测定,分析结果以 V-PDB 为标 准。为便于讨论,O 同位素利用平衡方程 δ¹⁸O_{SMOW}=

2.1 稀土元素测试

稀土元素测试在中国科学院矿床地球化学国

1.03091×δ¹⁸O_{PDB}+30.91,转换为以 SMOW 标准表示,分析精度为±0.2%(2σ)^[32]。

2.3 S 同位素测试

将清洗干净后的硫化物(方铅矿、闪锌矿、黄铁 矿)用玛瑙研钵磨至<74 μm,称取适量的粉末样品, 在中国科学院矿床地球化学国家重点实验室 MAT-253 气体质谱仪上完成硫同位素组成分析。以 Vienna Canyon Diablo Troilite (V-CDT)作为参照标 准,以 STD-1(-0.22%)、STD-2 (22.57%)、STD-3 (-32.53%)为标样校正,测试误差±0.1‰^[33]。

2.4 Pb 同位素测试

单颗粒方铅矿、闪锌矿和黄铁矿 Pb 同位素分 析在澳大利亚昆士兰大学同位素实验室多接收器 等离子体质谱仪(MC-ICPMS)上进行,该仪器对 1 μg 的铅²⁰⁸Pb/²⁰⁶Pb 测量精度优于 0.005%。测试过 程中使用国际标准 NBS 981 进行监控。详细分析流 程见文献[33]中所述。

2.5 Zn 同位素测试

Zn 同位素的化学分离和测试由北京科荟测试 技术有限公司负责完成。称取 150 mg 左右样品于 20 mL 高压消解罐中,加入 0.5 mL HNO₃和 1 mL HF,盖上盖子,放入烘箱升温至 195 ℃分解 48 h; 冷却取出后 150 ℃蒸干至湿盐状,随后加入 0.5 mL HNO₃继续蒸干除去 HF,重复一次;然后,加入 1 mL HCl,蒸干,加入 1 mLHCl (7 mol/L);上柱。 Zn 同位素的分离是用阴离子树脂 AG MP-1(74~150 µm,Bio rad)完成的,依次用 39 mL HCl(7 mol/L)、 20 mL HCl(2 mol/L)淋洗 Cu 和其他基质、Fe,最后 用 10 mL HNO₃(0.5 mol/L)接收 Zn,提纯并将得到 的 Zn 溶液蒸干,转化为 HNO₃ 介质(质量分数为 2%),待测。

Zn同位素测试工作在Neptune Plus型高分辨多 接受电感耦合等离子体质谱仪(MC-ICP-MS)上完 成,采用标准-样品交叉法(SSB)对仪器的质量分馏 进行校正^[34]。在测试样品之前,使用 CAGS Zn 1µg/mL 标准溶液对仪器进行参数优化,包括等离 子体部分(矩管位置和载气流速等参数)和离子透镜 参数,以达到最大灵敏度。将化学分离后的样品引 入质谱,使得 δ^{66} Zn的信号强度为3V左右。样品 测试完成后,使用 2%HNO₃清洗进样系统,然后开 始下一个样品的测量。测试采用 CAGS Zn 作为标 准样品,所得结果按文献所验证的值换算为样品对 JMC30749-L Zn的值, δ^{68} Zn的值由 δ^{66} Zn的值和仪 器测试的质量分馏因子相乘所得。换算方式如下: δ^{66} Zn_{MC}-Zn‰= δ^{66} Zn_{CAGS}-Zn‰-0.45^[35-36]。

3 测试结果

3.1 稀土元素

羊拉矿床铜矿石、大理岩、绢云砂质板岩、变 质石英砂岩、花岗闪长岩和铅锌矿石中的方解石的 稀土元素含量统计于表 2。早阶段方解石(I)(n=7) 的 Σ REE 含量较高,且变化范围很大(Σ REE= 24.05×10⁻⁶~104.50×10⁻⁶,平均为 61.26×10⁻⁶), LREE 为 19.07×10⁻⁶~88.61×10⁻⁶,HREE 为 4.10× 10⁻⁶~15.89×10⁻⁶,LREE/HREE 为 3.83~10.16,平 均为 7.25,(La/Yb)_N为 5.36~21.87,反映LREE、 HREE 分异显著; δ Eu=1.77~3.90,平均为 2.49,显 示为正 Eu 异常; Ce 为弱负异常(δ Ce=0.58~0.88, 平均为 0.76)(见表 2);稀土配分模式曲线显示为轻 稀土(LREE)富集的右倾型(见图 6(a))。

晚阶段方解石(II) (*n*=3)的 ΣREE 含量高,且变 化范围最大(ΣREE=28.71×10⁻⁶~114.60×10⁻⁶,平均 为 66.40×10⁻⁶), LREE 为 24.84×10⁻⁶~96.21×10⁻⁶, HREE 为 3.87×10⁻⁶~18.42×10⁻⁶, LREE/HREE 为 5.15~6.42,平均为 5.60, (La/Yb)_N为 9.19~11.27,也 说明 LREE、HREE 分异明显; δEu=1.22~2.86,平均 1.91,显示为正 Eu 异常; Ce 为弱负异常(δCe=0.75~ 0.89,平均为 0.83)(见表 2);稀土配分模式曲线显示 为轻稀土(LREE)富集的右倾型(见图 6(a))。

铜矿石(*n*=9)的 ΣREE 含量很低,且变化范围大 (ΣREE=9.54×10⁻⁶~93.54×10⁻⁶,平均为44.58×10⁻⁶), LREE 为 4.63×10⁻⁶~80.28×10⁻⁶,HREE 为 4.90× 10⁻⁶~15.06×10⁻⁶;LREE/HREE=0.94~8.43,平均为 3.561,(La/Yb)_N=0.34~7.85,反映轻重稀土分异不 明显;δEu=1.06~2.18,平均为 1.66,显示正 Eu 异 常;Ce 为弱负异常(δCe= 0.61~0.97,平均为 0.79)(见 表 2);稀土配分模式曲线总体显示为轻稀土弱富集 的近平坦型(见图 6(b))。

表 2 羊拉铜矿床铅锌矿体方解石以及铜矿石、大理岩、绢云砂质板岩、变质石英砂岩和花岗闪长岩稀土元素组成 Table 2 Rare earth element concentrations of granodiorite, sericitization sandy slate, metamorphic quartz sandstone, marble, copper ore and calcite in Zn-Pb ore, Yangla copper deposit

Samula No.										w/10 ⁻⁶									1/11	(Lo/Vb)	SE.	8Ca	(Vb/La)	(Vb/Ca)	. w(V)/w/I	Io) w(I	a)/w(Ua)
Sample No.	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	Y	ΣREE	LREE	HREE	DII	(La/10) _N	oLu	oce	(TULA)N	(Tuca)	, w(1)/w(1	10) w(L	a) w(110)
													Early s	tage calc	ite(I)												
3175-d120-5	19.3	32.6	5.07	22.7	5.63	3.31	5.71	0.78	4.40	0.83	2.05	0.27	1.63	0.22	38.6	104.5	88.61	15.89	5.58	7.98	1.77	0.78	0.12	1.12	46.39)	23.2
3150-0"-1	13.3	21.3	2.43	9.47	1.95	2.49	1.91	0.27	1.49	0.27	0.66	0.08	0.44	0.06	11.4	56.12	50.94	5.18	9.84	20.38	3.90	0.84	0.05	0.30	41.6		48.54
3150-0#-2	12.3	21.4	2.54	10.1	2.2	1.58	2.14	0.31	1.88	0.35	0.86	0.11	0.62	0.08	14.0	56.47	50.12	6.35	7.90	13.31	2.20	0.88	0.07	0.43	40.23	3	35.34
3075-9 [#] -1	15.1	27.3	3.86	16.3	3.37	2.22	3.17	0.43	2.41	0.48	1.20	0.15	0.96	0.15	21.4	77.10	68.15	8.95	7.62	10.64	2.05	0.84	0.09	0.66	44.90	5	31.72
3075-5-2	15	18.7	3.15	13.4	2.96	2.05	3.2	0.46	2.77	0.55	1.34	0.17	0.93	0.12	24.7	64.79	55.26	9.53	5.80	10.90	2.03	0.62	0.09	0.64	44.90	,)	27.32
3075-5-3	5.61	6.2	1.01	4.32	1.04	0.89	1.31	0.20	1.36	0.32	0.86	0.12	0.71	0.11	16.1	24.05	19.07	4.98	3.83	5.36	2.33	0.58	0.19	0.48	50.9	5	17.75
3050-3-2-4	10.8	16.8	2.17	8.53	1.68	1.71	1.56	0.22	1.17	0.21	0.51	0.06	0.33	0.04	9.23	45.79	41.69	4.10	10.16	21.87	3.18	0.79	0.05	0.23	43.54	1	50.94
													Late et	ane calcit	te(II)												
3100-18-3	11.3	19.8	2.26	9.45	2.47	1.52	3.18	0.46	2.81	0.54	1.21	0.14	0.68	0.09	25.0	55.89	46.80	9.09	5.15	11.27	1.66	0.80	0.09		0.46	16.61	21.09
3100-18-6	22.5	39.3	5.23	21.4	5.48	2.3	6.05	0.92	5.64	1.09	2.54	0.31	1.65	0.22	44.6	114.6	96.21	18.42	5.22	9.19	1.22	0.84	0.11		1.13	40.04	21.08
3100-18-7	6.64	9.64	1.26	5.12	1.1	1.08	1.2	0.17	1.07	0.22	0.57	0.08	0.48	0.07	10.6	28.71	24.84	3.87	6.42	9.35	2.86	0.75	0.11		0.33	40.92	20.04
				-						-				v(-			0.75				47.55	29.18
	2.52	2.15	0.50	2.02	0.10	0.00	0.66	0.10	0.60	0.12	0.26	0.04		viarbie	2.02	12.20	10.14	216	1.00	0.07	1.00	0.55	0.10		0.15	(1.0)	
ZK5103-H30	3.52	3.46	0.50	2.02	0.42	0.23	0.66	0.10	0.60	0.13	0.36	0.04	0.24	0.03	7.97	12.30	10.14	2.16	4.69	9.97	1.32	0.55	0.10		0.17	61.31	27.08
ZK5103-H31	4.26	4.64	0.59	2.53	0.46	0.35	0.76	0.10	0.61	0.15	0.43	0.06	0.34	0.04	9.08	15.32	12.83	2.49	5.15	8.55	1.83	0.62	0.12		0.23	00.53	28.40
ZK5102H6	2.63	2.80	0.37	1.34	0.31	0.25	0.50	0.07	0.42	0.10	0.30	0.04	0.22	0.04	6.47	9.38	7.70	1.68	4.59	8.21	1.96	0.60	0.12		0.15	64.70	26.30
ZK5102H7	2.75	3.56	0.47	1.97	0.47	0.22	0.73	0.11	0.63	0.13	0.42	0.06	0.29	0.04	7.33	11.84	9.44	2.40	3.93	6.51	1.13	0.69	0.16		0.20	56.38	21.15
ZK5102H8	3.66	4.41	0.69	2.85	0.75	0.37	1.14	0.19	1.10	0.27	0.66	0.10	0.52	0.10	11.70	16.80	12.73	4.07	3.12	4.75	1.21	0.63	0.21		0.36	43.30	13.56
ZK5102H9	2.88	3.63	0.48	2.16	0.50	0.27	0.90	0.17	0.93	0.23	0.55	0.07	0.41	0.07	10.80	13.25	9.93	3.32	2.99	4.77	1.23	0.68	0.21		0.28	46.96	12.52
ZK5102H10	3.19	3.50	0.46	1.93	0.43	0.22	0.60	0.08	0.54	0.14	0.35	0.04	0.24	0.04	7.21	11.75	9.72	2.03	4.78	8.89	1.30	0.62	0.11		0.17	51.50	22.79
ZK5102H11	3.73	4.44	0.74	2.87	0.53	0.24	0.83	0.11	0.67	0.16	0.37	0.06	0.29	0.05	7.75	15.08	12.54	2.54	4.94	8.73	1.10	0.61	0.12		0.20	48.44	23.31
ZK5102H12	3.34	2.84	0.55	2.29	0.53	0.21	0.76	0.12	0.65	0.14	0.40	0.05	0.29	0.04	7.43	12.20	9.75	2.45	3.98	7.79	0.99	0.46	0.13		0.20	53.07	23.86
												5	Sericitiza	tion Sand	ły Slate												
ZK5103-H2	14.60	27.80	3.24	12.30	2.58	0.55	2.63	0.41	2.63	0.55	1.60	0.24	1.58	0.24	17.50	70.95	61.07	9.89	6.18	6.23	0.64	0.93	0.16		1.09	31.82	26.55
ZK5103-H3	24.60	47.40	5.50	21.50	4.26	0.84	3.96	0.59	3.91	0.77	2.43	0.36	2.34	0.36	22.50	118.83	104.10	14.73	7.07	7.09	0.62	0.94	0.14		1.61	29.22	31.95
ZK5103-H6	22.90	41.30	5.05	19.90	3.93	0.86	4.12	0.64	3.97	0.92	2.64	0.40	2.53	0.39	28.20	109.55	93.94	15.61	6.02	6.10	0.65	0.89	0.16		0.74	30.65	24.89
ZK5103-H18	21.00	42.40	5.18	20.50	4.50	0.97	4.30	0.70	4.53	0.99	2.88	0.43	2.76	0.43	28.30	111.58	94.55	17.02	5.56	5.13	0.67	0.95	0.20		1.90	28.59	21.21
ZK5101H10	17.30	34.10	3.95	15.60	3.18	0.78	3.39	0.63	3.54	0.75	2.17	0.34	2.03	0.31	22.40	88.07	74.91	13.16	5.69	5.75	0.73	0.96	0.17		1.39	29.87	23.07
ZK5101H11	25.40	48.90	5.70	21.40	4.37	0.96	4.36	0.68	3.77	0.83	2.38	0.35	2.24	0.35	23.10	121.68	106.73	14.95	7.14	7.64	0.66	0.94	0.13		1.54	27.83	30.60
ZK5102H15	16.60	32.50	3.71	14.20	2.79	0.65	3.15	0.47	2.71	0.58	1.74	0.24	1.59	0.25	17.30	81.19	70.45	10.73	6.56	7.04	0.67	0.96	0.14		1.09	29.83	28.62
ZK5102H22	18.60	36.40	4.05	14.70	3.00	0.56	2.52	0.47	2.49	0.55	1.67	0.25	1.73	0.25	16.60	87.23	77.31	9.92	7.79	7.25	0.60	0.97	0.14		1.19	30.18	33.82
ZK5102H23	18.70	36.00	4.27	15.70	3.30	0.67	3.29	0.61	3.31	0.72	2.15	0.34	2.10	0.34	21.90	91.49	78.64	12.85	6.12	6.00	0.61	0.93	0.17		1.44	30.42	25.97
												Met	tamorphi	c Quartz	sandstor	e											
ZK5103-H7	11.40	22.20	2.57	9.43	1.68	0.27	1.49	0.19	1.07	0.23	0.69	0.10	0.63	0.11	7.27	52.06	47.55	4.51	10.54	12.16	0.51	0.95	0.08		0.43	31.61	49.57
ZK5103-H8	16.80	32.60	3.71	14.10	2.93	0.56	2.71	0.42	2.63	0.54	1.82	0.27	1.74	0.26	16.90	81.09	70.70	10.39	6.81	6.51	0.60	0.95	0.15		1.20	31.30	31.11
ZK5103-H9	10.90	20.40	2.48	9.73	1.90	0.32	2.06	0.28	1.54	0.31	0.99	0.15	0.96	0.13	9.84	52.15	45.73	6.42	7.12	7.69	0.49	0.91	0.13		0.66	31.74	35.16
ZK5103-H10	14.30	26.30	3.15	12.20	2.57	0.48	2.63	0.37	2.24	0.45	1.42	0.19	1.23	0.19	14.30	67.71	59.00	8.71	6.77	7.84	0.56	0.90	0.13		0.85	31.78	31.78
ZK5103-H11	11.80	20.70	2.61	10.20	2.10	0.42	2.28	0.33	2.03	0.43	1.19	0.17	1.13	0.17	14.30	55.56	47.83	7.73	6.19	7.04	0.58	0.86	0.14		0.78	33.26	27.44
ZK5103-H12	12.40	21.60	2.64	10.50	2.14	0.44	2.20	0.31	1.89	0.43	1.24	0.17	1.17	0.19	14.50	57.31	49.72	7.60	6.54	7.15	0.61	0.87	0.14		0.8	33.72	28.84
ZK5103-H13	10.70	20.20	2.73	11.80	3.03	0.79	3.69	0.54	3.02	0.58	1.63	0.20	1.23	0.20	20.10	60.34	49.25	11.09	4.44	5.86	0.73	0.88	0.17		0.85	34.66	18.45
ZK5103-H14	10.10	19.20	2.30	8.59	1.84	0.37	1.81	0.28	1.54	0.34	1.00	0.14	0.88	0.14	10.90	48.53	42.40	6.13	6.92	7.70	0.62	0.92	0.13		0.60	32.06	29.71
ZK5103-H15	11.20	18.50	2.49	9.42	2.11	0.45	2.28	0.34	2.07	0.43	1.27	0.18	1.08	0.17	14.70	52.00	44.17	7.83	5.64	6.99	0.63	0.81	0.14		0.74	34.19	26.05
													Co	opper ore													
3590 gallery H1	1.84	2.86	0.70	1.98	0.63	0.40	1.00	0.27	1.00	0.24	1.10	0.29	2.98	0.51	9.99	15.81	8.42	7.39	1.14	0.42	1.55	0.61	2.40		2.05	41.63	7.67
3590 gallery H2	13.83	23.54	3.21	13.06	2.98	1.09	3.09	0.62	3.23	0.58	1.95	0.37	2.93	0.54	17.20	70.99	57.70	13.29	4.34	3.18	1.09	0.82	0.31		2.01	29.66	23.84
3590 gallery H4	11.97	19.18	2.84	11.86	3.06	1.16	3.66	0.69	3.59	0.73	2.22	0.46	3.08	0.64	18.88	65.14	50.08	15.06	3.33	2.62	1.06	0.77	0.38		2.12	25.86	16.40
3590 gallery H5	1.20	3.33	0.56	1.47	0.55	0.38	0.70	0.26	0.89	0.14	0.68	0.17	1.64	0.46	5.84	12.43	7.49	4.94	1.52	0.50	1.86	0.97	2.23		1.23	41.71	8.57
3590 gallery H7	1.00	1.88	0.37	0.72	0.32	0.34	0.67	0.25	0.71	0.13	0.61	0.19	1.97	0.37	5.79	9.54	4.63	4.90	0.94	0.34	2.18	0.74	2.92		1.35	44.54	7.69
3590 gallery H9	5.23	9.13	1.22	4.16	0.97	0.57	1.17	0.30	1.02	0.14	0.60	0.16	1.38	0.38	6.35	26.43	21.28	5.15	4.13	2.55	1.64	0.84	0.39		0.95	45.36	37.36
3590 galleryH10	5.45	7.74	1.39	4.61	1.43	0.91	1.68	0.40	1.77	0.34	1.06	0.24	2.33	0.46	10.37	29.80	21.53	8.27	2.60	1.58	1.79	0.66	0.63		1.60	30.50	16.03
3590 gallery H1	1 18.31	31.05	3.69	12.63	2.15	1.44	2.12	0.43	1.98	0.44	1.17	0.22	1.57	0.29	12.08	77.50	69.28	8.22	8.43	7.85	2.03	0.86	0.13		1.08	27.45	41.61
3590 gallery H13	3 18.12	33.33	4.31	17.78	4.30	2.44	4.01	0.69	3.38	0.71	1.92	0.29	1.96	0.30	17.47	93.54	80.28	13.26	6.05	6.22	1.77	0.88	0.16		1.35	24.61	25.52
	19.0-	45.2-	4.39-	14.3-	2.32-	0.52-	1.99-	0.27-	1.74-	0.34-	1.05-	0.17-	1.27-	0.19-	11.8-	99.76-	89.49-	7.06-	8.35-	7.45-	0.65-	1.07-	0.07-		0.09-	30.18-	34.55-
Granodiorite (10) 28.1	62.6	5.55	19.4	3.69	0.97	3.30	0.49	3.18	0.61	1.73	0.26	1.91	0.28	20.2	129.0	118.9	11.76	14.31	13.43	0.89	1.17	0.23		1.31	34.71	76.18

Note: L/H=LREE/HREE; (La/Yb)x=Las/Ybx; Value of chondrite after Boyton(984); (Yb/La)x/10⁻⁶ and (Yb/Ca)x/10⁻⁶ were the atomic ratios of the elements; Data source: * is from Ref. [19]; Others are from this work.

图 6 羊拉铜矿床铜矿石、大理岩、绢云砂质板岩、变质石英砂岩、花岗闪长岩及铅锌矿石中方解石稀土元素配分图 (球粒陨石标准值据文献[37]): (a) 方解石; (b) 铜矿石; (c) 大理岩; (d) 绢云砂质板岩; (e) 变质石英砂岩; (f) 花岗 闪长岩

Fig.6 Chondrite-normalized REE patterns of granodiorite, metamorphic quartz sandstone, sericitization sandy slate, marble, copper ore and calcites in lead-zinc ore in Yangla copper deposit (values of chondrite from Ref. [37]): (a) Calcite; (b) Copper ore; (c) Marble; (d) Sericitization sandy slate; (e) Metamorphic quartz sandstone; (f) Granodiorite

大理岩(*n*=9)的 ΣREE 含量最低,且变化范围最为 1.68×10⁻⁶~4.07×10⁻⁶; LREE/HREE=2.99~5.15, 小(ΣREE=9.38×10⁻⁶~16.80×10⁻⁶,平均 13.10×10⁻⁶),平均 4.24, (La/Yb)_N=4.75~9.97,反映轻重稀土分异 LREE 变化范围为 7.70×10⁻⁶~12.83×10⁻⁶, HREE 程度相对较弱; δEu=0.99~1.96,平均 1.34,显示中 (C)1994-2021 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net 等-微弱正 Eu 异常,负 Ce 异常(δCe=0.46~0.69,平
均 0.61)(见表 2);稀土配分模式曲线显示为轻稀土
弱富集的近平坦型(见图 6(c))。

绢云砂质板岩(*n*=9)的 ΣREE 含量很高,且变化 范围较大(ΣREE=70.95×10⁻⁶~121.68×10⁻⁶,平均 97.84×10⁻⁶), LREE 变化范围为 61.07×10⁻⁶~ 106.73×10⁻⁶, HREE 为 9.89×10⁻⁶~17.02×10⁻⁶, LREE/HREE=5.56~7.79,平均 6.46, (La/Yb)_N=5.13~ 7.64,反映轻重稀土分异程度相对较强;δEu= 0.60~0.73,平均 0.65,显示为负 Eu 异常, Ce 异常 不明显(δCe=0.89~0.97,平均 0.94)(见表 2);稀土配 分模式曲线显示亦为轻稀土(LREE)富集的右倾型 (见图 6(d))。

变质石英砂岩(*n*=9)的 ΣREE 含量最低,且变化 范围较低(ΣREE=48.53×10⁻⁶~81.09×10⁻⁶,平均 58.53×10⁻⁶), LREE 变化范围为 42.40×10⁻⁶~ 70.70×10⁻⁶, HREE 为 4.51×10⁻⁶~11.09×10⁻⁶; LREE/HREE=4.44~10.54,平均 6.77, (La/Yb)_N= 5.86~12.16,反映轻重稀土分异程度相对较强; δEu=0.49~0.73,平均 0.59,显示负 Eu 异常, Ce 异 常不明显(δCe=0.81~0.95,平均 0.89)(见表 2);稀土 配分模式曲线显示为轻稀土(LREE)富集的右倾型 (见图 6(e))。

花岗闪长岩(*n*=10)的 ΣREE 含量最高,且变化 范围很低(ΣREE=99.76×10⁻⁶~129.04×10⁻⁶,平均 109.82×10⁻⁶)^[19],HREE 为7.06×10⁻⁶~11.76×10⁻⁶, LREE 变化范围为 92.76×10⁻⁶~118.90×10⁻⁶, LREE/HREE 在 8.35~14.31 之间,平均 11.13, (La/Yb)_N=7.45~13.43,反映轻重稀土分异程度最大; δEu=0.65~0.93,平均 0.78,显示为负 Eu 异常,Ce 为弱正异常(δCe=1.07~1.17,平均 1.13)(见表 2);稀 土配分模式曲线显示为轻稀土(LREE)富集的右倾 型(见图 6(f))。

3.2 C-O 同位素

成矿期方解石的 C-O 同位素对成矿流体中 C、 O 来源有良好的示踪作用^[38]。羊拉矿区铅锌矿石中 方解石的 δ¹³C_{PDB} 范围为-6.52‰~-3.53‰,平均为 -4.94‰, 极差为 2.99‰;δ¹⁸O_{SMOW} 范围为 5.04‰~17.30‰,平均为 10.36‰,极差为 12.26‰(见 表 3)。其中,早阶段方解石(Ι)的 δ¹³C_{PDB} 范围为 -6.52‰--4.07‰,平均为-5.48‰,极差为2.45‰; δ¹⁸O_{SMOW}范围为5.04‰-9.94‰,平均为8.11‰,极 差为4.90‰(见表4)。晚阶段方解石(II)的δ¹³C_{PDB} 范围为-3.81‰--3.53‰,平均为-3.70‰,极差为 0.28‰;δ¹⁸O_{SMOW}范围为14.36‰-17.30‰,平均为 15.60‰,极差为2.94‰;其碳、氧同位素值均大于 早阶段方解石(见表3)。

羊拉矿区铜矿体的早阶段方解石(I)的δ¹³C_{PDB} 范围为-7.00‰~-5.00‰,平均为-6.00‰,极差为 2.00‰;δ¹⁸O_{SMOW}范围为 7.20‰~18.00‰,平均为 11.10‰,极差为 10.80‰;相对于铅锌矿体方解石 (I),其碳同位素平均值相对较小,而氧同位素平 均值明显较大,但碳、氧同位素组成的数值范围均 有重叠部分。羊拉矿区铜矿体的晚阶段方解石(II) 的δ¹³C_{PDB}范围为-4.50‰~-2.30‰,平均为-3.40‰, 极差为 2.30‰;δ¹⁸O_{SMOW}范围为 10.70‰~19.40‰, 平均为 15.80‰,极差为 8.70‰;相对于铅锌矿体 方解石(II)(见表 4),其碳、氧同位素均值相对较大, 且碳、氧同位素组成的极差较大,表明其碳、氧同 位素组成相对不均-^[2,39-42]。

羊拉矿区大理岩的 δ¹³C_{PDB} 范围为-0.34‰~ 5.0‰,平均为 3.13‰,极差为 5.34‰;δ¹⁸O_{SMOW} 范围为 10.16‰~25.4‰,平均为 19.35‰,极差为 15.24‰(见表 4);其碳同位素组成明显大于早、晚 阶段方解石,氧同位素组成大部分高于早、晚阶段 方解石,部分与早、晚阶段方解石近似。

3.3 S 同位素

羊拉铜矿床铅锌矿体中硫化物的硫同位素显 示(见表 5),方铅矿 δ^{34} S 值(*n*=14)变化于-2.48‰~ -0.72‰之间,平均值-1.51‰,极差为 1.76‰;闪 锌矿 δ^{34} S 值(*n*=13)变化于-1.49‰~0.99‰之间,平 均值 0.37‰,极差为 2.47‰;黄铁矿 δ^{34} S 值(*n*=11) 变化于-0.51‰~2.32‰之间,平均值 1.29‰,极差 为 2.83‰;铅锌矿体中硫化物的 δ^{34} S 值(*n*=38)总体 变化于-2.48‰~2.32‰,平均值-0.06‰,极差为 4.80‰,显示出 δ^{34} S 值变化范围较小,表明羊拉铜 矿床铅锌矿体的 S 具有均一的来源。前人研究成果 表明^[2, 22, 40-41, 43-47],铜矿体中硫化物 δ^{34} S 值变化范 围为-5.80‰~3.30‰,平均 0.20‰,极差 9.10‰。 其中,黄铁矿 δ^{34} S 值(*n*=55)为-5.80‰~3.30‰,平

表 3	羊拉铜矿	床铅锌矿	「体中フ	方解石的	C-0	同位素组成
				• / • / • / • • •		

Table 5 C-O isotope compositions of calcule in lead-zinc of c, Tangia copper depc	leposit	l'angla copper d	c ore, Ya	lead-zinc	calcite in	positions of	isotope com	C-0	Table 3
--	---------	------------------	-----------	-----------	------------	--------------	-------------	-----	---------

Samula No.	Sample	S ¹³ C /0/	S ¹⁸ O /0/	δ ¹⁸ Ω /0/	Calc	ılate	Data
Sample No.	name	0 C _{PDB} / %0	0 O _{PDB} / %0	0 U _{SMOW} /%0 -	$\delta^{13}C_{fluid,PBD}/\text{\%}$	$\delta^{18}O_{fluid,SMOW}/\%$	source
			Early	stage calcite (I)			
3175-d120-5	Calcite	-6.29	-20.68	9.59	-4.2	4.5	
3150-0 [#] -1	Calcite	-4.07	-13.20	7.71	-2.0	2.6	
3150-0 [#] -2	Calcite	-5.16	-15.29	5.04	-3.1	0.0	T1.1.
3075-9 [#] -1	Calcite	-6.52	-25.09	8.25	-4.5	3.1	1 n1s
3075-5-2	Calcite	-5.76	-21.76	8.48	-3.7	3.4	paper
3075-5-3	Calcite	-6.14	-20.34	9.94	-4.1	4.8	
3050-3-2-4	Calcite	-4.39	-22.48	7.74	-2.3	2.6	
			Late s	stage calcite (II)			
3100-18-3	Calcite	-3.75	-16.05	17.30	-5.2	5.1	T1.1.
3100-18-6	Calcite	-3.81	-21.99	15.15	-5.3	3.0	1 n1s
3100-18-7	Calcite	-3.53	-22.50	14.36	-5.0	2.2	paper

表4 羊拉铜矿床的 C-O 同位素统计表

 Table 4
 Statistics of C-O isotopic composition in Yangla copper deposit

Comulius asiat	Semale neme	Overstit	$\delta^{13}C_{PDB}$ /%)	$\delta^{18}O_{SMOW}/$	‰	Data
Sampling point	Sample name	Quantit -	Range	Mean	Range	Mean	source
Dh. Zn archady	Calcite (I)	7	-6.524.07	-5.48	5.04-9.94	8.11	This paper
P 0-211 ofebody	Calcite (II)	3	-3.813.53	-3.70	14.36-17.30	15.60	This paper
Connorbody	Calcite (I)	9	-7.05.0	-6.0	7.2-18.0	11.1	[2, 39]
Copper body	Calcite (II)	21	-4.52.3	-3.4	10.7-19.4	15.8	[40-41]
Ore rock	Marble	21	-0.34 - 5.00	2.99	10.16-25.4	19.31	[39, 42]

均 0.38‰, 极差 9.10‰; 黄铜矿 δ^{34} S 值(*n*=21)为 -4.20‰~2.29‰, 平均-0.69‰, 极差 6.49‰; 方铅 矿 δ^{34} S 值(*n*=6)为-2.10‰~2.11‰, 平均-0.06‰, 极 差 4.21‰; 闪锌矿 δ^{34} S 值(*n*=4)为 1.1‰~2.0‰, 平 均 1.59‰, 极差 0.90‰; 磁黄铁矿 δ^{34} S 值(*n*=4)为 -0.8‰~2.50‰, 平均 0.54‰, 极差 3.30‰; 辉钼矿 δ^{34} S 值(*n*=6)为 0.6‰~0.9‰, 平均 0.72‰, 极差 0.30‰(见表 6)。

3.4 Pb 同位素

本文测试了羊拉铜矿床铅锌矿体硫化物铅同 位素 15 件,其中方铅矿 5 件、闪锌矿 5 件、黄铁 矿 5 件(见表 7),²⁰⁸Pb/²⁰⁴Pb=38.7501~38.7969,均 值为 38.3721;²⁰⁷Pb/²⁰⁴Pb=15.7159~15.7248,均值 为 15.7202;²⁰⁶Pb/²⁰⁴Pb=18.3640~18.3874,均值为 18.7740,样品的 ω 值变化范围为 39.20~39.36,平 均为 39.27; Th/U 的变化范围为 3.91~3.92, 平均为 3.917; μ 值变化范围在 9.70~9.71 之间(*n*=15), 平均 为 9.706, 数据变化范围小,表明铅同位素具单一 来源特征。

3.5 Zn 同位素

羊拉铜矿床铅锌矿体中闪锌矿的 δ⁶⁶Zn_{JMC} 值 介于 0.31‰~0.44‰之间, 平均值为 0.378‰; δ⁶⁸Zn_{JMC} 值介于 0.63‰~0.88‰之间, 平均值为 0.76‰(见表 8)。

本文测试的 5 件闪锌矿样品,数据显示 δ⁶⁶Zn 分析精度优于 0.11‰(2σ)。羊拉矿床和金厂河砂卡 岩型矿床^[48]中闪锌矿的 δ⁶⁶Zn 和 δ⁶⁸Zn 数据呈现出 明显的线性回归(见图 7),其梯度非常接近理论梯度 2.000962,表明羊拉铅锌矿体中闪锌矿 Zn 同位素属 于质量分馏。

表5 羊拉矿床砂卡岩型铅锌矿体主要硫化物S同位素组成

 Table 5
 S isotopic composition of sulfides in Pb-Zn ore bodies, Yangla deposit

Sample No.	Sampling location/m	Ore features	Mineral	$\delta^{34}S_{V\text{-}CDT}/\text{\%}$	Data source
3175-d120-1	3175	Skarn type lead-zinc ore	Pyrite	-0.51	This paper
3175-d120-5	3175	Skarn type lead-zinc ore	Pyrite	1.01	This paper
3150-0#-1	3150	Skarn type lead-zinc ore	Pyrite	1.27	This paper
3150-0#-4	3150	Skarn type lead-zinc ore	Pyrite	-0.08	This paper
3100-18-2	3100	Skarn type lead-zinc ore	Pyrite	1.71	This paper
3100-18-6	3100	Skarn type lead-zinc ore	Pyrite	1.96	This paper
3100-18-7	3100	Skarn type lead-zinc ore	Pyrite	2.32	This paper
3075-9#-1	3075	Skarn type lead-zinc ore	Pyrite	2.21	This paper
3075-5-2	3075	Skarn type lead-zinc ore	Pyrite	1.82	This paper
3075-5-3	3075	Skarn type lead-zinc ore	Pyrite	1.43	This paper
3050-3-2-4	3050	Skarn type lead-zinc ore	Pyrite	1.08	This paper
3175-d120-1	3175	Skarn type lead-zinc ore	Galena	-1.14	This paper
3175-d120-3	3175	Skarn type lead-zinc ore	Galena	-0.72	This paper
3175-d120-5	3175	Skarn type lead-zinc ore	Galena	-1.09	This paper
3150-0#-1	3150	Skarn type lead-zinc ore	Galena	-1.45	This paper
3150-0#-4	3150	Skarn type lead-zinc ore	Galena	-2.48	This paper
3100-1-1	3100	Skarn type lead-zinc ore	Galena	-1.59	This paper
3100-18-2	3100	Skarn type lead-zinc ore	Galena	-1.44	This paper
3100-18-6	3100	Skarn type lead-zinc ore	Galena	-1.26	This paper
3100-18-7	3100	Skarn type lead-zinc ore	Galena	-1.42	This paper
3075-9#-1	3075	Skarn type lead-zinc ore	Galena	-1.41	This paper
3075-5-2	3075	Skarn type lead-zinc ore	Galena	-1.39	This paper
3075-5-3	3075	Skarn type lead-zinc ore	Galena	-1.67	This paper
3050-3-2-4	3050	Skarn type lead-zinc ore	Galena	-1.89	This paper
3050-3-2-5	3050	Skarn type lead-zinc ore	Galena	-2.24	This paper
3175-d120-1	3175	Skarn type lead-zinc ore	Sphalerite	0.37	This paper
3175-d120-5	3175	Skarn type lead-zinc ore	Sphalerite	0.31	This paper
3150-0#-1	3150	Skarn type lead-zinc ore	Sphalerite	0.61	This paper
3150-0#-2	3150	Skarn type lead-zinc ore	Sphalerite	0.96	This paper
3150-0#-4	3150	Skarn type lead-zinc ore	Sphalerite	-1.49	This paper
3100-1-1	3100	Skarn type lead-zinc ore	Sphalerite	0.33	This paper
3100-18-2	3100	Skarn type lead-zinc ore	Sphalerite	0.99	This paper
3100-18-6	3100	Skarn type lead-zinc ore	Sphalerite	0.64	This paper
3100-18-7	3100	Skarn type lead-zinc ore	Sphalerite	0.78	This paper
3075-9#-1	3075	Skarn type lead-zinc ore	Sphalerite	0.99	This paper
3075-5-2	3075	Skarn type lead-zinc ore	Sphalerite	-0.33	This paper
3075-5-3	3075	Skarn type lead-zinc ore	Sphalerite	-0.22	This paper
3050-3-2-4	3050	Skarn type lead-zinc ore	Sphalerite	0.84	This paper

表6 羊拉铜矿床的S同位素统计表

 Table 6
 Statistics of S isotopic composition in Yangla copper deposit

G 1' ' '	0 1	Ouantit. n	$\delta^{34}S_{CDT}/\%$	óo	Data source	
Sampling point	Sample name	Quantit, n	Range	Mean	Data source	
	Pyrite	11	-0.51 - 2.32	-0.08		
Skarn type lead-zinc ore	Galena	14	-2.48 - 0.72	1.71	This paper	
	Sphalerite	13	-1.49 - 0.99	1.96		
Characteris	tic	Range fro	om –2.48 to 2.32, with a	n average value of	-0.06‰ and a range of 4.80‰	
	Pyrite	55	-5.80 - 3.30	0.38	[22, 40-41, 44-46]	
	Chalcopyrite	21	-4.20 - 2.29	-0.69	[22, 43–47]	
Strong true Congression	Galena	6	-2.10-2.11	-0.06	[2, 46]	
Skarn type Copper ore	Sphalerite	4	1.1-2.0	1.59	[2, 46]	
	Pyrrhotite	4	-0.8 - 2.50	0.54	[22, 46]	
	Molybdenite	6	0.6-0.9	0.72	[22]	

Characteristic

Range from -5.80 to 3.30, with an average value of 0.20‰ and a range of 9.10‰

表7 羊拉矿床砂卡岩铅锌矿体和砂卡岩铜矿体的硫化物 Pb 同位素组成

 Table 7
 Pb isotopic composition of sulfides in skarn lead-zinc body and copper body, Yangla deposit

							-			-	-	-				
Sample No.	Sampling location	Sample name	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/ ²⁰⁴ Pb	²⁰⁸ Pb/ ²⁰⁴ Pb	²⁰⁶ Pb/ ²⁰⁷ Pb	t/Ma	μ	ω	Th/U	V1	V2	Δα	$\Delta \beta$	$\Delta \gamma$	Data source
3175-d120-5			18.3724	15.7203	38.7716	1.1687	340	9.71	39.26	3.91	82.06	60.30	85.02	26.72	49.69	
3150-0#-1			18.3667	15.7198	38.7501	1.1684	343	9.71	39.20	3.91	81.65	60.42	84.96	26.70	49.26	
3100-18-6		Pyrite	18.3656	15.7231	38.7748	1.1681	348	9.71	39.34	3.92	82.58	60.41	85.28	26.95	50.14	
3075-5-2			18.3759	15.7248	38.7877	1.1686	343	9.71	39.36	3.92	82.77	60.55	85.46	27.03	50.25	
3050-3-2-4	_		18.3659	15.7186	38.7657	1.1684	342	9.70	39.26	3.92	81.94	60.13	84.84	26.62	49.64	
3175-d120-5			18.3640	15.7182	38.7628	1.1683	343	9.70	39.25	3.92	81.89	60.11	84.80	26.60	49.60	
3075-9#-1	Skarn		18.3722	15.7192	38.7721	1.1688	339	9.70	39.26	3.92	81.98	60.20	84.90	26.64	49.65	
3100-1-1	type lead-zinc	Sphalerite	18.3683	15.7198	38.7729	1.1685	342	9.71	39.29	3.92	82.17	60.20	84.97	26.70	49.83	This
3075-5-2	ore		18.3741	15.7203	38.7740	1.1688	339	9.71	39.26	3.91	82.08	60.30	85.02	26.71	49.70	paper
3050-3-2-4	_		18.3703	15.7177	38.7701	1.1688	338	9.70	39.24	3.92	81.86	60.07	84.77	26.54	49.58	
3175-d120-3			18.3666	15.7159	38.7611	1.1687	339	9.70	39.21	3.91	81.58	59.98	84.59	26.43	49.35	
3150-0#-4			18.3683	15.7200	38.7746	1.1685	342	9.71	39.30	3.92	82.23	60.19	84.99	26.71	49.88	
3100-1-1		Galena	18.3874	15.7228	38.7969	1.1695	332	9.71	39.31	3.92	82.49	60.43	85.28	26.85	50.03	
3075-5-2			18.3795	15.7197	38.7831	1.1692	334	9.70	39.26	3.92	82.09	60.21	84.97	26.65	49.74	
3050-3-2-5			18.3841	15.7221	38.7928	1.1693	334	9.71	39.30	3.92	82.42	60.37	85.21	26.80	49.98	
Charac	eteristic 208	Pb/ ²⁰⁴ Pb=38.7	/501~38.796	9, ²⁰⁷ Pb/ ²⁰⁴ Pb	=15.7159~15	5.7248, ²⁰⁶ Pb/ ²	²⁰⁴ Pb=13	8.3640~	18.3874,	µ=9.70	~9.71, a	v=39.20	~39.36,	Th/U=3	.91~3.92	2
1			18.277	15.627	38.454	1.1696	297	9.53	37.58	3.82	68.60	54.78	75.89	20.41	39.16	
2			18.313	15.672	38.602	1.1685	325	9.62	38.42	3.87	75.25	57.37	80.28	23.49	44.42	
3		Chalcopyrite	18.369	15.680	38.611	1,1715	295	9.63	38.22	3.84	74.63	58.68	81.14	23.86	43.31	[43]
4			18.316	15.675	38.574	1.1685	326	9.62	38.32	3.86	74.76	57.98	80.58	23.69	43.73	
vn-19	-		18.249	15.622	38,435	1.1682	311	9.53	37.61	3.82	68.46	54.21	75.37	20.15	39.27	
vn-60			18.300	15.638	38.459	1.1702	293	9.55	37.57	3.81	69.07	55.95	76.98	21.11	39.15	
yn-71		Pyrite	18.221	15.519	38.190	1.1741	204	9.32	35.78	3.72	53.89	47.90	65.31	12.92	27.98	
yn56a			18.023	15.436	37.833	1.1676	246	9.18	34.61	3.65	43.24	42.31	57.00	7.69	20.19	
yn20			18.256	15.590	38.334	1.1710	267	9.46	36.84	3.77	62.90	52.73	72.27	17.84	34.60	[40]
yn-37	-		18.112	15.450	37.998	1.1723	198	9.20	34.94	3.68	45.97	42.79	58.43	8.39	22.53	
yn47-1		~	18.150	15.506	38.177	1.1705	240	9.31	35.99	3.74	54.40	46.03	63.97	12.24	29.20	
yn58	Skarn type	Chalcopyrite	18.205	15.541	38.178	1.1714	244	9.37	36.02	3.72	56.08	49.68	67.44	14.54	29.37	
yn65	Copper		17.985	15.434	38.358	1.1653	272	9.18	36.99	3.90	56.89	35.81	56.79	7.69	35.49	
YL-13	010		18.326	15.715	38.713	1.1661	366	9.70	39.24	3.92	81.45	59.91	84.44	26.51	49.29	
YL-56		Pyrite	18.348	15.703	38.691	1.1684	337	9.67	38.90	3.89	79.23	59.43	83.31	25.57	47.36	
YL-50	-		18.346	15.716	38.721	1.1673	353	9.70	39.16	3.91	81.18	60.16	84.56	26.51	48.92	[47]
YL-53		Chalcopyrite	18.346	15.711	38.720	1.1677	347	9.69	39.11	3.91	80.70	59.75	84.08	26.15	48.63	
LN-2	-		18.323	15.682	38.616	1.1684	330	9.64	38.52	3.87	76.21	58.19	81.26	24.16	45.01	
LN-3		Chalcopyrite	18.343	15.681	38.622	1.1698	314	9.63	38.42	3.86	75.72	58.30	81.20	24.02	44.49	[41]
LN-4			18.321	15.651	38.641	1.1706	294	9.57	38.34	3.88	74.08	55.28	78.27	21.96	44.10	r -1
YLV-04	-		18.395	15.683	38.630	1.1729	280	9.63	38.18	3.84	74.64	59.06	81.47	23.98	43.16	
YLTK-12		Pyrite	18.370	15.723	38.792	1.1684	345	9.71	39.39	3.93	82.87	60.27	85.27	26.92	50.46	
Jun-75	-		18.359	15.706	38.726	1.1689	332	9.68	39.01	3.90	80.04	59.44	83.62	25.75	48.12	[42]
3275_24		Chalcopyrite	18 367	15 718	38 767	1 1682	341	9.70	30.28	3 97	82.03	60.02	84 78	26.50	49.77	
5213-24			10.302	15./10	30./0/	1.1002	5+4	9.70	37.20	3.74	02.03	00.02	04.70	20.39	72.//	

Characteristic ²⁰⁸Pb/²⁰⁴Pb=37.8330~38.7920, ²⁰⁷Pb/²⁰⁴Pb=15.4340~15.7230, ²⁰⁶Pb/²⁰⁴Pb=17.9850~18.3950, µ=9.18~9.70, ω=34.61~39.39, Th/U=3.65~3.91

表 8 羊拉矿床铅锌矿体中闪锌矿的 Zn、S、Pb 同	可位素组成	
-----------------------------	-------	--

Sample No.	Sampling location/m	Mineral association	$\frac{\delta^{66}Zn_{JMC}}{\%}$	2σ	$\frac{\delta^{68}Zn_{JMC}}{\%}$	2σ	$\frac{\delta^{34}S_{V\text{-}CDT}}{\%}$	²⁰⁸ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/ ²⁰⁴ Pb	²⁰⁶ Pb/ ²⁰⁴ Pb	Data source
3175-d120-5	3175	Sp+Gn+Py	0.35	0.05	0.71	0.09	0.31	38.7628	15.7182	18.3640	
3100-1-1	3100	Sp+Gn+Py	0.40	0.11	0.81	0.21	0.33	38.7729	15.7198	18.3683	T1.:-
3075-9#-1	3075	Sp+Gn+Py	0.44	0.03	0.88	0.09	0.99	38.7721	15.7192	18.3722	1 1115
3075-5-2	3075	Sp+Gn+Py	0.31	0.06	0.63	0.11	-0.33	38.7740	15.7203	18.3741	paper
3050-3-2-4	3050	Sp+Gn+Py	0.39	0.08	0.77	0.12	0.84	38.7701	15.7177	18.3703	

图 7 丰拉铜矿床闪锌矿 Zn 回位家分馏图 Fig. 7 Diagram of Zn isotope fractionation in sphalerite, Yangla copper deposit

4 讨论

4.1 成矿流体来源

4.1.1 REE 元素证据

羊拉矿床铅锌矿石的矿物组合简单,金属矿物 主要为方铅矿、闪锌矿和黄铁矿等,非金属矿物主 要为方解石,且方解石的形成贯穿了整个铅锌成矿 过程,是铅锌矿石中稀土元素的主要载体矿物。成 矿期方解石的稀土元素地球化学特征直接反映了 成矿流体的特征,其变化规律也记录了成矿物质的 来源与演化^[49]。

由于 δEu 和 δCe 能有效地反映热液体系的某些 地球化学特征,因此 δEu 和 δCe 是稀土元素地球化 学中用来讨论成矿流体来源及成矿环境演化等问 题的重要参数之一^[50]。本文早、晚成矿阶段方解石 整体显示明显的正 Eu 异常(δEu=1.22~3.9,平均 2.32),弱负 Ce 异常(δCe=0.58~0.89,平均 0.78)。 Eu 属于变价元素, 在一般成矿体系中呈 Eu³⁺, 还原 环境中部分会被还原为 Eu²⁺, 由于 Eu²⁺与 Ca²⁺具有 相同的电荷数以及相近的离子半径, 所以 Eu²⁺更易 替代 Ca²⁺, 导致结晶的方解石具正 Eu 异常^[51]。根 据 REE 地球化学演化的氧化-还原模式, 相对还原 的条件下出现正 Eu 异常, 而相对氧化条件则为负 Eu 异常^[52]。羊拉矿区铜矿石及方解石均表现出明 显正 Eu 异常, 表明成矿流体发生矿质聚集沉淀时 为还原环境。矿石中的矿物组合主要为闪锌矿、黄 铁矿、方铅矿、黄铜矿和方解石, 表明矿质在发生 沉淀时, 成矿流体中存在大量高活动性的 S²⁻, 亦反 映成矿流体相对具有还原性。

在氧逸度较高或相对氧化的环境下,Ce³⁺易被 氧化成Ce⁴⁺,后者因溶解度低而不易进入流体,造 成流体呈现负Ce异常,进而导致沉淀矿物也表现 为负Ce异常^[53]。羊拉矿区花岗闪长岩、变质石英 砂岩及绢云砂质板岩表现为弱负Ce异常和负Eu异 常(见图6(d)、(e)、(f)),揭示花岗闪长岩、变质石英 砂岩及绢云砂质板岩可能处于弱氧化的成岩环境。

w(Y)/w(Ho)也是用来示踪流体演化过程的重要 参数之一,由于 w(Y)/w(Ho)不受流体氧化-还原条 件的影响,因此 w(Y)/w(Ho)可以提供独立于 Eu、 Ce 异常之外的有关成矿流体的其他信息^[54]。同一 来源的脉石矿物在 w(Y)/w(Ho)-w(La)/w(Ho)图解中 大致呈现出水平分布的特征^[55]。在 w(Y)/w(Ho)w(La)/w(Ho)图解中,羊拉矿区铅锌矿石中的早、晚 成矿阶段方解石大致呈水平分布(见图 8),反映两者 具有同源特征。

热液矿物的稀土配分模式与晶体化学因素无 关或关系很小,而与热液体系中稀土元素络合物稳 定性关系密切^[56]。稀土元素在溶液中主要以HCO₃、

图 8 羊拉铜矿铅锌矿石中方解石的 w(Y)/w(Ho)-w(La)/w(Ho)关系图^[55]

Fig. 8 w(Y)/w(Ho)-w(La)/w(Ho) diagram of calcites in lead-zinc orebodies, Yangla copper deposit^[55]

CO₃²⁻等的络合物形式存在,且其稳定性与稀土元 素原子序数存在正相关关系^[57]。由于 REE 主要是 通过 REE³⁺置换矿物晶格中 Ca²⁺而进入方解石,且 REE 中 LREE³⁺离子半径比 HREE³⁺更接近 Ca²⁺,所 以 LREE 更容易置换矿物晶格中 Ca²⁺进入方解石, 故从热液体系中沉淀出的方解石表现为富集 LREE^[58],因而羊拉矿区铅锌矿石中的早、晚成矿 阶段热液方解石的稀土配分模式曲线都是轻稀土 (LREE)富集的右倾型(见图 9)。

羊拉矿区花岗闪长岩体 ΣREE 均值 109.82× 10⁻⁶, 变质石英砂岩 ΣREE 均值 58.53×10⁻⁶, 绢云 砂质板岩 Σ REE 均值 97.84×10⁻⁶, 大理岩 Σ REE 均 值 13.10×10⁻⁶, 矽卡岩铜矿石 ΣREE 均值 44.58× 10⁻⁶,铅锌矿石中方解石 ΣREE 均值 62.81×10⁻⁶, ΣREE 均值呈现"花岗闪长岩>绢云砂质板岩>方 解石>变质石英砂岩>矿石>大理岩"的变化趋 势(见表 3 和图 9),可见矿石中的 REE 主要富集在 脉石矿物方解石中。早、晚成矿阶段方解石的球粒 陨石标准化 REE 分布模式不同于花岗闪长岩、变 质石英砂岩及绢云砂质板岩,而与砂卡岩型铜矿石 稀土元素配分模式较为一致;这与矽卡岩矿物 REE 分布模式具明显 Eu 正异常的特征较为一致^[59];反 映羊拉矿区铅锌矿石中的方解石与矽卡岩型铜矿 石具有一致的 REE 来源,来自于花岗闪长岩与围 岩绢云砂质板岩、变质石英砂岩、大理岩等的混合

图 9 羊拉铜矿床铜矿石、大理岩、绢云砂质板岩、变 质石英砂岩、花岗闪长岩及铅锌矿石中方解石稀土元素 配分图(球粒陨石标准值据文献[37])

Fig. 9 Chondrite-normalized REE patterns of granodiorite, metamorphic quartz sandstone, sericitization sandy slate, marble, copper ore and calcites in lead-zinc ore, Yangla copper deposit (value of chondrite after Ref.[37])

4.1.2 C-O 同位素证据

前人研究表明,不同来源的碳混合在一起时, 由于其碳同位素组成有较大的差别,其 $\delta^{13}C_{PDB}$ 常集中在-5‰左右^[60],热液方解石的C和O同位素 组成是示踪成矿流体来源的有效手段^[38]。如果矿床 内热液脉中无石墨与方解石共生,方解石或包裹体 热液中的CO₂的碳同位素组成 $\delta^{13}C_{PDB}$ 可以近似看 作成矿流体的总C同位素组成 $\delta^{13}C_{SC}^{[61]}$ 。由于羊拉 矿床未发现与成矿有关的石墨等含碳物质,因此热 液方解石的C同位素组成可以近似的看作成矿流体 的总C同位素组成。不同来源的成矿流体中CO₂ 具有不同的碳-氧同位素组成:地幔或火成碳酸盐 岩的 $\delta^{13}C_{PDB}$ 为-8‰~-4‰, $\delta^{18}O_{SMOW}$ 为6‰~ 10‰^[62];海相碳酸盐岩的 $\delta^{13}C_{PDB}$ 为-4‰~4‰, $\delta^{18}O_{SMOW}$ 为20‰~30‰^[63];沉积有机物的 $\delta^{13}C_{PDB}$ 为-30‰~-15‰, $\delta^{18}O_{SMOW}$ 为24‰~30‰^[64]。

羊拉矿床铅锌矿石方解石(I)的 δ¹³C_{PDB} 范围 为-6.52‰--4.07‰,δ¹⁸O_{SMOW}为 5.04‰-9.94‰; 样品主要投影于花岗岩区域(见图 10),反映方解石 的 C、O 主要来源于花岗岩质岩浆;铜矿石早成矿 阶段方解石(I)部分样品落在花岗岩区域,部分样 g House. All rights reserved. http://www.cnki.net

品因为氧同位素较大,偏离花岗岩区域,总体以火 成碳酸岩为起点,有向海相碳酸盐岩靠近的趋势, 表明羊拉矿床铅锌矿石与铜矿石中早成矿阶段方 解石的 C、O 同位素来源大致相同。铅锌矿石方解 石(II)的 δ¹³C_{PDB} 范围为-3.81‰~-3.53‰, δ¹⁸O_{SMOW} 为 14.36‰~17.30‰; 样品主要投影于火成碳酸岩与 海相碳酸盐岩之间的区域(见图 9),反映晚成矿阶段 方解石的 C、O 来自于花岗岩质岩浆与海相碳酸盐 岩的混合。铜矿石晚成矿阶段方解石(II)样品亦落 在火成碳酸岩与海相碳酸盐岩之间的区域, 表明铅 锌矿石和铜矿石晚成矿阶段方解石的 C、O 同位素 相同。矿区大理岩的δ¹³C_{PDB}范围为-0.34‰~5.0‰, δ¹⁸O_{SMOW}范围为 10.16‰~25.4‰;除 2件样品落在 花岗岩区域内,其余样品均投影于海相碳酸盐岩范 围内及附近,指示大理岩的C、O主要来自于海相 碳酸盐岩。

前人研究表明,用热液碳酸盐矿物的 $\delta^{13}C_{PDB}$ 和 $\delta^{18}O_{SMOW}$ 数值可以计算与其平衡的流体的 $\delta^{13}C_{fluid}$ 和 $\delta^{18}O_{fluid}$ 值,并用于指示流体的来源^[65]。 假 定 流 体 中 碳 主 要 以 CO₂ 形 式 存 在 ,利用 CHACKO 等^[66]方解石-碳同位素分馏平衡计算 方程:1000ln α_{Cal-CO_2} =-0.388×10⁹/ T^3 +5.538×10⁶/ T^2 -11.346×10³/T+2.962,以及 O"NEIL 等^[67]方解石-氧同位素分馏平衡计算方程:1000ln α_{Cal-H_2O} =2.78× 10⁶/T²-3.39,取早成矿阶段和晚成矿阶段流体包裹体均一温度峰值300℃和150℃^[39,47],分别计算出 早成矿阶段流体的δ¹³C_{PDB}集中在-5.0‰~-3.0‰之 间、均值为-4.0‰,δ¹⁸O_{SMOW}集中在2.1‰~-12.9‰ 之间、均值为6.1‰;晚成矿阶段流体的δ¹³C_{PDB}集 中在-6.4‰~-4.3‰之间、均值为-5.4‰,δ¹⁸O_{SMOW} 集中在5.4‰~7.3‰之间、均值为5.9‰。可见羊拉 矿区早成矿阶段和晚成矿阶段流体的C、O同位素 组成相近(见图10),表明铅锌矿成矿流体主要为岩 浆水,这与该矿床铜矿"成矿流体为岩浆水"的结 论^[2]相一致。

4.2 方解石成因

方解石的 x(Yb)/x(La)-x(Yb)/x(Ca)比值具有成 因指示意义,可以判断其成因和演化机制^[68-69];根 据 x(Yb)/x(La)-x(Yb)/x(Ca)比值,方解石可划分为三 种成因类型(伟晶成因、热液成因、沉积成因)。在 x(Yb)/x(La)-x(Yb)/x(Ca)图解中,羊拉矿区早、晚成 矿阶段方解石样品均落入热液成因区域内,并显示 由结晶作用方式形成(见图 11)。岩浆成因方解石和 热液成因方解石往往具有不同的 x(La)/ x(Yb)比值: 岩浆成因方解石 x(La)/ x(Yb)比值一般大于 100,而 热液成因方解石 x(La)/ x(Yb)比值通常低于 100^[70]。 羊拉矿区铅锌矿体中的早、晚成矿阶段方解石 x(La)/

Fig 10 δ^{18} O versus δ^{13} C diagram of calcite in lead-zinc ore, Yangla copper deposit(Base map according to reference[61]) (C)1994-2021 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

图 11 羊拉铜矿床铅锌矿石中方解石 *x*(Yb)/*x*(La)-*x*(Yb)/*x*(Ca)图(底图据文献[69])

Fig. 11 x(Yb)/x(La)-x(Yb)/x(Ca) diagram of calcites in lead-zinc ore, Yangla copper deposit (Base map according to reference [69])

x(Yb)比值介于 7.98~21.87 之间,均明显小于 100。 由此可见,羊拉铜矿床铅锌矿石中的早、晚成矿阶 段方解石均为热液成因。

4.3 成矿物质来源

4.3.1 S 同位素来源

硫同位素在矿床研究中普遍作为成矿物质来 源的指示剂,为探讨矿床中硫的来源提供了有利证 据^[71-73]。羊拉矿床铅锌矿体中硫化物种类简单,主 要以方铅矿、闪锌矿、黄铁矿和黄铜矿为主;对这 些主要硫化物中硫同位素组成的特征进行研究,是 示踪羊拉铅锌矿成矿流体中S来源最直接、最有效 的方法。

对于矿床中硫源的讨论,需要根据硫化物沉淀 期间成矿热液中的总硫同位素组成($\delta^{34}S_{\Sigma S}$)来判断, 由于热液流体中总硫同位素组成往往受到温度、pH 值、氧逸度(f_{02})和离子强度(I)的影响^[74],总硫值 ($\delta^{34}S_{\Sigma S}$)需要依据在热液流体成矿过程中硫同位素 平衡分馏来确定。前人研究表明,当硫同位素分馏 达到平衡时,硫化物富集 $\delta^{34}S$ 的顺序为 $\delta^{34}S_{Sul}$ > $\delta^{34}S_{Mol} > \delta^{34}S_{Py} > \delta^{34}S_{Sp} > \delta^{34}S_{Cep} > \delta^{34}S_{Cap} >$ $\delta^{34}S_{Cha} > \delta^{34}S_{Arg} > \delta^{34}S_{Cin}^{751}$; 羊拉铜矿床铅锌矿体仅 有 1 件(3175-d120-1)样品呈现 $\delta^{34}S_{Sp} > \delta^{34}S_{Py} >$ $\delta^{34}S_{Gn}$,显示硫分馏未达到平衡;其余样品均呈现 C)194-2021 China Academic Journal Electronic Public $δ^{34}S_{Py} > \delta^{34}S_{Sp} > \delta^{34}S_{Gn}$,显示硫分馏已达到平衡(见 表 9)。此外,该矿床大部分砂卡岩型铜矿体硫化物 亦呈现 $\delta^{34}S_{Py} > \delta^{34}S_{Sp} > \delta^{34}S_{Po} > \delta^{34}S_{Ccp} > \delta^{34}S_{Gn} >$ $\delta^{34}S_{Cha}$ 的趋势,且 $\delta^{34}S$ 组成总体具有 $\delta^{34}S_{Py} >$ $\delta^{34}S_{Sp} > \delta^{34}S_{Po} > \delta^{34}S_{Ccp} > \delta^{34}S_{Cha}$ 的特征。综 上所述,羊拉矿床铅锌矿体成矿体系硫化物 H₂S 基 本达到平衡状态,总硫同位素组成($\delta^{34}S_{\Sigma S}$)可通过以 下两种方法确定。

① 含硫矿物共生组合估算 $\delta^{34}S_{\Sigma S}$

羊拉矿床铅锌矿体中硫化物组合简单,以方铅 矿、闪锌矿、黄铁矿为主,硫的主要溶解类型以 H₂S 为主,流体具还原性、pH>6 等特征^[42],硫化 物的 δ^{34} S 平均值,特别是黄铁矿 δ^{34} S 值可以近似代 表热液中的总硫 $\delta^{34}S_{\Sigma S}$ ^[76]。此外硫同位素值是 pH 值、温度、Eh 的氧逸度等的函数值,其差异受物理 化学条件的影响^[76];可能由于不同期次成矿作用的 物理化学条件的差异,导致了硫化物硫同位素分馏 的不平衡,这与矿床所表现的复合成因特征相符 合。羊拉矿床铅锌矿体硫化物 δ^{34} Sv-cpt 变化范围为 -2.48‰~2.32‰, 平均值-0.06‰, 极差为4.80‰, 主要集中在-2.0‰~2.0‰之间;闪锌矿 δ^{34} S_{V-CDT} 主 要集中在 0.0‰~1.0‰之间, 方铅矿 δ³⁴Sv-CDT 主要集 中在-2.0‰~-1.0‰之间, 黄铁矿 δ³⁴S_{V-CDT} 主要集中 在 1.0‰~2.0‰之间(见图 12(a)); 与矽卡岩型铜矿体 硫化物硫同位素组成研究结果基本一致[77-84] (见表 9 和图 12(a))。δ³⁴S_{V-CDT}值为-5.80‰~-3.30‰,其 中, 黄铁矿 δ³⁴S_{V-CDT} 值为-5.80‰~3.30‰, 黄铜矿 δ³⁴S_{V-CDT} 值为-4.20‰~2.29‰, 磁黄铁矿 δ³⁴S_{V-CDT} 值为-0.80‰~2.50‰, 闪锌矿 δ³⁴S_{V-CDT} 值为 1.1‰~2.0‰, 方铅矿 δ³⁴S_{V-CDT} 值为-2.10‰~2.11‰, 辉钼矿 δ³⁴S_{V-CDT} 值为 0.6‰~0.9‰)。

② 同位素对图解法估算 $\delta^{34}S_{\Sigma S}$

成矿流体同位素达到平衡状态时,矿物的硫 同位素组成可看作是成矿流体温度与总硫同位素 的函数^[85],即:1000ln $a_{x-y}=A \times 10^{6}/T^{2}+B$,其中 1000ln $a_{x-y}\approx\delta^{34}S_{x}-\delta^{34}S_{y}$, B=0。在高温条件下,成 矿流体中各硫化物的 $\delta^{34}S$ 近似等于 $\delta^{34}S_{\Sigma S}$ 。若有 2 个以上的矿物是从化学和同位素组成均一、有温度 变化的成矿流体中析出时,样品在 1000ln a_{x-y} 对 $\delta^{34}S_{x}$ 和 $\delta^{34}S_{y}$ 的图上应为直线,实为近似直线,该 直线在 $\delta^{34}S$ 轴上的截距即为成矿流体的 $\delta^{34}S_{\Sigma S}$ 。

 $\delta^{34}S_{Gn}$,显示硫分馏未达到平衡;其余样品均呈现。 $\delta^{34}S_{\Sigma S,Gn-Sp} = -1.68\%$ (见图13(a))、 $\delta^{34}S_{\Sigma S,Py-Sp} = 0.62\%$ (C)1994-2021 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

(见图 13(b))、 $\delta^{34}S_{\Sigma S, Py-Gn}$ =-1.33‰(见图 13(c)), 存岩型铅锌矿体硫化物同位素对估算总硫特征值 ($\delta^{34}S_{\Sigma S}$)变化范围较小($\delta^{34}S_{\Sigma S}$ =-1.68‰~0.62‰)、均 接近零值,与含硫矿物共生组合估算的 $\delta^{34}S_{\Sigma S}$ 结果

一致(δ³⁴S_{ΣS}=-2.48‰~2.32‰), 与深部地壳或地幔 岩浆硫特征一致(0±3.0‰)。

热液矿床金属硫化物的硫主要有3种来源:一 种是幔源硫(δ³⁴S≈0±3‰),且变化范围小、塔式效

表 9	羊拉矿床矽卡岩型铅锌矿体和矽卡岩型铜矿	ゲ体S	同位素组成	及平衡状态
-----	---------------------	-----	-------	-------

Table 9 S isotopic compositions and equilibrium states of skarn Pb-Zn orebodies and Cu orebodies, Yangla Cu deposit

Pyrite -0.51 This3175-d120-1Sphalerite0.37Sphalerite>Pyrite>GalenaUnbalancedpaperGalena -1.14 -1.14 -1.14 -1.14 -1.14 -1.14 3175-d120-5Sphalerite0.31Pyrite>Sphalerite>GalenaBalance -1.09 Pyrite 0.31 Pyrite>Sphalerite>GalenaBalance -1.69 $Galena$ -1.45 -0.66 Pyrite>Sphalerite>GalenaBalanceGalena -1.45 -0.08 -1.43 -1.43 $Sphalerite-0.33Sphalerite>GalenaBalanceGalena-1.49Pyrite>Sphalerite>GalenaBalanceGalena-1.49Pyrite>Sphalerite>GalenaBalanceGalena-1.49Pyrite>Sphalerite>GalenaBalanceGalena-1.49Pyrite>Sphalerite>GalenaBalanceGalena-1.49Pyrite>Sphalerite>GalenaBalanceGalena-1.49Pyrite>Sphalerite>GalenaBalanceGalena-1.42-1.44-1.42Pyrite2.32-1.42-1.42Pyrite2.210.99Pyrite>Sphalerite>GalenaBalanceGalena-1.41-1.42-1.42Pyrite1.820.99Pyrite>Sphalerite>GalenaBalanceGalena-1.42-1.42-1.42Pyrite1.820.99Pyrite>Sphalerite>GalenaBalanceGalena-1.41-1.42-1.42<$	Sample No.	Mineral	Sampling location	$\delta^{34}S_{V\text{-}CDT}/\text{\%}$	$\delta^{34}S$	Equilibrium state	Data source
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3175-d120-1	Pyrite	- Skarn type lead-zinc ore	-0.51	Sphalerite>Pyrite>Galena	Unbalanced	This
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Sphalerite		0.37			paper
Pyrite1.01 $3175-d120-5$ Sphalerite0.31Pyrite>Sphalerite>GalenaBalance $Galena$ -1.09 -1.09 Pyrite0.61Pyrite>Sphalerite>GalenaBalance $Galena$ -1.45 -0.08 $3150-0^7.4$ Sphalerite -0.08 $Galena$ -2.48 -1.49 $Galena$ -2.48 $Galena$ -2.48 $Galena$ -1.59 $Pyrite$ 0.33 $ghalerite>$ GalenaBalance $Galena$ -1.59 $Pyrite$ 0.71 $galena$ -1.59 $Pyrite$ 0.64 $Pyrite>Sphalerite>Galena$ Balance $Galena$ -1.44 $Pyrite$ 0.64 $Pyrite>Sphalerite>Galena$ Balance $Galena$ -1.44 $Pyrite$ 2.32 $3100-18-6$ Sphalerite 0.64 $Pyrite>Sphalerite>Galena$ Balance $Galena$ -1.44 $Pyrite$ 2.32 $3100-18-7$ Sphalerite 0.78 $Pyrite>Sphalerite>Galena$ Balance $Galena$ -1.42 $Pyrite$ 2.21 $3075-5^2$ Sphalerite 0.33 $Pyrite1.823075-5-3Sphalerite-0.22Pyrite>Sphalerite>GalenaBalanceGalena-1.67Pyrite1.683050-3-24SphaleriteGalena-1.89$		Galena		-1.14			_
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3175-d120-5	Pyrite		1.01	Pyrite>Sphalerite>Galena	Balance	
$ \begin{array}{c c c c c c c } \hline Galena & -1.09 \\ \hline Pyrite & 1.27 \\ \hline 1.27 \\ \hline 3150.0^{7}.1 & Sphalerite & 0.61 & Pyrite>Sphalerite>Galena & Balance \\ \hline Galena & -1.45 \\ \hline Pyrite & -0.08 \\ \hline 3150.0^{7}.4 & Sphalerite & -1.49 & Pyrite>Sphalerite>Galena & Balance \\ \hline Galena & -2.48 \\ \hline 3100.1.1 & Sphalerite & 0.33 & Sphalerite>Galena & Balance \\ \hline Galena & -1.59 & Sphalerite>Galena & Balance \\ \hline Galena & -1.59 & Sphalerite>Galena & Balance \\ \hline Galena & -1.59 & Sphalerite>Galena & Balance \\ \hline Galena & -1.59 & Sphalerite>Galena & Balance \\ \hline Galena & -1.59 & Sphalerite>Galena & Balance \\ \hline Galena & -1.44 & & & \\ \hline Pyrite & 1.71 & \\ \hline 3100.18.2 & Sphalerite & 0.99 & Pyrite>Sphalerite>Galena & Balance \\ \hline Galena & -1.42 & & & \\ \hline Pyrite & 2.32 & & \\ \hline 1.96 & & & \\ \hline 3100.18.7 & Sphalerite & 0.78 & Pyrite>Sphalerite>Galena & Balance \\ \hline Galena & -1.42 & & & \\ \hline Pyrite & 2.32 & & \\ \hline 3075.9^{-1} & Sphalerite & 0.99 & Pyrite>Sphalerite>Galena & Balance \\ \hline Galena & -1.42 & & & \\ \hline Pyrite & 2.11 & & \\ \hline 3075.9^{-1} & Sphalerite & 0.99 & Pyrite>Sphalerite>Galena & Balance \\ \hline Galena & -1.41 & & & \\ \hline Pyrite & 1.82 & & \\ \hline 3075.5.2 & Sphalerite & -0.33 & Pyrite>Sphalerite>Galena & Balance \\ \hline Galena & -1.39 & & \\ \hline Pyrite & 1.43 & & \\ \hline 3075.5.3 & Sphalerite & -0.22 & Pyrite>Sphalerite>Galena & Balance \\ \hline Galena & -1.67 & & \\ \hline Pyrite & 1.08 & & \\ \hline 3050-3.24 & Sphalerite & 0.84 & Pyrite>Sphalerite>Galena & Balance \\ \hline Galena & -1.89 & & \\ \hline \end{array}$		Sphalerite		0.31			
Pyrite 1.27 $3150-0^{4}-1$ Sphalerite 0.61 Pyrite>Sphalerite>GalenaBalanceGalena -1.45 -0.08 -1.49 Pyrite>Sphalerite>GalenaBalanceGalena -2.48 -1.49 Pyrite>Sphalerite>GalenaBalanceGalena -2.48 -1.59 Sphalerite>GalenaBalancePyrite 1.71 0.33 Sphalerite>GalenaBalanceGalena -1.59 Sphalerite>GalenaBalancePyrite 1.71 0.99 Pyrite>Sphalerite>GalenaBalanceGalena -1.44 -1.44 -1.44 Starn type 1.96 0.64 Pyrite>Sphalerite>GalenaBalanceGalena -1.26 0.64 Pyrite>Sphalerite>GalenaBalanceGalena -1.42 0.78 Pyrite>Sphalerite>GalenaBalanceGalena -1.42 0.78 Pyrite>Sphalerite>GalenaBalanceGalena -1.42 0.99 Pyrite>Sphalerite>GalenaBalanceGalena -1.42 0.99 Pyrite>Sphalerite>GalenaBalanceGalena -1.41 0.99 Pyrite>Sphalerite>GalenaBalanceGalena -1.41 0.33 Pyrite 0.33 $3075-52$ Sphalerite -0.33 Pyrite>Sphalerite>GalenaBalanceGalena -1.67 -1.67 Pyrite 0.64 Pyrite 1.08 $3050-3-2.4$ Sphalerite 0.84 $3050-3-2.4$ Sphalerite 0.84 Pyrite>Sphalerite>GalenaBal		Galena		-1.09			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3150-0 [#] -1	Pyrite		1.27	Pyrite>Sphalerite>Galena	Balance	-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Sphalerite		0.61			
Pyrite -0.08 $3150-0^44$ Sphalerite -1.49 Pyrite>Sphalerite>GalenaBalanceGalena -2.48 0.33 Sphalerite>GalenaBalance $3100-1-1$ Galena -1.59 Sphalerite>GalenaBalance $Galena$ -1.59 Sphalerite>GalenaBalance $Pyrite$ 1.71 0.99 Pyrite>Sphalerite>GalenaBalance $Galena$ -1.44 0.99 Pyrite>Sphalerite>GalenaBalance $Galena$ -1.44 0.64 Pyrite>Sphalerite>GalenaBalance $Galena$ -1.26 0.64 Pyrite>Sphalerite>GalenaBalance $Galena$ -1.26 0.78 Pyrite>Sphalerite>GalenaBalance $Galena$ -1.42 0.78 Pyrite>Sphalerite>GalenaBalance $Galena$ -1.42 0.78 Pyrite>Sphalerite>GalenaBalance $Galena$ -1.42 0.99 Pyrite>Sphalerite>GalenaBalance $Galena$ -1.42 0.99 Pyrite>Sphalerite>GalenaBalance $Galena$ -1.42 0.99 Pyrite>Sphalerite>GalenaBalance $Galena$ -1.41 0.99 Pyrite>Sphalerite>GalenaBalance $Galena$ -1.43 0.99 Pyrite>Sphalerite>GalenaBalance $Galena$ -1.41 0.99 Pyrite>Sphalerite>GalenaBalance $Galena$ -1.29 Pyrite>Sphalerite>GalenaBalance $Galena$ -1.67 0.22 Pyrite>Sphalerite>GalenaBalance $Galena$ -1		Galena		-1.45			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3150-0 [#] -4	Pyrite		-0.08	Pyrite>Sphalerite>Galena	Balance	-
		Sphalerite		-1.49			-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Galena		-2.48			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3100-1-1	Sphalerite		0.33	Sphalerite>Galena	Balance	
Pyrite1.71 $3100-18-2$ Sphalerite 0.99 Pyrite>Sphalerite>GalenaBalanceGalenaPyrite 1.96 0.64 Pyrite>Sphalerite>GalenaBalance $3100-18-6$ Sphalerite 0.64 Pyrite>Sphalerite>GalenaBalanceGalena -1.26 0.64 Pyrite>Sphalerite>GalenaBalance $3100-18-7$ Sphalerite 0.78 Pyrite>Sphalerite>GalenaBalance $Galena$ -1.42 0.78 Pyrite>Sphalerite>GalenaBalance $Galena$ -1.42 0.99 Pyrite>Sphalerite>GalenaBalance $Galena$ -1.41 0.99 Pyrite>Sphalerite>GalenaBalance $Galena$ -1.41 0.99 Pyrite>Sphalerite>GalenaBalance $Galena$ -1.41 0.33 Pyrite>Sphalerite>GalenaBalance $Galena$ -1.39 0.33 Pyrite>Sphalerite>GalenaBalance $Galena$ -1.39 0.22 Pyrite>Sphalerite>GalenaBalance $Galena$ -1.67 0.22 Pyrite>Sphalerite>GalenaBalance $Galena$ -1.67 0.84 Pyrite>Sphalerite>GalenaBalance $Galena$ -1.67 0.84 Pyrite>Sphalerite>GalenaBalance $Galena$ -1.89 0.84 Pyrite>Sphalerite>GalenaBalance		Galena		-1.59			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3100-18-2	Pyrite		1.71	Pyrite>Sphalerite>Galena	Balance	
$ \begin{array}{c c c c c c c c } \hline Galena & -1.44 \\ \hline 1.96 \\ \hline 0.64 & Pyrite > Sphalerite > Galena & Balance \\ \hline Galena & -1.26 \\ \hline Pyrite & 2.32 \\ \hline Pyrite & 2.32 \\ \hline 3100-18-7 & Sphalerite & 0.78 & Pyrite > Sphalerite > Galena & Balance \\ \hline Galena & -1.42 \\ \hline Pyrite & 2.21 \\ \hline 3075-9^{d}-1 & Sphalerite & 0.99 & Pyrite > Sphalerite > Galena & Balance \\ \hline Galena & -1.41 \\ \hline Pyrite & 1.82 \\ \hline 3075-5-2 & Sphalerite & -0.33 & Pyrite > Sphalerite > Galena & Balance \\ \hline Galena & -1.39 \\ \hline Pyrite & 1.43 \\ \hline 3075-5-3 & Sphalerite & -0.22 & Pyrite > Sphalerite > Galena & Balance \\ \hline Galena & -1.67 \\ \hline Pyrite & 1.08 \\ \hline 3050-3-2-4 & Sphalerite & 0.84 & Pyrite > Sphalerite > Galena & Balance \\ \hline Galena & -1.89 \\ \hline \end{array}$		Sphalerite		0.99			
PyriteSkarn type lead-zinc ore 1.96 $3100-18-6$ Sphalerite 0.64 Pyrite>Sphalerite>GalenaBalanceGalena -1.26 2.32 2.32 $3100-18-7$ Sphalerite 0.78 Pyrite>Sphalerite>GalenaBalanceGalena -1.42 2.21 $3075-9^{\#}-1$ Sphalerite 0.99 Pyrite>Sphalerite>GalenaBalanceGalena -1.41 2.21 $3075-9^{\#}-1$ Sphalerite 0.99 Pyrite>Sphalerite>GalenaBalanceGalena -1.41 1.82 $3075-5-2$ Sphalerite -0.33 Pyrite>Sphalerite>GalenaBalanceGalena -1.39 -1.39 -1.43 $3075-5-3$ Sphalerite -0.22 Pyrite>Sphalerite>GalenaBalanceGalena -1.67 -1.67 -1.67 -1.67 -1.67 Nyrite 1.08 0.84 Pyrite>Sphalerite>GalenaBalanceGalena -1.89 -1.89 -1.89		Galena		-1.44			
3100-18-6Sphalerite0.64Pyrite>Sphalerite>GalenaBalanceGalena -1.26 Pyrite2.323100-18-7Sphalerite0.78Pyrite>Sphalerite>GalenaBalanceGalena -1.42 Pyrite2.213075-9"-1Sphalerite0.99Pyrite>Sphalerite>GalenaBalanceGalena -1.41 Pyrite1.823075-5-2Sphalerite -0.33 Pyrite>Sphalerite>GalenaBalanceGalena -1.39 Pyrite1.433075-5-3Sphalerite -0.22 Pyrite>Sphalerite>GalenaBalanceGalena -1.67 Pyrite1.08 -1.67 Stablerite0.84Pyrite>Sphalerite>GalenaBalanceGalena -1.89 -1.89 -1.89	3100-18-6	Pyrite		1.96	Pyrite>Sphalerite>Galena	Balance	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Sphalerite		0.64			
Pyrite2.32 $3100-18-7$ Sphalerite 0.78 Pyrite>Sphalerite>GalenaBalanceGalena -1.42 Pyrite 2.21 $3075-9^{4}-1$ Sphalerite 0.99 Pyrite>Sphalerite>GalenaBalanceGalena -1.41 Pyrite 1.82 $3075-5-2$ Sphalerite -0.33 Pyrite>Sphalerite>GalenaBalanceGalena -1.39 Pyrite 1.43 $3075-5-3$ Sphalerite -0.22 Pyrite>Sphalerite>GalenaBalanceGalena -1.67 Pyrite 1.08 $3050-3-2-4$ Sphalerite 0.84 Pyrite>Sphalerite>GalenaBalanceGalena -1.89		Galena		-1.26			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3100-18-7	Pyrite		2.32		Balance	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Sphalerite		0.78	Pyrite>Sphalerite>Galena		
Pyrite2.21 $3075-9^{\#}-1$ Sphalerite0.99Pyrite>Sphalerite>GalenaBalanceGalena-1.41Pyrite1.82 $3075-5-2$ Sphalerite-0.33Pyrite>Sphalerite>GalenaBalanceGalena-1.39Pyrite1.43 $3075-5-3$ Sphalerite-0.22Pyrite>Sphalerite>GalenaBalanceGalena-1.67Pyrite1.08 $3050-3-2-4$ Sphalerite0.84Pyrite>Sphalerite>GalenaBalance		Galena		-1.42			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3075-9 [#] -1	Pyrite		2.21			
		Sphalerite		0.99	Pyrite>Sphalerite>Galena	Balance	
Pyrite 1.82 $3075-5-2$ Sphalerite -0.33 Pyrite>Sphalerite>GalenaBalanceGalena -1.39 -1.39 Pyrite 1.43 $3075-5-3$ Sphalerite -0.22 Pyrite>Sphalerite>GalenaBalanceGalena -1.67 Pyrite 1.08 -1.67 3050-3-2-4Sphalerite 0.84 Pyrite>Sphalerite>GalenaBalanceGalena -1.89 -1.89		Galena		-1.41			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3075-5-2	Pyrite		1.82	Pyrite>Sphalerite>Galena	Balance	
Galena -1.39 Pyrite 1.43 $3075-5-3$ SphaleriteGalena -0.22 Pyrite>Sphalerite>GalenaBalanceGalena -1.67 Pyrite 1.08 $3050-3-2-4$ SphaleriteGalena -1.89		Sphalerite		-0.33			
Pyrite 1.43 $3075-5-3$ Sphalerite -0.22 Pyrite>Sphalerite>GalenaBalanceGalena -1.67 Pyrite 1.08 $3050-3-2-4$ Sphalerite 0.84 Pyrite>Sphalerite>GalenaBalanceGalena -1.89		Galena		-1.39			
3075-5-3Sphalerite -0.22 Pyrite>Sphalerite>GalenaBalanceGalena -1.67 -1.67 1.08 1.08 $3050-3-2-4$ Sphalerite 0.84 Pyrite>Sphalerite>GalenaBalanceGalena -1.89 -1.89 1.08	3075-5-3	Pyrite		1.43	Pyrite>Sphalerite>Galena	Balance	
Galena -1.67 Pyrite 1.08 3050-3-2-4 Sphalerite Galena -1.89		Sphalerite		-0.22			
Pyrite1.083050-3-2-4SphaleriteGalena-1.89		Galena		-1.67			
3050-3-2-4SphaleriteSphaleriteSphaleriteSphaleriteSphaleriteGalena-1.89Image: SphaleriteImage: SphaleriteImage: Sphalerite	3050-3-2-4	Pyrite		1.08			
Galena -1.89		Sphalerite		0.84	Pyrite>Sphalerite>Galena	Balance	<u>o</u>
		Galena		-1.89			

Characteristic Range -2.48 - 2.32, Mean -0.01, Range 4.80

图 12 羊拉铜矿床砂卡岩型铅锌、铜矿体的 S 同位素组成(a)以及幔源 S 和三江成矿带典型矿床的 S 同位素组成(b)^[77-84] Fig. 12 S isotopic composition of skarn type Pb-Zn orebodies and Cu orebodies, Yangla deposit(a), and S comparison of mantle-derived S and typical ore deposits in Sanjiang metallogenic belt(b)^[77-84]

图 13 羊拉铜矿床铅锌矿体硫化物对 $\delta^{34}S_{\Sigma S}$ 图解: (a) 方铅矿-闪锌矿; (b) 黄铁矿-闪锌矿; (c) 黄铁矿-方铅矿

Fig. 13 Total sulfur isotopic $(\delta^{34}S_{\Sigma S})$ diagrams of sulfides $(\delta^{34}S_{sulfides})$ in skarn Pb-Zn ore bodies, Yangla deposit: (a) Galena-Sphalerite; (b) Pyrite-Sphalerite; (c) Pyrite-Galena

应明显^[84]; 第二种来自现代海水硫酸盐(细菌硫酸盐还原(BSR)和/或热化学硫酸盐还原(TSR), 20‰)^[74,86]; 第三种来自还原(沉积)硫或生物成因硫,由于生物作用强弱和SO₄²⁻、H₂S开放或封闭体 (系不同₂) ⁸⁴S一般为极大负值、且变化范围大_P并

常显示硫同位素非平衡效应。

羊拉砂卡岩型铅锌矿体中方铅矿、闪锌矿和黄 铁矿的硫同位素组成(δ^{34} S=-2.24‰~2.32‰,平均为 0.06‰;图12、表6),与地幔或深部岩浆形成的硫 相似(δ^{34} S \approx 0±3‰)^[84],而与地壳花岗岩、BSR和/或 TSR、TDS 形成的硫存在显著差异,暗示硫可能来 源于深部(地幔或岩浆)。羊拉砂卡岩型铜矿体的硫 同位素组成(δ³⁴S=-5.80‰~3.30‰,主要集中在 -3.3‰~3.0‰,平均为0.20‰),与羊拉砂卡岩型铅 锌矿体的硫同位素组成相近,均属于地幔或深部岩 浆硫(δ³⁴S≈0±3‰)^[84]。整体而言,羊拉矿床铅锌矿 体的硫同位素组成在零值附近,均一程度高、变化 范围小、硫来源单一,均显示深部地壳或地幔硫特 征(见图 14(a)),未受到上地壳物质的混染;且砂卡 岩型铅锌矿体硫源与砂卡岩型铜矿体的硫源一致, 与中国西南"三江"地区的普朗铜矿、雪鸡坪铜矿、 浪都铜矿、春都铜矿及北衙金矿的硫同位素组成明 显相似(见图 12(b))。

4.3.2 Pb 同位素来源

铅同位素作为一种放射性同位素,由于质量较 大,不同的铅同位素分子之间相对质量差小,在浸 取、运移和沉淀析出过程中,成矿流体中的铅继承 了其源区的铅同位素组成^[87],因此可以通过测定含 铅矿物的铅同位素组成来示踪成矿物质来源。

在²⁰⁷Pb/²⁰⁴Pb-²⁰⁶Pb/²⁰⁴Pb 图中, 羊拉矿床矽卡 岩型铅锌矿体铅同位素数据落在上地壳演化线附 近^[88](见图 15(a));在²⁰⁸Pb/²⁰⁴Pb-²⁰⁶Pb/²⁰⁴Pb 图中, 铅同位素数据落在造山带演化线与下地壳演化线 之间,稍靠近造山带演化线的一侧(见图 15(b));在

图 14 单拉矿床砂卡岩型铅锌矿体 S 同位素直方图(a)和单拉矿床砂卡岩型铜矿体 S 同位素直方图(b) **Fig. 14** δ³⁴S frequency histogram of skarn Pb-Zn orebodies, Yangla deposit(a) and δ³⁴S frequency histogram of skarn Cu orebodies, Yangla deposit(b)

图 15 羊拉矿床砂卡岩铅锌矿体和砂卡岩铜矿体的²⁰⁷Pb/²⁰⁴b-²⁰⁶Pb/²⁰⁴图(a)和²⁰⁸Pb/²⁰⁴b-²⁰⁶Pb/²⁰⁴图(b)(图中数据来源见 表 7, 底图据文献[88]): U一上地壳; O一造山带; M一地幔; L一下地壳

Fig. 15 ²⁰⁷Pb/²⁰⁴b–²⁰⁶Pb/²⁰⁴(a) and ²⁰⁸Pb/²⁰⁴b–²⁰⁶Pb/²⁰⁴(b) diagrams of skarn type lead-zinc orebodies and skarn type copper orebodies, Yangla copper deposit(Data from Table 7, Modified from Ref. [88]): U—Upper Crust; O—Orogen Belt; M— Mantle; L—Lower Crust

Δγ-Δβ成因分类图解中^[87],铅同位素样品主要落在 上地壳铅范围(见图 16),与铅源区构造模式图(见图 15)中的分布特征基本一致,表明矽卡岩型铅锌矿体 中铅主要来源于上地壳。

砂卡岩型铜矿体的铅同位素组成变化范围较 宽,数据落在地幔、造山带、上地壳、下地壳演化 线之间的区域(见图15(a));在²⁰⁸Pb/²⁰⁴Pb-²⁰⁶Pb/²⁰⁴Pb 图解中,铅同位素数据落在造山带演化线与下地壳 演化线之间,靠近造山带演化线一侧(见图15(b)); 在Δγ-Δβ成因分类图解中,样品落在上地壳、部分 上地壳和地幔混合铅及少部分造山带铅范围,主要 集中于壳幔混合铅的范围(见图16)。

砂卡岩型铅锌矿体与砂卡岩型铜矿体的铅同 位素组成不一致(见图 15 和 16),砂卡岩型铅锌矿体
铅同位素稳定均一、变化范围较窄,显示上地壳源
铅特征,而砂卡岩型铜矿体的铅同位素显示壳--幔
混合铅特征;羊拉砂卡岩型铅锌矿体中铅主要为上
地壳铅,砂卡岩型铜矿体中铅主要为壳--幔混合铅。
4.3.3 Zn 同位素来源

羊拉砂卡岩型铅锌矿体中闪锌矿样品δ⁶⁶Zn_{JMC}

值集中在 0.31‰~0.44‰之间, 极差为 0.13‰, Zn 同位素组成均一程度很高,可能是因为闪锌矿析出 前成矿流体经过充分的"均一化"过程^[89]。利用共 生矿物对的硫同位素组成,计算羊拉矿床铅锌矿体 的成矿温度为 168~347 ℃,平均为 258 ℃; 与杜 丽娟(2017)^[90]流体包裹体测温研究获得的温度一致 (142~415 ℃),说明羊拉矿床成矿流体温度主要介 于 160~320 ℃之间。在这个温度范围内,闪锌矿从 成矿流体中沉淀时产生的锌同位素分馏较低温条 件下的锌同位素分馏要小得多。因此,羊拉矿床铅锌 矿体中闪锌矿的 Zn 同位素表现出较高的均一程度。

Zn 同位素的物质来源不同,其组成特征差异较 大:碳质球粒陨石 δ^{66} Zn_{JMC}=0.35‰,火成岩 δ^{66} Zn_{JMC}=0.24~0.55‰,变质岩 δ^{66} Zn_{JMC}=-0.02~ 0.85‰,现代深海表层沉积物 δ^{66} Zn_{JMC}=0.17~ 0.35‰,生物成因 δ^{66} Zn_{JM}=-0.27~0.23‰^[91-101]。羊 拉矿床铅锌矿体闪锌矿的 Zn 同位素为 0.31‰~ 0.44‰,与岩浆矿床的 δ^{66} Zn 值(0.02‰~0.44‰)一 致^[102-103]。

研究表明, 矽卡岩型铅锌矿床^[48,104]、密西西比

图 16 羊拉矿床砂卡岩型铅锌矿体和铜矿体的铅同位素 Δγ-Δβ 图解(图中数据来源见表 7, 底图据文献[87]): (a) 砂卡 岩型铅锌矿体和铜矿体; (b) 砂卡岩型铅锌矿体; 1一地幔源铅; 2一上地壳源铅; 3一上地壳与地幔混合的俯 冲带铅(3a-岩浆作用; 3b-沉积作用); 4-化学沉积型铅; 5-海底热水作用铅; 6-中-深变质作用铅; 7-深变质下地壳铅; 8-造山带铅; 9-古老页岩上地壳铅; 10-退变质作用铅

Fig. 16 $\Delta \gamma - \Delta \beta$ diagram of lead isotope in skarn type lead-zinc orebodies and copper orebodies, Yangla deposit(Data are from Table 7, Modified after Ref. [87]): (a) Skarn type lead-zinc orebodies and copper orebodies; (b) Skarn type lead-zinc orebodies; 1—Mantle lead; 2—Upper crust lead; 3—Lead from mantle and upper crust mixed subduction zone (3a—Magmatism, 3b—Sedimentation); 4—Lead from chemistry sediments; 5—Lead from hydrothermal sediments on seafloor; 6—Lead from middle to deep metamorphism; 7—Lead from deep metamorphism lower crust; 8—Orogenic belt lead; 9—Lead from upper crust of old shale; 10—Lead from retrogressive metamorphism

河谷型(MVT型)铅锌矿床^[100,105-108]、火山热液块状 硫化物型(VMS型)矿床^[109]、喷流沉积型(SEDEX型) 铅锌矿床^[110-111]、热液脉型铅锌矿床^[96,103,105,112]和 砂页岩型铅锌矿床^[113]的闪锌矿锌同位素组成存在 显著变化(见图 17(a)),羊拉矿床铅锌成矿流体的锌 同位素组成与砂卡岩型铅锌成矿流体相似,而与其 他类型铅锌矿床成矿流体不同。与凤凰山、新桥、 金厂河等砂卡岩型铅锌矿床的闪锌矿锌同位素组 成对比,羊拉矿床铅锌矿体相对富集重锌同位素、 且相对均一(见图 17(b))。

羊拉矿床闪锌矿的锌、硫同位素组成存在线性 相关(见图 18(a)),闪锌矿中锌、铅同位素组成不存 在明显的相关性(见图 18(b)),表明硫和锌可能具有 相同来源,而铅和锌同位素可能来源不同;结合硫、 铅同位素结果,本文认为羊拉矿床铅锌矿体中的锌 和硫来源于岩浆,铅来源于岩浆和上地壳基底岩 石。这种 S-Pb-Zn 同位素特征与安徽铜陵矿集区^[104] 和云南金厂河砂卡岩型铅锌矿床相似^[48]。

4.4 铅锌矿体与铜矿体的成因联系

羊拉矿床铅锌矿体主要为矽卡岩型铅锌矿体 和热液脉型铅锌矿体,其中热液脉型铅锌矿体主要 产出在北东向构造破碎带及围岩裂隙内,推测与铜 矿体不存在成因联系(本文未开展该类型铅锌矿体

图 17 不同类型铅锌矿床中闪锌矿的 $\delta^{66}Zn_{JMC}$ 同位素组成(a)和矽卡岩型铅锌矿床中闪锌矿的 $\delta^{66}Zn_{JMC}$ 组成(b) Fig. 17 $\delta^{66}Zn_{JMC}$ composition of sphalerite in different types of lead-zinc deposits(a) and $\delta^{66}Zn_{JMC}$ composition of sphalerite in skarn type lead-zinc deposit(b)

图 18 羊拉矿床铅锌矿体中闪锌矿 $\delta^{34}S - \delta^{66}Zn_{JMC}$ 相关图解(a)和 ${}^{207}Pb/{}^{204}Pb - \delta^{66}Zn_{JMC}$ 相关图解(b) Fig. 18 $\delta^{34}S$ vs $\delta^{66}Zn_{JMC}$ diagram of sphalerite in lead-zinc orebodies, Yangla deposit(a) and ${}^{207}Pb/{}^{204}Pb$ vs $\delta^{66}Zn_{JMC}$ diagram of sphalerite in lead-zinc orebodies, Yangla deposit(b)

的研究工作),而砂卡岩型铅锌矿体则主要产出在砂 卡岩型铜矿体下部边缘,与铜矿体密切共生,两者 为同一成因。从矿体产状、赋矿层位、矿体品位、矿 体规模、矿石组构、矿物组合、围岩蚀变、控矿因 素以及矿床地球化学等方面进行对比,结果表明:

1) 从矿体规模、矿体品位、矿体产状、控矿因 素及矿体形态等方面来看,羊拉砂卡岩型铅锌矿体 长 200 m,厚 0.21~9.95 m,锌品位 0.21%~12.42%, 铅品位 0.18%~9.80%,铅品位变化系数 122.81%, 锌品位变化系数 129.38%,矿体总体走向近南北向、 倾向西,倾角一般 15°~45°,深部变陡,严格受地 层、岩体和构造的控制,呈层状、似层状、脉状、 透镜体状产出;砂卡岩型铜矿体长约 2200 m,厚 0.7~44 m,平均为 10 m,铜品位 0.30%~3.06%,平 均品位 1.09%,矿体总体走向为北东向、倾向西, 倾角 10°~30°,深部可达 40°~50°,受地层、岩体和 构造的控制,呈层状、似层状、脉状、透镜体状产 出。对比而言,矽卡岩型铅锌矿体规模不大、品位 不高,而砂卡岩型铜矿体规模较大、品位较好,二 者具有相似的矿体产状和控矿因素。

2) 在矿物组合、矿石组构、赋矿层位及围岩蚀 变等方面, 羊拉砂卡岩型铅锌矿体金属矿物主要为 方铅矿、闪锌矿、磁黄铁矿、黄铁矿、黄铜矿、少 量斑铜矿等;非金属矿物有方解石、石英等,少量 绿帘石、绢云母、绿泥石等;矿石结构有自形-半 自形-他形粒状结构、碎裂结构、交代结构、固溶 体分离结构、揉皱结构等, 矿石构造主要有浸染状 构造、团块状构造、细脉状构造;赋矿地层为泥盆 系薄层状绢云砂质板岩、变质石英砂岩及大理岩, 围岩具砂卡岩化、碳酸盐化、绿泥石化、绢云母化 等。矽卡岩型铜矿体的金属矿物为黄铜矿、磁黄铁 矿、磁铁矿、黄铁矿-白铁矿、斑铜矿等,少量方 铅矿、闪锌矿、蓝铜矿、辉钼矿、孔雀石等,非金 属矿物主要为绿帘石、石榴石、方解石、绢云母、 石英等; 矿石结构有半自形-他形粒状结构、包含 结构、交代结构等, 矿石构造为浸染状构造、团块 状构造、脉-细脉状构造;矿体赋矿地层为泥盆系 薄层状绢云砂质板岩、变质石英砂岩及大理岩,围 岩具砂卡岩化、钾化、硅化、绿泥石化、碳酸盐化、 绢云母化等。对比发现, 矽卡岩型铅锌矿体的矿石 组构、矿物组合及围岩蚀变相对简单,而砂卡岩型 铜矿体矿石组构、矿物组合及围岩蚀变相对复杂, 二者的赋矿层位一致。

3) 碳、氧同位素方面, 羊拉砂卡岩型铅锌矿体 中方解石形成于两个阶段,早阶段方解石 δ^{13} CPDB、 δ¹⁸O_{SMOW}分别为-6.52‰~-4.07‰、5.04‰~9.94‰, 显示来源于花岗质岩浆;晚阶段方解石 $\delta^{13}C_{PDB}$ 、 δ¹⁸O_{SMOW} 分别为-3.81‰~-3.53‰、14.36‰~ 17.30‰,来源于花岗质岩浆与海相碳酸盐岩的混 合; 两阶段方解石均为热液成因。矽卡岩型铜矿体 中方解石也存在两个阶段,早阶段方解石 δ^{13} C_{PDB}、 δ¹⁸O_{SMOW}分别为-7.0‰~-5.0‰、7.2‰~18.0‰,碳、 氧同位素来源于花岗质岩浆,晚阶段方解石 δ¹³C_{PDB}、δ¹⁸O_{SMOW}分别为-4.5~-2.3‰、10.7‰~ 19.4‰,碳同位素来源于花岗质岩浆与海相碳酸盐 岩的混合;两阶段方解石均为热液成因。相对而言, 铅锌矿体与铜矿体在方解石的成因上是相同的,均 为热液成因,早阶段成矿流体为岩浆水、晚阶段流 体有大气降水的加入,成矿物质来源由岩浆源转为 岩浆与地层围岩的混合源。

4) 硫、铅同位素方面, 羊拉矿床砂卡岩型铅锌 矿体 δ³⁴S 值变化于-2.48‰~2.32‰之间, 平均为 -0.06‰; δ^{34} S 值变化范围在岩浆硫范围内, 属岩浆 源。²⁰⁸Pb/²⁰⁴Pb 为 38.7501~38.7969,均值为 38.3721; ²⁰⁷Pb/²⁰⁴Pb 为 15.7159~15.7248,均值为 15.7202; ²⁰⁶Pb/²⁰⁴Pb 为 18.3640~18.3874, 均值为 18.7740, 铅 锌矿体铅来源上地壳。在 $\Delta\gamma$ - $\Delta\beta$ 成因图解中,铅锌 矿体铅同位素表现为上地壳铅。矽卡岩型铜矿体 δ³⁴S 值变化范围为-5.80‰~3.30‰, 平均 0.20‰, 属岩浆硫;²⁰⁸Pb/²⁰⁴Pb 为 37.8330~38.7920,²⁰⁷Pb/²⁰⁴Pb 为15.4340~15.7230,²⁰⁶Pb/²⁰⁴Pb为17.9850~18.3950, 铜矿体铅同位素来源于上地壳与地幔及造山带铅 的混合; 在 $\Delta \gamma - \Delta \beta$ 成因图解中, 铜矿体表现为上地 壳与地幔的混合铅。由此可见,铅锌矿体与铜矿体 在硫化物 S 同位素组成方面并无明显差异, 而在铅 同位素组成方面存在一定差异:这是因为羊拉矿床 铜矿体形成于多期多阶段,而本文研究的铅锌矿体 则稍晚于铜矿体,为成矿晚阶段产物。

综上所述, 矽卡岩型铅锌矿体与矽卡岩型铜矿 体无论是在矿体产状、赋矿层位、矿体品位、矿体 规模、矿石组构、矿物组合、围岩蚀变和控矿因素 方面,还是在碳、氧、硫、铅同位素组成等方面, 均存在一定的差别,但并无明显差异,两者应均属 矽卡岩成因。热液脉型铅锌矿体的成因还有待于后 续工作的证实。

4.5 成矿模式

在系统总结区域地质背景、矿床地质特征、矿 床成因及铅锌矿体与铜矿体的关系等方面的基础 上,本文建立了羊拉矿床铜铅锌成矿模式(见图 19)。

中三叠世晚期, 金沙江构造带进入碰撞晚期, 引发区域性伸张,导致软流圈上涌;幔源岩浆上涌 并侵入下地壳,导致下地壳发生大规模重熔,产生 大面积酸性岩浆,与上升的基性岩浆发生混合^[39]。 这种混合作用一方面导致大量成矿元素被溶解在 混合后的岩浆中,使得成矿元素开始大规模富集; 另一方面可以有效降低基性岩浆黏度,减少上涌阻 力,并且酸性岩浆的加入增加了体系中的含水量, 使其可以运载和迁移大量元素^[114]。230 Ma 左右, 羊拉矿床发生了大规模花岗质岩浆侵位活动,形成 了与成矿关系密切的岩体(花岗闪长岩、花岗斑岩 等)。岩体沿着金沙江断裂和羊拉断裂,呈近 NS 向 展布; 侵位于志留系、泥盆系大理岩、变质石英砂 岩、绢云纱质板岩中;并发生了强烈砂卡岩化,形 成了砂卡岩型 Cu-Pb-Zn 矿床。成矿物质主要来源 于岩浆热液,部分可能受到上地壳物质的混染。前 人流体包裹体研究证实,成矿流体呈现高温→低温 的演化趋势。本文认为铜先析出富集形成铜矿体, 而铅、锌则富集在铜矿体的边缘形成 Cu-Pb-Zn 矿 体(见图 19)。

图 19 羊拉矿床铜铅锌成矿模式图: 1—三叠系; 2—石炭系贝吾组; 3—泥盆系; 4—志留系; 5—新元古界; 6—花 岗闪长岩;7一铜矿体;8一铅锌矿体;9一花岗斑岩;10一断裂;11一玄武岩;12一灰岩;13一绢云砂质板岩;14-变质石英砂岩; 15一板岩; 16一大理岩

Fig. 19 Copper-lead-zinc metallogenic pattern of Yangla deposit: 1-Triassic; 2-Beiwu formation of carboniferous; 3-Devonian; 4-Silurian; 5-Neoproterozoic; 6-Granodiorite; 7-Copper orebodies; 8-Lead-zinc orebodies; 9-Granite porphyry; 10-Fault; 11-Basalt; 12-Limestone; 13-Serian sandy slate; 14-Metamorphic quartzose sandstone; 15-Slate; 16—Marble (C)1994-2021 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

5 结论

 1) 羊拉铜矿床的铅锌矿体主要为砂卡岩型,呈 层状、似层状、脉状、透镜体状分布于砂卡岩型铜 矿体的边缘,与砂卡岩型铜矿体共同产出,明显具 分支复合、尖灭再现的特征;其次为热液脉型,呈 不规则细脉状充填于构造破碎带内。

2) 羊拉铜矿床铅锌矿石中的方解石可分为两 阶段,早成矿阶段方解石(I)主要呈他形晶不规则 团块状产出,晚成矿阶段方解石(II)呈脉状产出, 早、晚成矿阶段方解石的稀土元素地球化学特征并 无明显差异。羊拉矿区铅锌矿石中的方解石与矽卡 岩型铜矿石具有一致的 REE 来源,均来自于花岗闪 长岩与围岩砂质板岩、石英砂岩、大理岩等混合。

3) 羊拉矿床铅锌矿石中的方解石均为热液成因,早成矿阶段方解石(I)的δ¹³C_{PDB}在-6.52‰~ -4.07‰之间,δ¹⁸O_{SMOW}在5.04‰~9.94‰之间,成 矿物质主要来源于花岗岩质岩浆;晚成矿阶段方解 石(II)的δ¹³C_{PDB}在-3.81‰~-3.53‰之间,δ¹⁸O_{SMOW} 在14.36‰~17.30‰之间,成矿物质来自于花岗岩质 岩浆与海相碳酸盐岩的混合。

 4) 砂卡岩型铅锌矿体矿石的总硫同位素接近 于零值,表明硫来源于地幔和深部地壳;铅同位素 表明砂卡岩型铅锌矿体中铅主要来源于上地壳。

5) 羊拉矿床铅锌矿体中闪锌矿 Zn 同位素明显 大于同类型的其他铅锌矿床,显示成矿物质主要来 源于岩浆。

6) 羊拉矿床矽卡岩型铅锌矿体与矽卡岩型铜 矿体在形态产状、赋矿层位、矿物组合、矿石组构、 围岩蚀变、控矿因素以及碳、氧、硫、铅同位素等 方面均无明显差异,反映铅锌矿体与铜矿体为同一 成因,均为同一期成矿作用的产物;而铅锌矿体的 形成稍晚于铜矿体,为成矿晚阶段产物。

致谢:

野外工作期间得到云南迪庆矿业开发有限责 任公司刘小青、刘凤泽、罗诚及李在早等工程师给 予的帮助和支持,室内分析测试工作得到了中国科 学院地球化学研究所矿床地球化学国家重点实验 室谷静博士、胡静工程师、蔡佳丽工程师和陈军博 士等的热情帮助,在此一并致以由衷的感谢。

PEFERENCES

 [1] 李文昌,潘桂堂,侯增谦,等.西南"三江"多岛弧盆-碰 撞造山成矿理论与勘查技术[M].北京:地质出版社,2010: 42-46.

LI Wen-chang, PAN Gui-tang, HOU Zeng-qian, et al. Archipelagic-basin, forming collision theory and prospecting techniques along the Nujiang-Lancangjiang-Jinshajiang area in southwestern China[M]. Beijing: Geological Publishing House, 2020: 42–46.

- [2] DU L J, LI B, HUANG Z L, et al. Carbon-oxygen isotopic geochemistry of the Yangla Cu skarn deposit, SW China: Implications for the source and evolution of hydrothermal fluids[J]. Ore Geology Reviews, 2017, 88: 809–821.
- [3] 曾普胜, 尹光候, 李文昌, 等. 金沙江造山带德钦-羊拉矿 集区构造-岩浆-成矿系统[M]. 北京: 地质出版社, 2015.
 ZENG Pu-sheng, YIN Guang-hou, LI Wen-chang, et al. Tectono-magmatic metallogenic system of deqin-yangla ore deposit in jinshajiang orogenic belt[M]. Beijing: Geological Publishing House, 2015.
- [4] 朱经经,胡瑞忠,毕献武,等. 滇西北羊拉铜矿矿区花岗 岩成因及其构造意义[J]. 岩石学报,2011,27(9): 2553-2566.

ZHU Jing-jing, HU Rui-zhong, BI Xian-wu, et al. Genesis and tectonic significance of granites in the Yangla ore district, northwestern Yunnan Province[J]. Acta Petrologica Sinica, 2011, 27(9): 2553–2566.

- [5] 何龙清,战明国,路远发. 滇西羊拉铜矿区层序地层划分 及赋矿层位研究[J]. 华南地质与矿产, 1998(3): 37-41.
 HE Long-qing, ZHAN Ming-guo, LU Yuan-fa. Division of sequence stratigraphy and study on ore-bearing beds in Yangla copper orefield, Western Yunnan[J]. Geology and Mineral Resources of South China, 1998(3): 37-41.
- [6] 朱 俊,曾普胜,曾礼传,等. 滇西北羊拉铜矿区地层划 分[J]. 地质学报, 2009, 83(10): 1415-1420.
 ZHU Jun, ZENG Pu-sheng, ZENG Li-chuan, et al. Stratigraphic subdivision of the Yangla copper ore district, northwestern Yunnan[J]. Acta Geologica Sinica, 2009, 83(10): 1415-1420.
- [7] 路远发,陈开旭,黄惠兰.云南羊拉地区不同类型铜矿床

流体包裹体研究[J]. 地质科技情报, 2004(2): 13-20.

LU Yuan-fa, CHEN Kai-xu, HUANG Hui-lan. Fluid inclusions of various types of copper deposits in Yangla region, Yunnan Province[J]. Geological Science and Technology Information, 2004(2): 13–20.

- [8] YANG X A, LIU J J, YANG L B, et al. Fluid inclusion and isotope geochemistry of the Yangla copper deposit, Yunnan, China[J]. Mineralogy and Petrology, 2014, 108(2): 303–315.
- [9] 李 波,丁俊英,黄智龙,等. 滇西北羊拉大型铜矿床构造热液成矿作用的流体包裹体证据[J]. 昆明理工大学学报(自然科学版),2018,43(3):25-36.

LI Bo, DING Jun-ying, HUANG Zhi-long, et al. Tectonic hydrothermal metallogenesis in the Yangla Cu Deposit, Nouthwest Yunnan Province: Evidence from fluid inclusions[J]. Journal of Kunming University of Science and Technology (Natural Science), 2018, 43(3): 25–36.

- [10] 路远发,陈开旭,战明国. 羊拉地区含矿砂卡岩成因的地 球化学证据[J]. 地球科学, 1999, 25(3): 83-88.
 LU Yuan-fa, CHEN Kai-xu, ZHAN Ming-guo. Geochemical evidence of exhalative sedimentary ore bearing skarns in Yangla copper mineralization concentrated area, deqin county, Northwestern Yunnan Province[J]. Earth Science, 1999, 25(3): 83-88.
- [11] 潘家永,张 乾,马东升,等. 滇西羊拉铜矿区硅质岩特 征及与成矿的关系[J]. 中国科学(D 辑: 地球科学), 2001, 31(1): 10-16.

PAN Jia-yong, ZHANG Qian, MA Dong-sheng, et al. Characteristics of siliceous rocks and their relationship to mineralization in Yangla copper mining area, Western Yunnan[J]. Science in China (Series D: Earth Sciences), 2001, 31(1): 10–16.

- [12] YANG X A, LIU J J, HAN S Y, et al. S and Pb isotopic constraints on the relationship between the Linong Granodiorite and the Yangla Copper Deposit, Yunnan, China[J]. Acta Geologica Sinica(English Edition), 2012, 86(6): 1488–1499
- [13] 甘金木,战明国,余凤鸣,等. 滇西德钦羊拉铜矿区构造 变形特征及其控矿作用分析[J]. 华南地质与矿产, 1998(4): 59-65.

GAN Jin-mu, ZHAN Ming-guo, YU Feng-ming, et al. Structural deformation and its ore-control significance in Yangla copper district deqing, Western Yunnan[J]. Geology and Mineral Resources of South China, 1998(4): 59–65. 构造岩微观构造与动力学分析[J]. 中国区域地质, 2000, 19(1): 92-99.

YU Feng-ming, ZHAN Ming-guo, GAN Jin-mu, et al. Analysis of micro-tectonic and mechanism of quartz tectonite in Yangla large-scale copper deposit in West Yunnan[J]. Regional Geology of China, 2000, 19(1): 92–99.

[15] 李 波, 邹国富, 文书明, 等. 滇西北羊拉铜矿床断裂构造、构造控矿模式及找矿预测[J]. 矿产勘查, 2014, 5(5): 699-711.

LI Bo, ZOU Guo-fu, WEN Shu-ming, et al. Fault structure, ore-controlling structural model and prospecting prediction of Yangla copper deposit, Northwestern Yunnan[J]. Mineral Exploration, 2014, 5(5): 699–711.

- [16] 李 波. 滇西北羊拉铜矿矿床地球化学及找矿预测[R]. 昆明:云南铜业(集团)有限公司, 2013: 1-288.
 LI Bo. Geochemistry and prospecting prediction of Yangla copper deposit in northwest Yunnan[R]. Kunming: Yunnan Copper Industry (Group) Co. Ltd., 2013: 1-288.
- [17] 杜丽娟,黄智龙,李 波,等. 滇西北羊拉铜矿床里农-路 农接合段构造地球化学与找矿预测[J]. 矿物学报, 2017, 37(4): 434-442.

DU Li-juan, HUANG Zhi-long, LI Bo, et al. Tectono-geochemical features and orientation prognosis of concealed ores of Yangla Cu Deposit, Yunnan Province, SW China[J]. Acta Mineralogica Sinica, 2017, 37(4): 434–442.

- [18] 杨喜安,刘家军,韩思宇,等. 云南羊拉铜矿床里农花岗 闪长岩体锆石 U-Pb 年龄、矿体辉钼矿 Re-Os 年龄及其地 质意义[J]. 岩石学报, 2011, 27(9): 2567-2576.
 YANG Xi-an, LIU Jia-jun, HAN Si-yu, et al. U-Pb dating of zircon from the Linong granodiorite, Re-Os dating of molybdenite from the ore body and their geological significances in Yangla copper deposit, Yunnan[J]. Acta Petrologica Sinica, 2011, 27(9): 2567-2576.
- [19] ZHU J J, HU R Z, BI X W, et al. Zircon U-Pb ages, Hf-O isotopes and whole-rock Sr-Nd-Pb isotopic geochemistry of granitoids in the Jinshajiang suture zone, SW China: Constraints on petrogenesis and tectonic evolution of the Paleo-Tethys Ocean[J]. Lithos, 2011, 126(3/4): 248–264.
- [20] LI B, WANG X F, DU L J, et al. Zircon U-Pb ages and geochemistry of granite porphyries in the Yangla Cu deposit, SW China: Constraints on petrogenesis and tectonic evolution of the Jinshajiang suture belt[J]. Geofluids, 2020, 2020: 8852277. https://doi.org/10.1155 /2020/ 8852277.

[14] 余凤鸣, 战明国, 甘金木, 等. 滇西羊拉大型铜矿床石英 [21] YANG X A, LIU J J, CAO Y, et al. Geochemistry and S, Pb (C)1994-2021 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

isotope of the Yangla copper deposit, western Yunnan, China: Implication for ore genesis[J]. Lithos, 2012b, 144: 231–240.

- [22] ZHU J J, HU R Z, RICHARDS J P, et al. Genesis and magmatic-hydrothermal evolution of the Yangla Skarn Cu deposit, Southwest China[J]. Economic Geology, 2015, 110(3): 631–652.
- [23] WANG X F, LI B, GUAN S J, et al. Mineralized granitic porphyry of the Yangla copper deposit, western Yunnan, China: Geochemistry of fluid inclusions and H-O, S, and Pb isotopes[J]. Geofluids, 2020, 2020: 4391703. https://doi.org/ 10.1155/2020/4391703.
- [24] 魏君奇,陈开旭. 云南羊拉地区铜矿成矿系列[J]. 地质科 技情报, 2004(2): 21-24.
 WEI Jun-qi, CHEN Kai-xu. Minerogenetic series of copper ore in Yangla region, Yunnan Province[J]. Geological Science and Technology Information, 2004(2): 21-24.
- [25] 杨德庭,王彦斌. 滇西北羊拉铜矿床赋矿围岩的时代和物 源区特征: 锆石 LA-MC-ICP-MS U-Pb 年龄的制约[J]. 地 质论评, 2015, 61(3): 694–708.

YANG De-ting, WANG Yan-bin. Detrital zircon LA-MC-ICP-MS U-Pb age and provenance characteristics of ore-hosting rocks in Yangla copper deposit, Northwestern Yunnan[J]. Geological Review, 2015, 61(3): 694–708.

- [26] 陈开旭,魏君奇,鄢道平,等. 滇西德钦羊拉地区斑岩及 其成矿作用初步研究[J]. 华南地质与矿产, 1999(2): 1-8.
 CHEN Kai-xu. WEI Jun-qi, YAN Dao-ping, et al. A preliminary study of porphyry borphyry bodies and related mineralization in Yangla area, deqing, Western Yunnan[J].
 Geology and Mineral Resources of South China, 1999(2): 1-8.
- [27] MENG X Y, MAO J W, ZHANG C Q, et al. The timing, origin and T-fO2 crystallization conditions of long-lived magmatism at the Yangla copper deposit, Sanjiang Tethyan orogenic belt: Implications for post-collisional magmatichydrothermal ore formation[J]. Gondwana Research, 2016, 40: 211–229
- [28] 李波, 邹国富, 黄智龙, 等. 滇西北羊拉铜矿床研究中的 几个问题[J]. 矿物学报, 2013, 33(4): 676-680.
 LI Bo, ZOU Guo-fu, HUANG Zhi-long, et al. Several problems in genetic studies on Yangla copper deposit, Yunnan province, China[J]. Acta Mieralogica Sinica, 2013, 33(4): 676-680.
- [29] 昆明勘察设计研究院有限公司. 云南省德钦县羊拉铜矿 2017 年度地质勘查成果报告[R]. 昆明:昆明勘察设计研 C)1994-2021 China Academic Journal Electronic Publ

究院有限公司, 2017: 1-157.

Kunming Prospecting Design Inst. A report on the 2017 annual geological survey of Yangla copper deposit in deqin county, Yunnan Province[R]. Kunming: Kunming Prospecting Design Inst, 2017: 1–157.

[30] 杨喜安,刘家军,韩思宇,等. 滇西羊拉铜矿床、鲁春铜铅
 锌矿床构造控矿特征[J]. 大地构造与成矿学, 2012, 36(2):
 248-258.

YANG Xin-an, LIU Jia-jun, HAN Si-yu, et al. Characteristics of ore-controlling structures in the Yanala Copper Deposit and Luchun Cu-Pb-Zn deposit, Western Yunnan[J]. Geotectonica et Metallogenia, 2012, 36(2): 248–258.

- [31] QI L, HU J, GREGPORE D C. Determination of trace elements in granites by inductively coupled plasma mass spectrometry[J]. Talanta, 2000, 51(3): 507–513.
- [32] KENDALL C, HOPPLE J, COPLEN T B. Comparison of stable isotope reference samples[J]. Nature, 1983, 302(5905): 236–238
- [33] 孙海瑞,周家喜,黄智龙,等.四川会理天宝山矿床深部 新发现铜矿与铅锌矿的成因关系探讨[J]. 岩石学报, 2016, 32(11): 3407-3417.
 SUN Hai-rui, ZHOU Jia-xi, HUANG Zhi-long, et al. The genetic relationship between Cu- and Zn-dominant mineralization in the Tianbaoshan deposit, Southwest China[J]. Acta Petrologica Sinica, 2016, 32(11): 3407-3417.
- [34] 李世珍,朱祥坤,唐索寒,等.多接收器等离子体质谱法 Zn 同位素比值的高精度测定[J]. 岩石矿物学杂志, 2008(4): 273-278.

LI Shi-zhen, ZHU Xiang-kun, TANG Suo-han, et al. The application of MC-ICP-MS to high-precision measurement of Zn isotope ratios[J]. Acta Petrologica et Mineralogica, 2008(4): 273–278.

- [35] 侯可军,李延河,田有荣,等. MC-ICP-MS 高精度 Cu、Zn 同位素测试技术[J]. 矿床地质, 2008, 27(6): 774-781.
 HOU Ke-jun, LI Yan-he, TIAN You-rong, et al. High precision Cu, Zn isotope measurements by multi-collector ICP-MS[J]. Mineral Deposits, 2008, 27(6): 774-781.
- [36] 唐索寒,朱祥坤,李 津,等.用于多接收器等离子体质 谱测定的铁铜锌同位素标准溶液研制[J]. 岩矿测试, 2016, 35(2):127-133.

TANG Suo-han, ZHU Xiang-kun, LI Jin, et al. New standard solutions for measurement of iron, copper and zinc isotopic compositions by multi-collector inductively coupled

2307

plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2016, 35(2): 127-133.

- [37] BOYNTON W V. Cosmochemistry of the rare earth elements: Meteorite studies[J]. Developments in Geochemistry, 1984, 2: 63-114.
- [38] 沈能平,彭建堂,袁顺达,等.湖北徐家山锑矿床方解石 C、O、Sr 同位素地球化学[J]. 地球化学, 2007, 36(5): 479-485. SHEN Neng-ping, PENG Jian-tang, YUAN Shun-da, et al. Carbon,oxygen and strontium isotope geochemistry of

calcites from Xujianshan antimony deposit, Hubei Province[J]. Geochimica, 2007, 36(5): 479-485.

- [39] 朱经经. 滇西北羊拉铜矿成矿地质背景及成因机制[D]. 北京:中国科学院研究生院,2012. ZHU Jin-jin. The geological setting and metallogenesis of the Yangla copper deposit, SW Yunnan[D]. Beijing: Graduate School of Chinese Academy of Sciences, 2012.
- [40] 潘家永,张 乾,马东升,等. 滇西羊拉铜矿床稳定同位 素地球化学研究[J]. 矿物学报, 2000, 20(4): 385-389. PAN Jia-yong, ZHANG Qian, MA Dong-shen, et al. Stable isotope geochemical characteristics of the Yangla copper deposit in western Yunnan Province[J]. Acta Mineralogica Sinica, 2000, 20(4): 385-389.
- [41] 赵江南. 滇西羊拉铜矿矿体地质地球化学特征及深部找 矿预测[D]. 武汉: 中国地质大学, 2012. ZHAO Jiang-nan. Geological Geochemical and characteristics of orebody and deep ore exploration for Yangla ore deposit, Western Yunnan[D]. Wuhan: China University of Geosciences, 2012.
- [42] 陈思尧, 顾雪祥, 程文斌, 等. 云南羊拉铜矿床成矿流体 特征及成矿过程[J]. 地学前缘, 2013, 20(1): 82-91. CHEN Si-yao, GU Xue-xiang, CHENG Wen-bin, et al. Characteristics of ore-forming fluid and mineralization process of the Yangla copper deposit, Yunnan[J]. Earth Science Frontiers, 2013, 20(1): 82-91.
- [43] 朱 俊. 云南省德钦县羊拉铜矿地质地球化学特征与成 因研究[D]. 昆明: 昆明理工大学, 2011. ZHU Jun. Geological, geochemical characteristics and genesis of the Yangla copper deposit, Deqin county, Yunnan[D]. Kunming: Kunming University of Science and Technology, 2011.
- [44] 战明国, 路远发, 陈式房, 等. 滇西德钦羊拉铜矿[M]. 武 汉:中国地质大学出版社,1998.

Yangla copper mine, Western Yunnan Province[M]. Wuhan: China University of Geosciences Press, 1998.

[45] 杨 镇,杨立强,刘江涛,等.云南羊拉铜矿床磁黄铁矿 标型矿物学特征及成矿意义[J]. 岩石学报, 2014, 30(9): 2669-2680.

YANG Zhen, YANG Li-qiang, LIU Jiang-tao, et al. Mineralogy typomorphic characteristics of pyrrhotite and mineralization significance of Yangla copper deposit Yunnan China[J]. Acta Petrologica Sinica, 2014, 30(9): 2669-2680.

- [46] 解世雄. 滇西北羊拉铜矿床矽卡岩矿物特征和成矿机制 [D]. 北京: 中国地质大学, 2018. XIE Shi-xiong. Skarn mineralogy characteristics and metallogenic mechanism of the Yangla deposit in Northwestern Yunnan, China[D]. Beijing: China University of Geosciences, 2018.
- [47] 杨喜安. 滇西羊拉成矿带叠加成矿作用及找矿模式[D]. 北京: 中国地质大学, 2012. YANG Xi-an. Superimposition mineralization and exploring model in the Yangla metallogenic belt, Western Yunnan[D]. Beijing: China University of Geosciences, 2012.
- [48] 陈福川. 西南三江保山地块珑阳矿集区早白垩世矽卡岩 矿床成矿作用研究[D]. 北京:中国地质大学,2018. CHEN Fu-chuan. Study on mineralization of early Cretaceous skarn deposit in Longyang ore-set area, Sanjiang Baoshan block, Southwest China[D]. Beijing: China University of Geosciences, 2018.

[49] 王中刚, 于学元, 赵振华. 稀土元素地球化学[M]. 北京: 科学出版社, 1989. WANG Zhong-gang, YU Xue-yuan, ZHAO Zhen-hua. Rare earth element geochemistry[M]. Beijing: Science Press, 1989.

- [50] 韩振春, 王加昇, 高振华. 贵州拉峨汞矿床方解石 REE、 C、O 同位素地球化学特征及意义[J]. 昆明理工大学学报 (自然科学版), 2017, 42(3): 28-37. HAN Zhen-chun, WANG Jia-sheng, GAO Zhen-hua. Geochemical characteristics and implications of R EE, carbon and oxygen isotopes of calcite from La'e mercury deposit[J]. Journal of Kunming University of Science and Technology (Natural Science Edition), 2017, 42(3): 28-37.
- [51] GUICHARD F, CHURCH T M, TREUIL M, et al. Rare earths in barites: distribution and effects on aqueous partitioning[J]. Geochimica et Cosmochimica Acta, 1979, 43(7): 983-997.

ZHAN Ming-guo, LU Yuan-fa, CHEN Shi-fang, et al. Deqin

[52] CHEN Y J, FU S G. Variation of ree patterns in early (C)1994-2021 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

precambrian sediments-theoretical study and evidence from the southern margin of the North China craton[J]. Chinese Science Bulletin, 1991, 36(13): 1100–1104.

[53] 金少荣,陈 军,代德荣,等.黔西南高岭萤石矿床微量 和稀土元素地球化学特征[J].矿物学报,2018,38(6): 684-692.

JIN Shao-rong, CHEN Jun, DAI De-rong, et al. Geochemical characteristics of trace elements and REE in the Gaoling fluorite deposit, Southwest Guizhou, China[J]. Acta Mineralogica Sinica, 2018, 38(6): 684–692.

[54] 丁振举,刘丛强,姚书振,等.海底热液系统高温流体的稀土元素组成及其控制因素[J].地球科学进展,2000, 15(3):307-312.

DING Zhen-ju, LIU Cong-qiang, YAO Shu-zhen, et al. Rare earth elements compositions of high temperature hydrothermal fluids in sea floor and comtrol factors[J]. Advance in earth sciences, 2000, 15(3): 307–312.

- [55] MICHAEL B, PETER D. Comparative study of yttrium and rare-earth behaviors in fluorine-rich hydrothermal fluids[J]. Contributions to Mineralogy and Petrology, 1995, 119(2): 213–223.
- [56] LOTTERMOSE B G. Rare earth elements and hydrothermal ore formation processes[J]. Ore Geology. Reviews, 1992, 7(1): 25–41.

[57] 张帮禄, 彭建堂, 阳杰华, 等. 康家湾铅锌矿床方解石的 稀土元素和碳-氧同位素地球化学特征[J]. 矿物学报, 2018, 38(1): 25-35.
ZHANG Bang-lu, PENG Jian-tang, YANG Jie-hua, et al. Rare earth elements and C-O isotopic geochemistry of calcite in Kangjiawan Pb-Zn deposit, Hunan Province, China[J]. Acta Mineralogica Sinica, 2018, 38(1): 25-35.

- [58] RIMSTIDT J D, BALOG A, WEBB J. Distribution of trace elements between carbonate minerals and aqueous solutions[J]. Geochimica Et Cosmochimica Acta, 1998, 62(11): 1851–1863.
- [59] GIULIANI G, CHEILLETZ A, MECHICIE M. Behaviour of REE during thermal metamorphism and hydrothermal infiltration associated with skarn and vein-type tungsten ore bodies in central Morocco[J]. Chemical Geology, 1987, 64(3/4): 279–294.
- [60] OHMOTO H. Stable isotope geochemistry of ore deposit[J]. Reviews in Mineralogy and Geochemistry, 1986, 16(6): 491–559.

同位素地球化学特征及意义[J]. 中南大学学报(自然科学版), 2016, 47(11): 3765-3774.

HUANG Cong-jun, LI Ze-qin. REE and carbon-oxygen isotope geochemistry of calcite from Lala IOCG deposit, Sichuan and its significance[J]. Journal of Central South University (Science and Technology), 2016, 47(11): 3765–3774.

- [62] DEMéNY A, AHIJADO A, CASILLAS R, et al. Crustal contamination and fluid/rock interaction in the carbonatites of Fuerteventura (Canary Islands, Spain): A C, O, H isotope study[J]. Lithos, 1998, 44(3/4): 101–115.
- [63] VEIZER J, HOEFS J. The nature of O¹⁸/O¹⁶ and C¹³/C¹² secular trends in sedimentary carbonate rocks[J]. Geochimica Et Cosmochimica Acta, 1976, 40(11): 1387–1395.
- [64] HOEFS J. Stable isotope geochemistry[M]. Sixth ed. Berlin: Springer Berlin Heidelberg, 2009.
- [65] SWAIN S K, SARANGI S, SRINIVASAN R, et al. Isotope (C and O) composition of auriferous quartz carbonate veins, central lode system, Gadag Gold Field, Dharwar Craton, India: Implications to source of ore fluids[J]. Ore Geology Reviews, 2015, 70: 305–320.
- [66] CHACKO T, MAYEDA T K, CLAYTONI R N, et al. Oxygen and carbon isotope fractionations between CO₂ and calcite[J]. Geochimica et Cosmochimica Acta, 1991, 55(10): 2867–2882.
- [67] O"NEIL J R, CLAYTON R N, MAYEDA T K. Oxygen isotope fractionation in divalent metal carbonates[J]. Journal of Chemical Physics, 1969, 51(12): 5547–5558.
- [68] MöLLER P, PAREKH P P, SCHNEIDER H J. The application of Tb/Ca-Tb/La abundance ratios to problems of fluorite genesis[J]. Mineralium Deposita, 1976, 11(1): 111–116.
- [69] SUBÍAS I, FERNÁNDEZ-NIETO C. Hydrothermal events in the Valle De Tena (Spanish Western Pyrenees) as evidenced by fluid inclusions and trace-element distribution from fluorite deposits[J]. Chemical Geology, 1995, 124(3/4): 267–282.
- [70] MÖLLER P, MORTEANI G, SCHLEY F. Discussion of REE distribution patterns of carbonatites and alkalic rocks[J]. Lithos, 1980, 13(2): 171–179.
- [71] 成曦晖, 徐九华, 王建雄, 等. 厄立特里亚阿斯马拉 VMS 矿床 S、Pb 同位素对成矿物质来源的约束[J]. 中国有色金

2308

[61] 黄从俊, 李泽琴. 四川拉拉 IOCG 矿床方解石 REE 与 C, O 属学报, 2017, 27(4): 795-810. (C)1994-2021 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net CHENG Xi-hui, XU Jiu-hua, WANG Jian-xiong, et al. Sulfur and lead isotope constrains on source of ore-forming materials in Asmara VMS-type deposits, Eritrea[J]. The Chinese Journal of Nonferrous Metals, 2017, 27(4): 795–810.

- [72] 席 振,高光明, 马德成,等. 厄瓜多尔 Beroen 金银矿床 硫铅同位素地球化学[J]. 中国有色金属学报, 2016, 26(4): 852-862.
 XI Zhen, GAO Guang-ming, MA De-cheng, et al. Lead and sulfur isotope geochemistry of Ecuadorian Beroen gold-silver deposit[J]. The Chinese Journal of Nonferrous Metals, 2016, 26(4): 852-862.
- [73] 张辰光,赖健清,曹勇华,等.新疆铁克里克铜铅锌多金
 属矿床多因复成成矿作用[J].中国有色金属学报,2016,26(6):1293-1302.

ZHANG Chen-guang, LAI Jian-qing, CAO Yong-hua, et al. Polygenetic compound mineralization of Tiekelike copper-lead-zinc deposit, Xinjiang[J]. The Chinese Journal of Nonferrous Metals, 2016, 26(6): 1293–1302.

- [74] YUAN M W, LI L, LI S R, et al. Mineralogy, fluid inclusions and S-Pb-H-O isotopes of the Erdaokan Ag-Pb-Zn deposit, Duobaoshan metallogenic belt, NE China: Implications for ore genesis[J]. Ore Geology Reviews, 2019, 113: 1–13.
- [75] 郑永飞. 稳定同位素地球化学[M]. 北京: 科学出版社,2000.ZHENG Yong-fei. Stable isotope geochemistry[M]. Beijing:

Science Press, 2000.
[76] OHMOTO H. Systematics of sulfur and carbon isotopes in hydrothermal ore deposit[J]. Economic Geology, 1972, 67(5): 551–578.

- [77] 吴开兴. 滇西新生代富碱火成岩及其与金成矿关系研究[D]. 贵阳: 中国科学院地球化学研究所, 2005.
 WU Kai-xing. The cenozoic alkali-rich igneous rocks, Western Yunnan and their relation with metallogenesis of gold[D]. Guiyang: Graduate School of Chinese Academy of Sciences, 2005.
- [78] 徐受民. 滇西北衙金矿床的成矿模式及与新生代富碱斑岩的关系[D]. 北京: 中国地质大学, 2007.
 XU Shou-min. Metallogenic modeling of the Beiya gold deposit in western Yunnan and its relation to the Cenozoic alkali-rich porphyries[D]. Beijing: China University of Geosciences, 2007.
- [79] 肖晓牛,喻学惠,莫宣学,等. 滇西北衙金多金属矿床成 矿地球化学特征[J]. 地质与勘探, 2011, 47(2): 170-179.

XIAO Xiao-niu, YU Xue-hui, MO Xuan-xue, et al. Geochemical char-acteristics of metallogenesis in the gold-polymetallic deposit in Beiya, Western Yunnan Province[J]. Geology and Exploration, 2011, 47(2): 170–179.

- [80] 任 涛. 中甸地区浪都砂卡岩型铜矿床地球化学研究[D]. 贵阳: 中国科学院地球化学研究所, 2011.
 REN Tao. Study on the geochemistry of Langdu Skarn type copper deposit in Zhongdian Area[D]. Guiyang: Graduate School of Chinese Academy of Sciences, 2011.
- [81] 冷成彪. 滇西雪鸡坪斑岩铜矿地质背景及矿床地球化学研究[D]. 贵阳: 中国科学院地球化学研究所, 2009. LENG Cheng-biao. Geological background and geochemical study of porphyry copper deposit in Xuejiping, Western Yunnan[D]. Guiyang: Graduate School of Chinese Academy of Sciences, 2009.
- [82] 邹国富. 迪庆春都斑岩铜矿床地球化学及成岩成矿模式 研究[D]. 昆明: 昆明理工大学, 2011.
 ZOU Guo-fu. Geochemistry and diagenetic metallogenic model of the Chundu porphyry copper deposit in Diqing[D].
 Kunming: Kunming University of Science and Technology, 2011.
- [83] 王守旭. 云南中甸普朗铜矿床地球化学[D]. 贵阳: 中国 科学院地球化学研究所, 2008.
 WANG Shou-xu. Geochemistry of the pulang copper deposit in Zhangdian Yunnan[D]. Guiyang: Graduate School of

in Zhongdian, Yunnan[D]. Guiyang: Graduate School of Chinese Academy of Sciences, 2008.[84] CHAUSSIDON M, ALBARèDE F, SHEPPARD M F.

- Sulphur isotope variations in the mantle from ion microprobe analyses of micro-sulphide inclusions[J]. Earth and Planetary Science Letters, 1989, 92: 144–156.
- [85] PINCKNEY D M, RAFTER T A. Fractionation of sulfur isotopes during ore deposition in the upper Mississippi Valley zinc-lead district[J]. Economic Geology, 1972, 67(3): 315–328.
- [86] RYE R O, OHMOTO H. Sulfur and carbon isotopes and ore genesis: A review[J]. Economic Geology, 1974, 69: 826–842.
- [87] 朱炳泉. 地球科学中同位素体系理论与应用一兼论中国 大陆壳幔演化[M]. 北京: 科学出版社, 1998.
 ZHU Bin-quan. Theory and Application of isotope system in Earth Science-also on crust-mantle evolution in China[M].
 Beijing: Science Press, 1998.

矿地球化学特征[J]. 地质与勘探, 2011, 47(2): 170–179. [88] ZARTMAN R E, DOE B R. Plumbotectonics-the model[J]. (C)1994-2021 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

Tectonophysics, 1981, 75(1): 135-162.

- [89] 吴 越. 川滇黔地区 MVT 铅锌矿床大规模成矿作用的时 代与机制[D]. 北京:中国地质大学, 2013.
 WU Yue. The epoch and mechanism of large-scale mineralization of MVT pb-Zn deposit in Sichuan, Yunnan and Guizhou[D]. Beijing: China University of Geosciences, 2013.
- [90] DU L J, LI B, HUANG Z L, et al. Mineralogy, fluid inclusion, and hydrogen and oxygen isotope studies of the intrusion-related Yangla Cu deposit in the Sanjiang Region, SW China: Implications for metallogenesis and deposit type[J]. Resource Geology, 2019, 70(1): 28–49.
- [91] LUCK J M, BEN O D, ALBARÈDE F. Zn and Cu isotopic variations in chondrites and iron meteorites: Early solar nebula reservoirs and parent-body processes[J]. Geochim Cosmochim Acta, 2005, 69: 5351–5363.
- [92] MOYNIER F, TOFT J B, PHILIPPE T, et al. Comparative stable isotope geochemistry of Ni, Cu, Zn and Fe in chondrites and iron meteorites[J]. Geochim Cosmochim Acta, 2007, 71: 4365–4379.
- [93] BENTAHILA Y, BEN O D, LUCK J M. Strontium, lead and zinc isotopes in marine cores as tracers of sedimentary provenance: A case study around Taiwan Orogen[J]. Chem Geol, 2008, 248: 62–82.
- [94] TOUTAIN J P, SONKE J, MUNOZ M, et al. Evidence for Zn isotopic fractionation at Merapi volcano[J]. Chem Geol, 2008, 253: 74–78.
- [95] HERZOG G F, MOYNIER F, ALBARDèE F, et al. Isotopic and elemental abundances of copper and zinc in lunar samples, Zagami, Pele's hairs, and terrestrial basalt[J]. Geochim Cosmochim Acta, 2009, 73: 5884–5904.
- [96] GAGNEVIN D, BOYCE A J, BARRIE C D, et al. Zn, Fe and S isotope fractionation in a large hydrothermal system[J]. Geochim Cosmochim Acta, 2012, 88: 183–198.
- [97] GHIDAN O Y, ROSS D L. Zinc isotope fractionation analyses by thermal ionization mass spectrometry and a double spiking technique[J]. Int J Mass Spectrom, 2012, 309: 79–87.
- [98] CHEN H, SAVAGE P, TENG F Z, et al. Zinc isotope fractionation during magmatic differentiation and the isotopic composition of the bulk Earth[J]. Earth Planet Sci Lett, 2013, 369/370: 34–42.
- [99] KAFANTARIS F A, BORROK D M. Zinc isotope fractionation during surface adsorption and intracellular

incorporation by bacteria[J]. Chem Geol, 2014, 366: 42-51.

- [100] PAŠAVA J, TORNOS F, VLADISLAV C. Zinc and sulfur isotope variation in sphalerite from carbonate-hosted zinc deposits, Cantabria, Spain[J]. Mineral Deposita, 2014, 49: 797–807.
- [101] ZHAO Y, VANCE D, ABOUCHAMI W, et al. Biogeochemical cycling of zinc and its isotopes in the Southern Ocean[J]. Geochim Cosmochim Acta, 2014, 125: 653–672.
- [102] 蒋少涌,陆建军,顾连兴,等. 多接收电感耦合等离子体质谱(MC-ICPMS)测量铜、锌、铁的同位素组成及其地质意义[J]. 矿物岩石地球化学通报,2001,20(4):431-433.
 JIANG Shao-yong, LU Jian-jun, GU Lian-xing, et al. Determination of Cu, Zn, Fe isotopic compositions by MC-ICPMS and their geological applications[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2001, 20(4): 431-433.
- [103] DUAN J L, TANG J X, LIN B. Zinc and lead isotope signatures of the Zhaxikang Pb-Zn deposit, South Tibet: Implications for the source of the ore-forming metals[J]. Ore Geology Reviews, 2016, 78: 58–68.
- [104] 王 跃,朱祥坤. 锌同位素在矿床学中的应用: 认识与进展[J]. 矿床地质, 2010, 29(5): 843-852.
 WANG Yue, ZHU Xiang-kun. Application of Zn isotopes to study of mineral deposits: A review[J]. Mineral Deposits, 2010, 29(5): 843-852.
- [105] WILKINSOM J J, WEISS D J, MASON T D, et al. Zinc isotope variation in hydrothermal systems: preliminary evidence from the Irish Midlands ore field[J]. Econ Geol, 2005, 100: 583-590.
- [106] ZHOU J X, HUANG Z L, LÜ Z C, et al. Geology, isotope geochemistry and ore genesis of the Shanshulin carbonate-hosted Pb-Zn deposit, southwest China[J]. Ore Geology Reviews, 2014a, 63: 209–225.
- [107] ZHOU J X, HUANG Z L, ZHOU M F, et al. Zinc, sulfur and lead isotopic variations in carbonate-hosted Pb-Zn sulfide deposits, Southwest China[J]. Ore Geology Reviews, 2014b, 58: 41–54.
- [108] 何承真,肖朝益,温汉捷,等.四川天宝山铅锌矿床的锌-硫同位素组成及成矿物质来源[J]. 岩石学报,2016,32(11): 3394-3406.

HE Cheng-zheng, XIAO Chao-yi, WEN Han-jie, et al. Zb-S isotopic compositions of the Tianbaoshan carbonate hosted

Pb-Zn deposit in Sichuan, China: Implications for source of

ore components[J]. Acta Petrologica Sinica, 2016, 32(11): 3394-3406.

- [109] MASON T D, WEISS D J, CHAPMAN J B, et al. Zn and Cu isotopic variability in the Alexandrinka volcanic-hosted massive sulphide(VHMS) ore deposit, Urals, Russia[J]. Chem Geol, 2005, 221: 170–187.
- [110] KELLEY K D, WILKINSOM J J, CHAPMAN J B, et al. Zinc isotopes in sphalerite from base metal deposits in the Red Dog district, Northern Alaska[J]. Econ Geol, 2009, 104: 767–773.
- [111] GAO Z, ZHU X, SUN J, et al. Spatial evolution of Zn-Fe-Pb isotopes of sphalerite within a single ore body: A case study from the Dongshengmiao ore deposit, Inner Mongolia, China[J]. Mineralium Deposita, 2018. 53(1): 55–65.
- [112] 程泽锋. 闪锌矿锌同位素和微量元素在岩浆热液矿床中的初步研究[D]. 北京: 中国地质大学, 2015.
 CHENG Ze-feng. Preliminary study on zinc isotopes and

trace elements of sphalerite in magmatic hydrothermal deposits[D]. Beijing: China University of Geosciences, 2015.

- [113] 唐永永. 云南金顶铅锌矿床成矿元素超常富集机制研 究[D]. 北京: 中国科学院大学, 2013.
 TANG Yong-yong. Study on the supernormal enrichment mechanism of metallogenic elements in Jinding Pb-Zn deposit, Yunnan Province[D]. Beijing: University of Chinese Academy of Sciences, 2013.
- [114] 丁 帅. 西藏冈底斯成矿带斯弄多浅成低温热液型银铅 锌矿床成岩与成矿作用研究[D]. 成都:成都理工大学, 2017.

DING Shuai. Study on diagenesis and mineralization of Silong and Shirong low temperature hydrothermal silver-lead-zinc deposits in Gangdis metallogenic belt, Xizang Province[D]. Chengdu: Chengdu University of Technology, 2017.

Primary study on lead-zinc mineralization of Yangla copper polymetallic deposit, northwest Yunnan province, China

LI Bo¹, XIANG Zuo-peng¹, WANG Xin-fu¹, HUANG Zhi-long², TANG Guo^{1, 3}, LIU Yue-dong⁴, ZOU Guo-fu^{1, 3}, YUE Yan¹

 Faculty of Land Resource Engineering, Kunmming University of Science and Technology/Southwest Institute of Geological Survey Centre for Nonferrous Metals Resources, Kunming 650093, China;

2. State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry,

Chinese Academy of Sciences, Guiyang 550081, China;

3. Kunming Prospecting Design Inst China Nonferrous, Kunming 650051, China;

4. Yunnan Diqing mining Co., Ltd. Shangrila 674400)

Abstract: The Yangla copper deposit which is located in the middle of Jinshajiang tectonic belt, is the most typical copper deposit in the northwest of Yunnan province. In recent years, Pb-Zn orebodies were newly discovered in the depth of Yangla copper deposit, Pb-Zn orebodies mineralization and its genetic relationship with copper ore bodies have become a new scientific problem. In this paper, the rare earth elements and C-O, S, Pb and Zn isotopes geochemistry of Pb-Zn orebodies were mainly studied, on the basis of tunnel geological logging and rock-mineral identification. The Pb-Zn ore bodies of Yangla deposit are mainly of skarn type, which are distributed in the edge of skarn type copper bodies in the form of stratiform, irregular veins and lenticular, and co-produced with skarn type copper bodies. It is obviously characterized by branch-compound and ore bodies' reappearing after disappearing. The second is hydrothermal vein type, which filled in the structural fracture zone with irregular veinlike shape. Calcite associated with Pb-Zn orebodies can be divided into early mineralization stage calcite (I) and late mineralization stage calcite (II). The early mineralization stage calcite (I) is between 24.05×10^{-6} and

patterns are LREE-rich. The $\delta^{13}C_{PDB}$ and $\delta^{18}O_{SMOW}$ of calcite (1) are between -6.52% - -4.07% and 5.04³—9.94³, respectively, indicating that the metallogenic materials are mainly from granitic magma. The late mineralization stage calcite (II) is produced veins in the Pb-Zn orebodies, ΣREE of calcite (II) is between 28.71×10^{-6} and 114.60×10^{-6} , δEu shows positive anomalies, δCe displays weak negative anomalies, chondrite-normalized REE patterns are LREE-rich. The $\delta^{13}C_{PDB}$ and $\delta^{18}O_{SMOW}$ of calcite (II) are between -3.81%--3.53‰ and 14.36‰-17.30‰, which proves that the ore-forming material comes from the mixing of granitic magma and marine carbonate rocks. Calcite in early and late metallogenic stages are of hydrothermal origin, and there is no significant difference in the content of rare earth elements. The δ^{34} S of sulfide (n=38) in Pb-Zn orebodies are between -2.48% and 2.32%, total sulfur isotope is close to zero, indicating that the metallogenic materials are derived from mantle and deep crust. The lead isotopic variation range of sulfide (n=15) is small, the ²⁰⁸Pb/²⁰⁴Pb, ²⁰⁷Pb/ ²⁰⁴Pb and ²⁰⁶Pb/²⁰⁴Pb range from 38.7501 to 38.7969, 15.7159 to 15.7248, and 18.3640 to 18.3874, respectively, indicating that the lead in Pb-Zn orebodies mainly comes from the upper crust. The δ^{66} Zn_{JMC} of sphalerite (n=5) is between 0.31‰ and 0.44‰, which is obviously higher than other skarn type Pb-Zn deposits, and it also reveals that the metallogenic Zn mainly comes from magma. There is no significant difference between the Pb-Zn orebodies and Cu orebodies in terms of host-rock layers, orebodies attitude, mineral association, ore fabrics, wall rock alteration, ore-controlling factors and isotope composition of C-O, S, Pb, which shows that the Pb-Zn orebodies and the Cu orebodies are of the same origin and are the products of the same metallogenic process. Pb-Zn orebodies is later than the Cu orebodies, which is the product of the late metalogenic stage and distributed at the edge of Cu orebodies. Based on the above research data, the Cu-Pb-Zn metallogenic pattern of Yangla deposit is established in this paper.

Key words: Pb-Zn orebodies; calcite; rare earth element; isotopes; Yangla copper polymetallic deposit; northwest Yunnan province

Foundation item: Projects(41862007, 41402072) supported by the National Natural Science Foundation of China; Project(YNWR-QNBJ-2018-093) supported by the Yunnan Ten Thousand Talents Plan Young and Elite Talents Project, China; Project(14078384) supported by the Key Disciplines Construction of Kunming University of Science and Technology, China

Received date: 2020-08-05; Accepted date: 2020-11-12

Corresponding author: LI Bo; Tel: +86-15987187981; E-mail: libo8105@qq.com

(编辑 何学锋)