
1.  Introduction
Electrical conductivity inferred from electromagnetic induction such as MT (magnetotellurics) provides im-
portant constraints on the composition and temperature of Earth's interior. Particularly important question 
is the causes of high (10−1–10−2 S/m) and highly anisotropic conductivity observed at the top of the oceanic 
asthenosphere (Baba et al., 2006, 2010; Evans et al., 2005; Heinson et al., 2000; Naif et al., 2013; Sarafian 
et al., 2015).

These observations have been explained by the presence of partial melting (e.g., Sifré et al., 2014; Yoshino 
et al., 2006), or by deformation-induced dynamic recrystallization (e.g., Pommier et al., 2018), or by the 
influence of hydrogen (e.g., Dai & Karato, 2014a; Karato, 1990; Wang et al., 2006). Among these models, 
problems with partial melting and recrystallization models are discussed by Karato (2019). He presented 
discussions showing a difficulty with a partial melt model based on the discussions on the amount of melt, 
and a difficulty of a model invoking small grain-size based on the inferred small stress in the asthenosphere. 
Therefore, we focus on the hydrogen model in this study.

The role of hydrogen to enhance electrical conductivity of olivine was first proposed by Karato (1990) based 
on the high diffusion coefficient of hydrogen in olivine (Mackwell & Kohlstedt,  1990). This hypothesis 
has been tested by several studies (e.g., Dai & Karato, 2014a, 2014b; Fei et al., 2020; Novella et al., 2017; 
Poe et al., 2010; Sun et al., 2019; Wang et al., 2006; Yang, 2012; Yoshino et al., 2006, 2009). However, these 
studies demonstrated some challenges including the experimental difficulties such as hydrogen loss or gain 
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during the conductivity measurements and the complications in the way in which hydrogen contributes 
to electrical conductivity. Consequently, there remain a few important issues to evaluate the validity of the 
hydrogen-assisted conductivity model to explain the observed electrical conductivity of the asthenosphere.

The issues on the experimental studies have been reviewed (Karato, 2019; Karato & Wang, 2013). Here, we 
focus on the issues of microscopic mechanisms of hydrogen-assisted electrical conductivity from theoretical 
point of view. The idea of hydrogen-assisted conductivity was proposed based on the observed high diffusiv-
ity of hydrogen according to the Nernst-Einstein relationship for ionic conductivity,

2fDCq
kT

 � (1)

where σ is electrical conductivity, f is a formation factor approximately equal to unity, D is diffusion coef-
ficient, C is concentration of charged species whose electric charge is q, k is the Boltzmann constant, and 
T is the temperature. When the concentration of hydrogen is fixed, the activation enthalpy of electrical 
conductivity should agree with that of diffusion, and electrical conductivity should be proportional to the 
concentration of hydrogen. However, experimental studies (Wang et al., 2006) showed that the activation 
enthalpy of electrical conductivity is substantially smaller than that of diffusion and that the water content 
dependence is weaker than a simple model predict rE C   with r < 1. Consequently, Wang et al., (2006) 
proposed that not all dissolved hydrogen contribute to electrical conductivity equally. In particular, Kara-
to (2013, 2015) proposed that hydrogen trapped at M-site may show large anisotropic diffusion (electrical 
conductivity) while interstitial hydrogen may show nearly isotropic diffusion.

However, there have been no detailed theoretical support for such a model. For example, high anisotropy 
diffusion of hydrogen trapped at M-site is proposed in analogy with the observed anisotropy on D-H diffu-
sion (Du Frane & Tyburczy, 2012) with the help of a theory of isotopic diffusion in ionic crystals containing 
multiple isotopic species (Karato, 2013). Consequently, it is important to examine the role of hydrogen in 
electrical conductivity of olivine in more detail. The main goal of this study is to investigate how hydrogen 
at different sites migrates in olivine using theoretical calculations of hydrogen migration with the emphasis 
on the magnitude and anisotropy of diffusion coefficient.

2.  Hydrogen in Olivine
Hydrogen can be dissolved in olivine through a variety of mechanisms (e.g., Berry et al., 2005; Karato, 2008; 
Le Losq et al., 2019; Tollan et al., 2017), and at a given thermodynamic condition, hydrogen at various sites 
should coexist. The relative amount of hydrogen at each site is controlled by the thermodynamic condition 
and therefore the dominant type of hydrogen (the most abundant hydrogen) will change with thermo-
dynamic conditions. One of the remarkable observations on hydrogen-assisted electrical conductivity in 
olivine is that conductivity is highly anisotropic at high temperature, while it is nearly isotropic at low 
temperatures. In addition, activation enthalpy at high temperature is higher than the enthalpy at low tem-
perature (Dai & Karato, 2014a).

Given these backgrounds, we can extend Equation 1 to
2

j j j
j

f D C q
kT

  � (2)

where q is the charge of proton, jE f  is the formation factor for the j-th species (∼1), jE D  is diffusion coefficient 
of the j-th species, and jE C  is the concentration of the j-th species. Our focus is jE D  for hydrogen at various sites 
particularly hydrogen at M- and hydrogen at Si-site. We calculated the magnitude of diffusion coefficient 
as well as its anisotropy for hydrogen located at M- or Si-site. Among various hydrogen-related species, we 
consider  2

M
E H


 and  Si

4E H


 in this study.

 2
M

E H


 and  4
Si

E H


 are formed in “pure” olivine that does not contain any aliovalent impurities (Umemoto 
et al., 2011; Verma & Karki, 2009; Walker et al., 2007). However, in natural olivine a few types of aliovalent 
point defects are present that would affect the concentration of hydrogen-related defects. These aliovalent 
defects include •

ME Fe  (ferric iron at M-site) and ••
ME Ti  (Ti4+ at M-site) (Blanchard et  al.,  2017; Kohlstedt & 

Mackwell, 1998; Mackwell & Kohlstedt, 1990; Withers et al., 2011; Zhao et al., 2004). In this study, we also 
consider hydrogen associated with •

ME Fe  defect.
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The ionizations of the H-bearing defects produce interstitial protons as:

 x •2 2 I MM
H H V  � (3)

  •4 4 I SiSi
H H V

  � (4)

     • ••
I MM M M

Fe H H Fe V
       

� (5)

where •
IE H  is proton in the interstitial site formed by these ionization reactions. Interstitial protons migrate 

easily through the crystalline lattice. Therefore, hydrogen-assisted conductivity is determined by the nature 
of ionization and the mobility of interstitial proton formed by ionization. The climbing image nudged elas-
tic band (CINEB) method (Henkelman et al., 2000) and the ab initio Molecular Dynamics (AIMD) simula-
tions based on density functional theory (DFT) were used to investigate proton diffusion behavior at these 
defects in hydrous olivine at high P-T.

3.  Computational Methods
3.1.  Model Construction and Lattice Relaxation

Different models (Model 1 to Model 9) of hydrous olivine were constructed by replacing the relevant atoms 
from an Mg2SiO4 supercell with hydrogen (Table 1). The structure of Mg2SiO4 has been optimized using the 
DFT. In the case of  Mg

2E H
 (Model 1), one Mg atom at metal site 1 was replaced with two hydrogen atoms 

(Mg15Si8O32H2). For  Si
4E H


 (Model 2), one Si atom was replaced with four hydrogen atoms (Mg16Si7O32H4). 

For    •

Mg Mg
E Fe H

 
  

 (Model 3), one proton was added to the MgE V  site, associated with a nearby Fe3+ in an 

Mg2SiO4 supercell (Mg14FeSi8O32H). In our calculations, we did not consider the metal sites 2 (M2 site) as 
the vacancy generation energy at that site is much higher than that of metal site 1 (M1 site) (Brodholt & 
Refson, 2000; Umemoto et al., 2011). The other models were constructed in the same manner, and all the 
models satisfy the charge neutrality condition.

We constructed different models to control types of hydrogen defect, water content, and Fe content in hy-
drous olivine. All the models and their atomic positions were optimized using the DFT method (Kohn & 
Sham, 1965) within the Generalized Gradient Approximation (Perdew & Zunger, 1981). All computations 
were carried out using the Vienna Ab Initio Simulation Package (Kresse & Furthmüller, 1996). The calcula-

Models Composition Defects CH2O (ppm wt) Fe/(Mg + Fe)

Model 1 Mg30Si16O64H4  Mg
2E H

 16,330 0

Model 2 Mg32Si14O64H8  Si
4E H

 32,683 0

Model 3 Mg28Fe3+
2Si16O64H2    •

Mg Mg
E Fe H


 

  
7,938 6.67%

Model 4 Mg31Si16O64H2  Mg
2E H

 8,078 0

Model 5 Mg28Fe2+
3Si16O64H2  Mg

2E H
 7,747 9.375%

Model 6 Mg71Si36O144H2  Mg
2E H

 3,570 0

Model 7 Mg68Fe2+
2Fe3+

2Si35O144H2  Mg
2E H

 3,488 5.6%

Model 8 Mg28Fe2+
2Fe3+Si16O64H    •

Mg Mg
E Fe H


 

  
3,875 9.375%

Model 9 Mg57Fe2+
5Fe3+Si32O128H    •

Mg Mg
E Fe H


 

  
1,928 9.375%

Table 1 
The Olivine Models for Ab Initio Molecular Dynamics (AIMD) Simulations With Different Water and Iron Contents (Fe 
has the Valence of +2 and +3 Shown in the Composition)
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tions included a plane wave representation of the wave function with a cutoff energy of 800 eV. The defects 
bearing structures with various hydrogen positions at the cation sites were optimized at the hydrostatic 
condition until all the forces acting on ions were less than 0.01 eV Å−1 per atom, and the structures with 
minimized energy were chosen for subsequent calculations. K-point mesh with a spacing of ca. 0.03 Å−1 was 
adopted. The details for the Model 1 to Model 9 are listed in Table 1.

3.2.  Proton Migration Path and Barrier Energy

A proton migrates along various positions including a position where energy of the system has a local 
saddle point. The energy difference between this configuration and the configuration where all the atoms 
are in their original positions is the energy barrier for proton migration. Proton migration barrier energies 
along various high-symmetry directions from one cation vacancy to another nearby cation vacancy were 
calculated by CINEB method (Henkelman et al., 2000). This CINEB method duplicated a series of images 
(7 and 11 images in our calculations) between the starting point and the end point of migrating ion to sim-
ulate the intermediate states, with the positions of the starting point and the end point fixed. The actual 
diffusion pathway and migration barrier energy between the starting and the end point are obtained after 
the optimization. Only the Γ point was adopted for k-point sampling to reduce the computational cost. The 
convergence check indicates that a denser k-mesh does not affect our conclusion qualitatively. In order to 
investigate the barrier energies of proton migration from one cation site to another, we generated relatively 
large supercells for calculations. 4 × 1 × 2, 2 × 2 × 2, and 2 × 1 × 2 supercells were used to calculate the 
barrier energies along the [100], [010], and [001] directions in Model 1 and Model 3, respectively. For Model 
2, larger supercells (8 × 1 × 2, 2 × 4 × 2, and 2 × 1 × 4) with less water contents are adopted for CINEB cal-
culations. A larger supercell 6 × 1 × 3 (506 atoms) was generated for the study on proton migration property 
with less water content of 3,570 ppm wt.

3.3.  Proton Conductivity Calculations

AIMD simulations have been widely used to study elastic properties, ionic conductivity, melting tem-
perature, and viscosity of minerals at high P-T (Alfè & Gillan, 1998; Belonoshko et al., 2009; Mookherjee 
et al., 2008). Here, we use AIMD to calculate the proton conductivity in hydrous olivine. The energy cutoff 
was reduced to 400 eV and Brillouin zone sampling was performed at the Γ point. The convergence has been 
checked with denser K-mesh and higher cutoff energy (Figure S1). An equilibration step was first carried 
out in the canonical ensemble (constant N, V, T) using a Nosé thermostat. The model system was thermally 
equilibrated for 2 ps first, followed by a MD (molecular dynamics) run at different temperatures (1,000–
2000 K) for approximately 30 ps. The pressure is about 5 GPa. The calculated volumes of forsterite at ele-
vated temperatures were compared with previous experimental measurements (Anderson & Suzuki, 1983; 
Downs et al., 1996; Guyot et al., 1996) as shown in Figure S2 and Table S1. The differences are less than 1%. 
Our recent AIMD study also gives consistence cell parameters comparable to experimental results at high 
temperatures (He et al., 2021). The stability of the forsterite structure at 5 GPa and 1600 K was also verified 
using NPT ensemble (Figure S3). We also analyzed the stress field of our calculation models, and the hydro-
static condition is maintained in our calculations (Figure S4 and Table S2).

The time averaged mean square displacements (MSD) of the different atoms were calculated using the 
atomic configuration from each finite MD time step, defined as:

           



 



  
r t

N
r t t r t

i

N

i i

2

1
0 0

21

� (6)

where, r t
i

   is the displacement of the ith proton at time t, and N is the total number of protons in the sys-
tem. In practice, D (diffusion coefficient) is obtained by a linear fit to the time dependence of the average 
MSD,

  2
0

1lim
2

D r t
dt

       


� (7)

where d is the dimension of the lattice on which ion hopping takes place. In the calculation of anisotropic 
diffusion coefficient along the [100], [010], and [001] directions, MSDs along these directions were calculated, 
and the value d was set to 1. The obtained D at various temperatures can be fitted with the Arrhenius equation:
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HAexp
kT

D
 

  
 

� (8)

where ∆H is the activation enthalpy, A is a pre-exponential factor, k is the Boltzmann constant, and T is 
the temperature. The electrical conductivity is calculated on the basis of the diffusion coefficients and the 
Nernst-Einstein equation (Equation 1).

Since a supercell is small (less than 506 atoms), water content is much higher than in any laboratory studies 
or in olivine in the mantle (water content ∼0.01–0.1 wt%; e.g., [Peslier et al., 2017]). We used thermody-
namic models of hydrogen-related defects (e.g., Karato, 2008) to extrapolate our results to compare with 
laboratory data or to apply to Earth's interior.

4.  Results
AIMD simulations were performed on Model 1, Model 2, and Model 3 at different temperatures to study the 
diffusion behavior of hydrogen. At low temperatures (1300 K for Model 1 and Model 2; 1000 K for Model 
3), the hydrogen is trapped at the cation sites without appreciate diffusion in the crystal (Figure 1). At high 
temperatures, hydrogen escapes from the cation sites indicating a thermal ionization in Model 1 and Model 
3 leading to the increase in MSD. In Model 2, hydrogen atoms at a Si vacancy site do not escape the vacancy 
site even at 2000 K, indicating a strong interaction between hydrogen and Si vacancy.

Once hydrogen is ionized from the Mg vacancy site, one has a proton at the interstitial site. The interstitial 
proton migrates fast with a high MSD. Notably, the migration of interstitial proton is highly anisotropic. 
The trajectories of interstitial protons are longer along the [100] direction compared to other directions 
(Figures 1d and 1e), indicating anisotropic proton diffusion. In order to understand the anisotropic diffu-
sion behavior of protons in olivine, we conducted CINEB calculations to investigate the migration paths 
and barrier energies for protons in hydrous olivine along the [100], [010], and [001] directions. We found 

Figure 1.  The mean square displacements (MSDs) and trajectories of protons in Model 1, Model 2, and Model 3 at 
different temperatures. (a) The dashed curves indicate the MSDs at low temperatures (1300 K for Model 1, Model 2, 
and 1000 K for Model 3). The solid curves indicate the MSDs at 2000 K. The increasing MSD as a function of simulation 
time indicates the obvious proton diffusion (red and blue solid curves). The trajectories of protons at Mg sites simulated 
at (a) 1,300 and (b) 2,000 K, and Fe sites simulated at (c)1,000, and (d) 2,000 K. The cyan spheres are the trajectories of 
protons. Orange, blue, and red spheres represent Mg, Si, and O atoms in Mg2SiO4 (olivine) crystalline. The dark blue 
and magenta dashed circles present cation and interstitial sites.
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that the most favorable proton migration path for Mg
2E H

  and  Si
4E H


 is along the [100] direction with barrier 

energies equal to 178.88 and 290.75 kJ mol−1. For the    •

Mg Mg
E Fe H

 
  

 defect, the barrier energies along 

[100] and [010] are 244.23 and 203.85 kJ/mol indicating weaker anisotropy (Figure 2). The barrier energies 
along other directions are shown in Table S2. The anisotropic proton diffusion behavior is consistent with 
the experimental results obtained by proton diffusion coefficient and conductivity measurements at high 
temperatures (Dai & Karato, 2014a; Du Frane & Tyburczy, 2012; Novella et al., 2017).

The water content in Model 1 and Model 3 is 16,330 and 7,938 ppm wt, respectively, which is larger than 
that of experimental samples and the asthenosphere condition. Protons interact strongly with other charged 
defects through the Coulombic force that depends on the mean distance of ions. Consequently, it is possible 
that high density of protons in our calculations might have an artifact on the mobility of protons and in such 
a case, the applications of our results to the cases with lower proton concentration (e.g., the asthenosphere) 
would be questionable.

Figure 2.  Proton migration paths and barrier energies along the [100] direction. In the crystalline of olivine, the green 
(path 1), pink (path 2), and yellow (path 3) spheres represent the [100] migration path for protons at Mg, Si vacancy and 

Fe sites corresponding to Mg
2E H


,  Si

4E H


 and    •

Mg Mg
E Fe H


 

  
 defects. The orange and blue polyhedrons are the MgO6 

octahedrons and SiO4 tetrahedrons. The migration barrier energies for paths 1, 2, and 3 are shown with green squares, 
pink triangles, and yellow diamonds, respectively.
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In order to examine the validity of extrapolation of these results to the case of lower water content (∼100 ppm 
wt), we also performed calculations for larger supercells (Model 4-Model 9) with less water content. For 
Model 4 and Model 5, we also observed the diffusion rate of proton does not decrease due to less water con-
tent. We calculated the MSDs of protons along the [100], [010], and [001] directions at 2000 K (Figure 3). 
The MSDs along [100] were significantly larger than those along other directions, which confirms the an-
isotropic proton diffusion behavior in hydrous olivine at high temperature. However, we did not observe 
the ionization process of  Mg

2E H
  in Model 6 (water content: 3,570 ppm wt) even at 2000 K (Figure 4). The  

reason for this behavior is discussed in the following section. We found Fe content also has an influence on 
the ionization process. In Fe-bearing Model 7 (water content: 3,488 ppm wt), the protons are ionized from 

MgE V  site and diffuse to a nearby Fe site. The Fe-bearing model (Model 7) shows a more notable increase in  
MSD compared to that of Model 6. It is likely that the presence of Fe atoms in olivine provides diffusion sites 
for protons and promotes their diffusion. It is also reported that the diffusion of protons can be promoted by 
hydrogen-polaron redox exchange (Kohlstedt & Mackwell, 1998; Mackwell & Kohlstedt, 1990) and protons 
diffuse faster in Fe-bearing olivine (Du Frane & Tyburczy, 2012; Novella et al., 2017). Therefore, we con-
structed Model 8 with about 10% Fe/(Fe + Mg) ratio. The MSD of Model 8 increases more rapidly than the 
MSDs of Model 6 and Model 7, and protons in Model 8 diffuse from one Fe site to another with the trajectory 
distributed along Fe sites (red circles in Figure 4).

Figure 3.  The mean square displacements (MSDs) of protons along the [100], [010], and [001] directions in Model 1, 
Model 3, Model 4, and Model 5 at 2000 K. The increasing of MSD along [100] is significantly higher than that of the 
other directions indicating profound anisotropic proton conductivity.
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5.  Discussion
5.1.  Proton Conduction Mechanism

Our results help understand how protons migrate in olivine that will shed some lights in interpreting the ex-
perimental results on proton-assisted electrical conductivity. We show the ionization effect of hydrogen dis-
solved in olivine cation sites: some fraction of hydrogen trapped as some defects such as  Mg

2E H
  or  Si

4E H


,  

or    •

Mg Mg
E Fe H

 
  

 is ionized at high temperature. Ionized protons have high mobility to enhance electri-

cal conductivity, and the conductivity is anisotropic due to the anisotropic ionization energy suggested by 
the CINEB calculations (Table S3). Verma and Karki  (2009) also observed anisotropic migration barrier 
energies of protons in forsterite and wadsleyite. However, we also show that the degree of ionization differs 
among several types of hydrogen-defects. In addition, protons associated with Si defects are less mobile than 
the protons associated with Fe or Mg defects. This result is consistent with previous experimental study on 
the diffusion property of protons at different defects (Padrón-Navarta et al., 2014). Similarly, Caracas and 
Panero (2017) found that hydrogen atoms at Mg vacancies show higher diffusion rates compared to the 
hydrogen at Si sites in wadsleyite and ringwoodite.

In order to understand the proton diffusion mechanism in hydrous olivine with low water content, a CINEB 
calculation was undertaken on the proton migration within a supercell containing 506 atoms and found that 
the barrier energy remained unaltered with water content (black squares in Figure 5). In the case of Model 
6, the two defects are far away from each other. Although a hydrogen atom can be activated to overcome the 
energy barrier, the most favorable location for the proton is still the nearby Mg vacancy due to the Coulomb 

Figure 4.  The mean square displacements (MSDs) and trajectories of protons in the Model 6, Model 7, and Model 8 
at 2000 K. The cyan spheres are the trajectories of protons. Orange, brown, blue, and red spheres represent Mg, Fe, Si, 
and O atoms. The proton trajectory in Model 7 presents the diffusion of protons from MgE V  to a nearby Fe atom site. The 
diffusion of protons between different Fe sites is shown in Model 8. The Fe atoms in red and green dashed circle take 
the originate places of Mg and Si atoms, respectively.
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interaction. As a result, the proton will trace back to the initial position and couple with the Mg vacancy 
again. This process can be described by the black dashed curves in Figure 5 and the following equation,

         •2 site1 2 site1 2 site1MgMg Mg
H H V H

   � (9)

For models with high water content (Model 1, Model 3, Model 4, and Model 5), thermally ionized protons 
can diffuse within the crystal by hopping between these defects (red circles in Figure 5). It should be noted 
that the defects for proton hopping do not have to be MgE V ; as observed in Model 7 and Model 8, Fe sites can 
also act as hopping sites during the hydrogen ionization and diffusion process. Thus, we propose an ioniza-
tion-hopping mechanism for proton diffusion in hydrous olivine as shown in Figure 5 (red dashed curve) 
and the following equation,

           • •2 site1 2 site1 2 site2 2 site2Mg MgMg Mg
H H V H V H

      � (10)

The ionization process takes place at high temperature and generates interstitial protons. These interstitial 
protons diffuse through hopping sites in the lattice and contribute to electrical conductivity. Based on our 
simulations on Model 7 and Model 8, Fe2+/Fe3+ redox can play the role of a hopping site in olivine and pro-
vide a network for proton diffusion when the Fe content is sufficient. This mechanism is verified in Model 
9 that lower water content does not have a significant influence on the proton diffusion coefficient in Fe 
bearing hydrous olivine. In natural olivine, the hopping sites should also be abundant due to the presence of 
small polarons, Mg vacancies, and other defects such as MgMnE  , •

MgCrE  and ••
MgTiE  (Berry et al., 2005; Blanchard 

et al., 2017). In addition, increasing of cation Frenkel defects and significant Mg2+ and Si4+ diffusion at high 
temperature (e.g., Fei et al., 2018; Dohmen et al., 2002) may provide external diffusion paths and promote 
the ionization process of associated protons. Nevertheless, we did not observe this behavior due to the short 
simulation time in this study.

The concentration of protons is crucial for the conductivity and can be estimated by the Arrhenius equation:

Figure 5.  Proton migration paths and barrier energies along the [100] direction in Model 1 and Model 6 with different 
water content. The green spheres represent the [100] migration path of proton. The orange and blue polyhedrons are 
the MgO6 octahedrons and SiO4 tetrahedrons. The proton migration barrier energies and transport mechanism in 
hydrous olivine with different water content of 3,488 and 16,330 ppm wt are shown with black squares and red circles, 
respectively.
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       exp expMg Fe
p a p I p Mg p Fe

H HC C C C
kT kT

   
            

� (11)

Here,  p IE C ,  MgpE C , and  FepE C  represent proton concentrations at intersti-
tial, MgE V  and MgFeE   sites. MgE H  and FeE H  are the thermal activation enthal-
pies for protons at Mg and Fe defects. Hence, the total proton conductiv-
ity is expressed as:

   

 

Mg
0 0 Mg

Fe
0 Fe

exp exp
kT kT

exp
kT

II
p i p

I
p

H HHC C

H HC

  



    
          

   
   

 
� (12)

where IE H  is the diffusion activation enthalpy of interstitial protons, and 
the diffusion activation enthalpy of hydrogen trapped at a cation site is 

I ME H H   , where ME H  is the enthalpy of thermal ionization ( MgE H  or 
FeE H ). Due to the thermal ionization effect, more interstitial protons are 

generated from cation defects at high temperatures, leading to the in-
crease in proton conductivity.

5.2.  Comparing Calculated Proton Conductivity With 
Experimental Results

We carried out more AIMD simulations for Model 1, Model 3, and Mod-
el 8 at different temperatures and calculated the proton diffusion coeffi-
cients and conductivities (Figures 2 & Figure 6). Hydrogen ionization in 
Model 1 and Model 3 becomes significant at temperatures above 1,600 
and 1300 K, respectively. Protons in Model 1, Model 3, and Model 6 show 
similar activation enthalpies of ∼57 kJ/mol, which is much lower than 
the experimental results (Dai & Karato, 2014a; Novella et al., 2017). This 
is because the calculated activation enthalpies using AIMD do not in-
clude the enthalpies of thermal ionization ( MgE H  and/or FeE H ). The to-
tal activation enthalpy can be estimated by the barrier energy of proton 
migration calculated by CINEB (Ammann et al.,  2010). Hence, the ac-

tivation enthalpy for proton diffusion along the [100] direction in Model 1 and Model 3 are 178.85 and 
244.23 kJ/mol, respectively, which is not very different from the experimental results obtained by conduc-
tivity (140 ± 6 kJ/mol) and diffusion coefficient (229 ± 18 kJ/mol) measurements (Dai & Karato, 2014a; 
Novella et al., 2017). However, we failed to obtain proton diffusion coefficients along the [010] and [001] 
directions due to the negligible proton diffusion along these directions in our models. The calculated mi-
gration barrier energies along other directions are also inconsistent with experimental results. It is true that 
the calculation on the migration barrier energy along unfavorable direction is inaccurate as an ion needs to 
pass through polyhedron sites in the lattice, which is quite unfavorable for ion migration. In addition, the 
diffusion of Mg, Si, and O defects at high temperature may assist proton diffusion along other directions.

Because all proton-enhanced conductivity and proton diffusion experiments were conducted in Fe-bearing 
olivine, we used our results on Fe-bearing olivine to compare with experimental results. We used the fol-
lowing equation to calculate electrical conductivity, and the contribution of small polaron and ionic (Mg2+) 
to the total conductivity are included in dryE  .

total dry proton   � (13)

The total conductivities with different water content are plotted in Figure 7. It should be noted that the 
conductivities are estimated based on the hydrogen associated with MgE V  or Fe3+ defects. The isotropic con-
ductivity of hydrous olivine under asthenospheric conditions is crucial with potential implications on the 
conductivity anomaly structures. Based on our calculation results, approximately 80–160  ppm wt water 
content (associated with MgE V  or Fe3+) in hydrous olivine is sufficient to generate the high conductivity  

Figure 6.  Calculated proton diffusion coefficients of different models 
at various temperatures. The diffusion coefficients of Model 1, Model 3, 
Model 4, Model 5, Model 8, and Model9 (M1-M9) are denoted by black 
squares, red circles, blue triangles, green inverted triangles, orange 
diamonds, and cyan pentagons, respectively (solid symbols for total, and 
empty symbols for the [100] direction). The fitted data as a function of 
inverse temperature is plotted with solid curves (black, red, and orange for 
Model 1, Model3, and Model 8), and dashed curves are the fitted proton 
diffusion coefficients along the [100] direction for Model 1, Model 3, and 
Model 8.
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anomaly (∼0.1 S m−1). It suggests that the ionization effect is important 
in understanding the proton conductivity in hydrous olivine, and previ-
ous conductivity measurements at relatively low temperatures ignored 
the contribution of ionized hydrogen from cation sites, hence their ex-
trapolated data underestimates the proton conductivity of hydrous oli-
vine under the conditions of the asthenosphere.

Our models show more conspicuous anisotropic conductivities than 
those of the experimental results. This can be attributed to the limitation 
of the numbers and kinds of proton defects in our simulation models. 
Therefore, only the anisotropic conductivities along the [100] direction 
are compared with experimental results (Dai & Karato,  2014a; Novel-
la et  al.,  2017). As the ionization behavior becomes significant at high 
temperatures, the comparison of specific conductivity values is mainly 
restricted to the temperature condition of the asthenosphere (1,550–
1700  K). The comparison suggests anisotropic conductivities along the 
[100] direction can be understood by the hydrogen ionization effect. The 
difference between experimental and computational data is within half 
an order of magnitude, which may be caused by the different pressures 
and kinds of hydrous defect in the samples.

In our simulations, the conductivities are estimated based on the hydro-
gen associated with MgE V  or Fe3+ defects, which ionizes at high tempera-
ture and increases the proton conductivity. On the contrary,  Si

4E H


 defect 
is very stable even at ∼2000 K. Considering the presence of  Si

4E H


 de-
fects in hydrous olivine (e.g., Padrón-Navarta & Hermann, 2017; Tollan 
et al., 2017; Walker et al., 2007; Xue et al., 2017), the proton conductivity 
in a natural sample should be lower than our prediction. The concentra-
tion of  Si

4E H


, which is critical in governing the conductivity of hydrous 
olivine, is strongly dependent on the temperature and pre-anneal silica 
activity (Le Losq et  al.,  2019). Thus, the sample synthesis method and 
conditions may also have a significant influence on the conductivity of 
hydrous olivine. Our calculated quantities are higher than the measured 
conductivities (Dai & Karato,  2014a), which may suggest the presence 
of hydrogen trapped at Si vacancies in these natural samples. Generally, 
our study indicates the conductivity of hydrous olivine strongly depends 
on the hydrogen site (associated with MgE V  and/or V

Si

). As the hydrogen 
concentration at MgE V  is not well constrained in the asthenosphere, it is 
difficult to compare the calculated conductivity with the asthenosphere 
conductivity.

6.  Conclusions
Hydrogen associated with different cation defects present different mo-
bility. Using AIMD simulations, the thermal ionization process of hydro-
gen at Mg and Fe defects is observed under the asthenosphere conditions, 
while hydrogen is trapped at Si vacancy even at 2000 K. The ionized hy-
drogen can be transported to a nearby hopping defect through intersti-
tial sites. Fe2+ in hydrous olivine acts as hopping defects, and ∼10% Fe/
(Fe + Mg) content is sufficient to form a network for proton conduction. 

The ionization effect increases the concentration of protons and enhances the electrical conductivity of 
hydrous olivine at high temperature. Moreover, the diffusion of ionized hydrogen is highly anisotropic re-
sulting in anisotropic conductivity along the [100] direction. Our results are consistent with previous exper-
iments conducted at relative high temperatures.

Figure 7.  The extrapolated proton and total conductivities of Fe-
bearing hydrous olivine as a function of inverse temperature and water 
content. The conductivities with 16, 80, 160, and 800 ppm wt water 
content associated with MgE V  or Fe3+ are plotted with black, green, red, 
and blue curves. The thin-solid curves are the proton conductivities, and 
thick-light curves are the total conductivities counting on the measured 
conductivities of dry olivine (Gardés et al., 2014). The uncertainties of 
different measurements are within the thick curves. Upper and lower 
panels present the isotropic and anisotropic conductivities along the [100] 
direction, respectively. Light yellow area shows the conductivity range 
representing majority high-conductivity structures at the asthenosphere 
(Baba et al., 2006, 2010; Evans et al., 2005; Sarafian et al., 2015). Light cyan 
area represents the conductivity range of some ultra-high conductivity 
structures (Heinson et al., 2000; Naif et al., 2013). The dotted purple 
curve represents the measured conductivities of olivine with 80 ppm wt 
water (Dai & Karato, 2014a). The orange dashed curve represents the 
conductivities of olivine with 80 ppm wt water deduced from the measured 
proton diffusion coefficients (Novella et al., 2017).
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