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A B S T R A C T   

Iron oxide-copper-gold (IOCG) and iron oxide-apatite (IOA) are two significant mineral deposit types with similar 
tectonic settings and hydrothermal alteration characteristics. There are huge differences in the geological setting, 
alteration system, and ore-forming fluid composition among IOCG and IOA deposits, leading to controversial 
genesis. Distinguishing between these two deposit types is significant to reveal the origin of IOCG and IOA 
systems. In this study, random forest (RF) was employed to classify IOCG and IOA deposits based on the chemical 
composition of magnetite measured by the electron probe microanalyzer (EPMA) and laser-ablation inductively 
coupled plasma mass spectrometry (LA-ICP-MS). The obtained results show that (1) a relatively high overall 
classification accuracy (0.76 for EPMA data and 0.91 for LA-ICP-MS) was obtained via the RF, indicating that the 
elemental composition of magnetite can effectively distinguish IOCG and IOA deposits; (2) the performance of 
the RF model based on LA-ICP-MS data is better than that of EMPA data, indicating that the application of more 
geochemical variables is helpful in distinguishing IOCG and IOA deposits; and (3) the elements V, Mg, and Mn in 
EPMA data, and Si, Mg, and V in LA-ICP-MS data are identified as the key elements for distinguishing IOCG and 
IOA deposits.   

1. Introduction 

Iron oxide-copper-gold (IOCG) deposits are one of the main sources 
of copper (Cu) and gold (Au) in the world. Since the discovery of giant 
Olympic Dam deposit in Australia, the IOCG deposit category has 
attracted considerable attention (Hitzman et al., 1992). The under
standing of IOCG deposits has gradually deepened over the past two 
decades (Williams et al., 2005; Groves et al., 2010). These characteris
tics mainly involve: (1) Cu-sulfide (with or without Au) hydrothermal 
mineralization; (2) a large amount of magnetite and hematite; (3) the 
metallogenic age ranged from the Late Archean to the Mesozoic (Wil
liams et al., 2005); (4) the ore body is controlled by widespread brec
ciation; and (5) diverse alteration system, tectonic background and ore- 
forming fluid composition (Hitzman et al., 1992; Hitzman and Porter, 
2000; Sillitoe, 2003; Williams et al., 2005; Groves et al., 2010; Barton, 
2014). Iron oxide apatite (IOA) deposits are widely developed and are 
also known as Kiruna-type deposit (Geijer, 1931). Its characteristics 
mainly include: (1) the apatite-containing iron ore lacks mineralization 
of polymetallic elements other than Ag, Cu, and rare earth elements 
(Williams, 2010); (2) Ti-poor magnetite is the main iron ore (Huang 

et al., 2019); (3) the host rocks are mainly intermediate volcanic rocks; 
and (4) the genesis of IOA deposits is controversial, including hydro
thermal (Hitzman et al., 1992; Rhodes and Oreskes, 1999; Sillitoe and 
Burrows, 2002) and magmatic (Lundberg and Smellie, 1979; Pollard, 
2000; Nyström et al., 2008; Westhues et al., 2016, 2017) models. 
Nystroem and Henriquez (1994) and Velasco et al. (2016) proposed a 
magmatic model for the formation of IOA deposits in which magnetite 
was crystallized from high-temperature, volatile-rich oxide melts. 
Hitzman et al. (1992) suggested that these two types of mineral deposits 
were very similar in tectonic settings, mineralization and alteration, 
igneous host rocks, and regarded IOA deposits as a subclass of IOCG 
deposits. Knipping et al. (2015a, 2015b) proposed that the IOA deposit 
was formed by the interaction of igneous rock and magmatic hydro
thermal, and the IOA deposit probably represents the deeper origin of 
the Andean IOCG system based on the combination of field observation, 
trace element geochemistry, and Fe-O stable isotope composition of 
magnetite particles (Sillitoe, 2003; Barton, 2014). Huang et al. (2019) 
also highlighted that these two types of mineral deposits are homolo
gous and probably formed under different temperatures and oxygen 
fugacity in the same system. 
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Magnetite is widely present in magmatic, metamorphic, and sedi
mentary rocks (Ramdohr, 1980; Scheka et al., 1980), and also in various 
types of mineral deposits, such as magmatic Fe–Ti–V (P), IOCG, IOA, 
iron-copper skarn, banded iron formation (BIF), porphyry Cu/Mo/W, 
and volcanic massive sulfide (VMS) deposits (Leach et al., 2010; Dupuis 
and Beaudoin, 2011). The factors affecting the composition of magnetite 
include magma or hydrothermal fluid compositions (Dare et al., 2012; 
Nadoll et al., 2014; Huang et al., 2016), physical and chemical condi
tions (e.g., temperature, pressure, cooling rate, and oxygen fugacity, and 
co-crystallized minerals) (Wechsler et al., 1984; Nadoll et al., 2014; 
Huang et al., 2019). Magnetite has an inverse spinel structure in which a 
series of trace elements can replace Fe2+ or Fe3+ in the magnetite lattice 
(Buddington and Lindsley, 1964; Nadoll et al., 2014). Owing to its high 
specific gravity, magnetite cannot be easily transported. The mineral 
chemistry of magnetite is relatively stable and is not easily affected by 
low-temperature weathering, thereby preserving its composition 
(Barnes and Roeder, 2001; Dare et al., 2012, 2014). All these charac
teristics make magnetite as an important indicator for mineral 
exploration. 

Several diagrams based on the elemental composition of iron oxides 
have been developed to distinguish IOCG and IOA deposits. For 
example, Dupuis and Beaudoin (2011) proposed the Ni/(Cr + Mn) vs. Ti 
+ V, and Ca + Al + Mn vs. Ti + V diagrams to distinguish IOCG and IOA 
deposits from BIF, porphyry, and Fe–Ti–V deposits. Knipping et al. 
(2015b) applied the V-Cr diagram to identify IOA deposits from IOCG, 
porphyry, and magmatic Fe-Ti-V deposits. Heidarian et al. (2016) and 
Broughm et al. (2017) suggested that V vs. Ni, V vs. Ti, V vs. (Ni + Co), 
and V/Ti vs. Ni/Ti diagrams (Loberg and Horndahl, 1983) are useful for 
distinguishing IOA deposits from BIF and magmatic Fe-Ti oxide deposits. 
However, the overlapping limitations are existed in these diagrams 
(Broughm et al., 2017). 

However, these trace element discrimination diagrams are limited in 
dimension due to the need of visualization (Snow, 2006), or the data 
used to draw the discriminant diagrams have not been sufficiently 
encompassed, thus the composition of iron oxides from a single deposit 
can span multiple areas of the diagrams (Broughm et al., 2017). These 
result in an unsatisfactory classification performance between IOCG and 
IOA deposits when the geochemical variables in iron oxides are limited 

Fig. 1. The spatial distribution of typical IOCG and IOA deposits. 
(After Huang et al. (2019)) 

Table 1 
Source and the number of sample of EPMA and LA-ICP-MS.  

Deposit name Number of 
analyses 

Reference 

EPMA LA-ICP- 
MS 

IOCG deposits 
IgarapéBahia  27  Huang et al., 2019 
Alemao  14  2 Huang et al., 2019 
Sossego  56  24 Huang et al., 2019 
Alvo 118  13  Huang et al., 2019 
Salobo  36  18 Huang et al., 2019 
Ernest Henry  37  9 Huang et al., 2019 
Candelaria  96  15 Huang et al., 2019; Dupuis and Beaudoin, 

2011 
Kwyjibo  36  24 Huang et al., 2019 
Jatobá  41  Veloso et al., 2020 
Mont-de-l’Aigle  14  Dupuis and Beaudoin, 2011 
Guelb Moghrein  22  Dupuis and Beaudoin, 2011 
Nico  8  26 Dupuis and Beaudoin, 2011; Acosta- 

Góngora et al., 2014 
Punta del Cobre  44  Dupuis and Beaudoin, 2011 
Palabora  18  Dupuis and Beaudoin, 2011 
Dahongshan   242 Wang et al., 2020 
Laoshankou   50 Liang et al., 2020 
Sue Dianne   15 Acosta-Góngora et al., 2014  

IOA deposits 
Cerro Negro 

Norte  
40  77 Salazar et al., 2020 

EI Laco  139  16 Dare et al., 2015; Dupuis and Beaudoin, 
2011 

El Romeral  126  69 Rojas et al., 2018; Huang et al., 2019;  
Palma et al., 2020 

Kiruna  14  4 Huang et al., 2019 
Rektorn  13  3 Huang et al., 2019 
Savage River  17  3 Huang et al., 2019 
Pilot Knob  15  Huang et al., 2019 
Lyon Mountain  18  Huang et al., 2019 
Gushan   43 Sun et al., 2019 
Se–Chahun   5 Bonyadi et al., 2011 
Los Colorados   13 Knipping et al., 2015b 
Carmen  22  60 Palma et al., 2020 
Fresia  16  113 Palma et al., 2020 
Mariela  34  85 Palma et al., 2020  
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(Huang et al., 2019). Recent studies suggest that the machine learning 
methods, such as the partial least squares discriminant analysis (PLS- 
DA), can help separate IOCG and IOA deposits from VMS, Ni-Cu, por
phyry, and VMS-related BIF deposits (Makvandi et al., 2016; Huang 
et al., 2019). 

Random forest (RF), a supervised classifier, is a good choice for 
classifying a multi-dimensional data source by creating a set of decision 
trees from a randomly selected subset of the training set. It has been 
widely used in the field of geosciences (Waske et al., 2009; Gifford and 
Agah, 2010; Kuhnert et al., 2010; Cracknell and Reading, 2014; Rodri
guez-Galiano et al., 2014; Carranza and Laborte, 2015; O’Brien et al., 
2015). In the field of geochemistry, Gregory et al. (2019) used LA-ICP- 
MS pyrite trace element data and RF to distinguish barren sedimen
tary pyrite and five ore deposit categories: IOCG, orogenic Au, porphyry 
Cu, sedimentary exhalative (SEDEX), and volcanic-hosted massive sul
fide (VHMS) deposits. Therefore, in this study, based on the magnetite 
geochemistry data, we introduce the RF algorithm for the classification 
of IOCG and IOA deposits based on the electron probe microanalyzer 
(EPMA) and the laser-ablation inductively coupled plasma mass spec
trometry (LA-ICP-MS) chemical composition. 

2. Dataset 

The dataset used in this study was compiled from the existing studies 
(Knipping et al., 2015b; Huang et al., 2019; Palma et al., 2020; Salazar 
et al., 2020), including 877 magnetite data (462 IOCG and 415 IOA data 
with 6 geochemical variables) determined by EPMA and 913 magnetite 
data (425 IOCG and 488 IOA data with 13 geochemical variables) 
determined by LA-ICP-MS. The samples were collected from 14 IOA 
deposits and 17 IOCG deposits (Fig. 1). Detailed analytical procedures 
are available in the references listed in Table 1. Fig. 2 shows the average 

composition of individual deposits that normalized to bulk continental 
crust (Rudnick et al., 2003). 

The elements of Al, Mg, Mn, Si, Ti, and V in the EPMA dataset and 
elements of Al, Co, Ga, Mg, Mn, Ni, Si, Sn, Ti, V, Y, Zn, and Zr in the LA- 
ICP-MS dataset were selected as the preferred input variables. The 
nearest neighbor function with the Aitchison distance (robcomposition 
package in R) (Hron et al., 2010) was employed to complete the 
censored values. The centered-log ratio method (Aitchison, 1986) was 
used to open the closed data. 

Fig. 3 shows the notched boxplots of the elemental concentrations of 
iron oxides in these two datasets. For the EPMA dataset, IOCG deposits 
have relatively low concentration of Mg, Si, V and similar concentration 
of Al, Mn, Ti compared with IOA deposits (Fig. 3a). For the LA-ICP-MS 
dataset, IOCG deposits have relatively lower concentration of Mg, Mn, 
Si, Sn, Ti, V, Y, and Zn than that of IOA deposits (Fig. 3b). 

3. Methods 

RF is an ensemble learning-based classification algorithm that is 
composed of multiple decision trees (Breiman, 2001, Fig. 4). The boot
strap aggregation strategy can overcome the overfitting during the 
training. N samples were randomly selected from the dataset D as the 
training dataset of the decision tree based on bagging method. The de
cision tree includes the root, branch, and leaf nodes. The nodes of the 
decision tree were optimally divided. Therefore, the selection of the 
node splitting mode is significant when constructing a decision tree, as it 
contributes to the classification of each leaf. The classic classification 
and decision tree use the Gini coefficient for the determination of the 
optimal segmentation criteria. The Gini index can be calculated as: 

Fig. 2. Multi-element diagrams of average trace element composition of magnetite from individual deposits, normalized to bulk continental crust (Rudnick et al., 
2003). The mean value of IOCG/IOA represents the average of all the magnetite elements of the IOCG/IOA deposits collected in this dataset. EPMA data of (a) IOCG 
and (b) IOA deposits. LA-ICP-MS data of (c) IOCG and (d) IOA deposits. 
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IG(t) =
∑m

i=1
fi(1 − fi), (1)  

where m is the class of the dataset and fi is the probability of class i on the 
node t. 

fi =
gi

g
, (2)  

where g is the total number of samples in node t, and gi is the number of 
samples belonging to class C. When all the samples of node t belong to 
the same class, the Gini index takes the minimum value of 0, and the 
sample category is purest; when the Gini index takes the maximum value 
of 1, the sample category in the current node is impure. According to the 
Gini minimum criterion, each tree splits until all the samples in every 
subset are correctly classified. The final classification is based on the 
output of multiple decision trees (Waske et al., 2009; Gregory et al., 
2019). 

The evaluation of element importance is based on the contribution of 
each feature to each tree in the RF. The Gini index score of each feature 
was used as the evaluation index, which represented the change in the 

Gini index before and after branching. The importance of feature Xj in 
node t is estimated as: 

VIMj(t) = IG(t) − IG(s) − IG(r), (3) 

IG(s) and IG(r) denote the Gini indices of the new nodes s and r after 
branching, respectively. The node with feature Xj in tree k is the set T, 
and the importance of Xj in the tree k is 

VIMjk =
∑

t∈T
VIMj(t), (4) 

When there are N trees 

VIMj =
∑N

n=1
VIMjk, (5) 

Finally, the importance scores of all the features are normalized to 
obtain the importance order. 

In this study, the RF model was built using Python 3.6.1, and Ten
sorflow 1.8.0, and scikit-learn library (Pedregosa et al., 2011). The 
optimal parameters of n_estimators (the number of decision trees) and 
min_samples_leaf (the minimum number of samples required at leaf 

Fig. 3. Notched boxplots of element concentrations of iron oxides measured by (a) EPMA and (b) LA-ICP-MS. The boundaries of the boxes are the 25th to 75th 
percentiles, he lower whisker is at the lowest datum above Q1 − 1.5 * (Q3 − Q1), and the upper whisker at the highest datum below Q3 + 1.5 * (Q3 − Q1), where Q1 
and Q3 are the first and third quartiles. The short lines inside the box represent the median value, and the notches represent the 95% confidence interval of 
the median. 
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nodes) in a RF model can be obtained through a grid search with cross- 
validation technique. Max_features, is the maximum number of features 
that can be used by a single decision tree in the RF. Min_samples_split is 
the number of samples required for segmentation. 

4. Results and discussion 

4.1. Training and testing dataset 

In order to train and test the RF model, the magnetite datasets were 
divided into testing and training datasets. Here, we adopt the leave-one- 
out method to divide the training and testing datasets. For 25 deposits in 
the EPMA dataset, one subset was regarded as the testing data, and the 
other 24 subsets were used as the training dataset. This procedure was 
then repeated 25 times such that each of the 25 subsets was used exactly 
once as the testing data. Similarly, one of the 22 deposits in the LA-ICP- 
MS dataset was used as the testing set, and the remaining 21 deposits 
were used as the training set. For all the magnetite analysis data in each 
deposit, the final prediction and classification results of the deposit are 
determined by getting more votes. For example, if 20 out of the 30 
magnetite analyses data of a deposit belong to IOA deposit, the predic
tion result of the deposit is the IOA deposit. Finally, the classification 
results for each deposit were obtained to evaluate the classification ac
curacy of the model. 

4.2. Variable importance 

For the EPMA magnetite dataset, the importance order of the vari
ables is shown in Fig. 5a. The most important element is V, followed by 
Mg, Mn, Al, Ti, and Si. V is sensitive to oxygen fugacity. With the in
crease of oxygen fugacity, its partition coefficient of magnetite decreases 
(Klemme et al., 2006). The content of V in IOCG was lower than that in 

IOA, indicating that the sediment of IOCG may be formed at a higher 
oxygen fugacity than that of IOA. Mg and Mn are suitable for magnetite 
structures (Dare et al., 2012; Deditius et al., 2018), which may be one of 
the reasons respond for their high importance. To a certain extent, the 
geochemistry of magnetite is also affected by host rocks and alteration 
faces (Huang et al., 2019). Fluid-rock interaction can enrich geochem
ical elements in hydrothermal fluids, such as magnesium and manganese 
(Einaudi et al., 1981; Meinert et al., 2005; Huang et al., 2019; Canil and 
Lacourse, 2020). 

The analysis of the importance of geochemistry variables based on 
LA-ICP-MS data shows that Si, Mg, and V are more important than Ga, 
Al, Ti, Zn, Co, Zr, and Sn (Fig. 5b). The content of Si is related to the solid 
solution in the spinel structure, and also exists in the form of small sil
icate inclusions, which can be easily detected (Ciobanu et al., 2019). Mg 
and Ti associated with Si may also be derived from the cracking of 
magmatic silicate and are related to alkaline calcification alteration 
(Verdugo-Ihl et al., 2020). 

4.3. RF classification 

For the EPMA dataset, the overall classification accuracy of the 25 
deposits was 0.76. Six deposits are misclassified, including two IOCG 
deposits (Sossego, Palabora) and four IOA deposits (Rektorn, Pilot Knob, 
Lyon mountain, Fresia) (Table 2). The V content of the Sossego deposit is 
higher than that of other IOCG deposits, which is closer to the mean 
value of magnetite collected from IOA deposits. V is an important 
characteristic of the classifier, which may explain the incorrect classi
fication of IOCG deposits as IOA deposits. Similarly, the Mg content of 
the Palabora deposit is considerably high, which is close to that of IOA 
deposit. The elements except V in the Rektorn deposit are lower than 
other IOA deposits; Mg and Al in the Pilot Knob deposit are lower; V, Mg, 
and Si in the Lyon mountain deposit are lower; V, Mn, and Mg in the 

Fig. 4. A workflow of RF. RF builds a number K of decision trees making them grow from different training data subsets, resampling randomly the original data set 
with replacement. Each decision tree randomly selects 2/3 of the samples from the training set subsets as in bag data for training, and the remaining 1/3 is out of bag 
data to verify the decision tree. Hence, most data will be used multiple times in different models. 
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Fig. 5. The importance of variable based on (a) EPMA and (b) LA-ICP-MS dataset.  

Table 2 
Confusion matrix of random forest classification for all mineral deposit classi
fication results based on EPMA and LA-ICP-MS dataset.  

Actual Predicted 

IOCG IOA 

EPMA dataset 
IOCG  12  2 
IOA  4  7  

LA-ICP-MS dataset 
IOCG  8  2 
IOA  0  12  

Table 3 
Confusion matrix of SVM classification for all mineral deposit classification re
sults based on EPMA and LA-ICP-MS dataset.  

Actual Predicted 

IOCG IOA 

EPMA dataset 
IOCG  11  3 
IOA  3  8  

LA-ICP-MS dataset 
IOCG  8  2 
IOA  1  11  
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Fresia deposit are similar to other IOA deposits; but Al and Si are high 
(Fig. 2a, b). 

The classification accuracy based on LA-ICP-MS dataset is better than 
that of EPMA dataset, indicating that more input variables and higher 
quality data of LA-ICP-MS can play positive role in improving the per
formance of classification model. The overall classification accuracy of 
22 deposits was 0.91, and 2 of 22 deposits misclassify IOCG deposits as 
IOA deposits (Alemao, Sossego). The Sossego deposit is similar to the 
EPMA data in that the V element is considerably high, and close to the 
IOA deposit. The distribution of most elements in Alemao deposit is 
similar to that of other IOCG deposits, but the Si content is high, which 
resembles that of the IOA deposit (Fig. 2c, d). 

In this study, support vector machine (SVM) (Cortes and Vapnik, 
1995) and extreme gradient boosting (XGBoost) (Chen and Guestrin, 
2016), which are two popular supervised machine learning algorithms 
in geosciences (Petrelli and Perugini, 2016; Petrelli et al., 2017; Zhong 
et al., 2021; Oliveira and Carneiro, 2021), are employed to distinguish 
IOCG and IOA deposits. The classification accuracy of SVM based on 
EPMA data is 0.76, and 3 IOCG deposits and 3 IOA deposits are mis
classified. The classification accuracy of SVM based on LA-ICP-MS data 
is 0.86, and 2 IOCG deposits and 1 IOA deposit are misclassified 
(Table 3). Meanwhile, the classification accuracy of XGBoost based on 
EPMA data is 0.80, and 2 IOCG deposits and 3 IOA deposits are mis
classified. The classification accuracy of XGBoost based on LA-ICP-MS 
data is 0.82, and 2 IOCG deposits and 2 IOA deposits are misclassified 
(Table 4). 

The experimental results show that although there are complex 
geochemical patterns of iron oxides in the IOA and IOCG deposits, ma
chine learning can effectively distinguish them. More geochemical data 
on iron oxide will be collected to build a robust classification model. 
Furthermore, we will attempt to use machine learning algorithms to 
distinguish more types of ore deposits according to the elemental con
centration of iron oxide. We also aim to use additional machine learning 
methods to collect more information regarding the formation mecha
nism of ore deposits, and achieve a deeper understanding of ore deposit 
formation. The combination of machine learning methods with field 
work and petrological observation may aid to clearly understand the 
genesis of the deposit (Petrelli et al., 2017). 

5. Conclusions 

In this study, the leave-one-out cross validation was used to divide 
the training and the testing datasets. The RF classifier was employed to 
classify IOCG and IOA deposits based on the chemical composition of 
iron oxides measured by the EMPA and LA-ICP-MS. The following 
conclusions were obtained: (1) although the geochemical composition of 
iron oxides is complex and uneven, but IOCG and IOA deposits can be 
distinguished; (2) the training set and testing datasets cannot be divided 
randomly; they should be divided according to the deposit; (3) the RF 
model performance based on the LA-ICP-MS dataset is better than the 
classification model based on EMPA data, indicating that the application 
of more geochemical variables and higher quality data are useful to 
distinguish IOA and IOCG deposits; and (4) elements V, Mg, and Mn in 

the EPMA data, and Si, Mg, V in the LA-ICP-MS data are key to 
discriminate IOCG from IOA deposits. 

CRediT authorship contribution statement 

Shuang Hong: Methodology, Formal analysis, Writing - Original 
draft. Renguang Zuo: Conceptualization, Writing - Review & editing, 
Supervision. Yihui Xiong: Writing - Review & editing, Visualization. 
Xiaowen Huang: Data curation. 

Declaration of competing interest 

The authors have declared that no conflict of interest exists. 

Acknowledgements 

We thank three reviewers for their comments and suggestions which 
help us improve this study. This study was supported by the National 
Natural Science Foundation of China (No. 41772344) and “CAS Hun
dred Talents Program” project (Y9CJ034000) to XWH. 

References 
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Oliver, N.H.S., Marschik, R., 2005. Iron oxide copper-gold deposits: geology, space- 
time distribution, and possible modes of origin. Econ. Geol. 371–405. https://doi. 
org/10.5382/AV100.13. 

Williams, P.J., 2010. Classifying IOCG deposits. In: Corriveau, L., Mumin, H. (Eds.), 
Exploring for Iron Oxide Copper–Gold Deposits: Canada and Global Analogues, 20. 
Geological Association of Canada, pp. 13–22. Short Course Notes.  

Zhong, R., Deng, Y., Li, W., Danyushevsky, L.V., Cracknell, M.J., Belousov, I., Chen, Y., 
Li, L., 2021. Revealing the multi-stage ore-forming history of a mineral deposit using 
pyrite geochemistry and machine learning-based data interpretation. Ore Geol. Rev. 
104079 https://doi.org/10.1016/j.oregeorev.2021.104079. 

S. Hong et al.                                                                                                                                                                                                                                    

https://pubs.geoscienceworld.org/msa/ammin/article/69/7-8/754/104867
https://pubs.geoscienceworld.org/msa/ammin/article/69/7-8/754/104867
https://doi.org/10.2113/econgeo.111.7.1595
https://doi.org/10.1130/G38894.1
https://doi.org/10.1130/G38894.1
https://doi.org/10.5382/AV100.13
https://doi.org/10.5382/AV100.13
http://refhub.elsevier.com/S0375-6742(21)00137-0/rf202107191314537221
http://refhub.elsevier.com/S0375-6742(21)00137-0/rf202107191314537221
http://refhub.elsevier.com/S0375-6742(21)00137-0/rf202107191314537221
https://doi.org/10.1016/j.oregeorev.2021.104079

	Distinguishing IOCG and IOA deposits via random forest algorithm based on magnetite composition
	1 Introduction
	2 Dataset
	3 Methods
	4 Results and discussion
	4.1 Training and testing dataset
	4.2 Variable importance
	4.3 RF classification

	5 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	References


