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A B S T R A C T   

Mg diffusion is important for explaining many properties of forsterite but its mechanism is unknown. This makes 
it hard to predict how it will behave in different circumstances. In this study we used Density Functional Theory 
(DFT) and a Kinetic Monte Carlo (KMC) method to calculate the diffusivity of Mg vacancies and interstitials in 
forsterite and thus the diffusion rate of Mg in forsterite. We predict vacancy diffusion to be highly anisotropic 
with considerably faster diffusion in the [001] direction while interstitial diffusion is predicted to be more 
isotropic. Thus we predict that a combination of interstitial and vacancy diffusion is required to reproduce 
experimentally derived anisotropies. Interstitial diffusion is predicted to be highly pressure dependant such that 
with increasing pressure the anisotropy of Mg diffusion decreases while temperature has little effect on this 
anisotropy. Impurities like Fe and water likely cause increases in Mg diffusion rate through the creation of 
extrinsic Mg vacancies and we predict that without modifications to the inherent mobility of Mg vacancies these 
cause small increases to diffusional anisotropy at 1300 and 1600 K but very large increases at 1000 K. The 
activation volume of Mg self diffusion is also predicted to decrease with increasing extrinsic vacancy 
concentration.   

1. Introduction 

Diffusion of cations occupying the octahedral metal sites in olivine 
controls processes that are active in the Earth's crust and upper mantle, 
and which underpin a range of geophysical and geochemical techniques. 
In the upper mantle, where olivine with composition close to 
(Mg0.9,Fe0.1)2SiO4 is the dominant phase, the diffusivity of Mg is 
important in understanding electrical conductivity (Fei et al., 2018; 
Yoshino et al., 2009; Yoshino et al., 2017; Schock et al., 1989) and could 
influence deformation even though Mg is a rapidly diffusing species 
(Jaoul (1990). Anisotropic Mg diffusion could be an important factor in 
explaining the anisotropic conduction seen in high conductivity layers 
underneath young oceanic plates (Fei et al., 2018) and, if Mg diffusion is 
important in forming olivine textures, could also help explain the variety 
of textures that are formed by olivine under different conditions (Karato 
et al., 2008). Mg-Fe interdiffusion occurring in zoned phenocrysts from 
volcanic products is increasingly used as a petrological tool (diffusion 
chronometry) to understand the timescales of pre-eruptive processes 
operating in the days and weeks prior to eruption (e.g. Hartley et al., 

2016; Pankhurst et al., 2018). On a longer timescale diffusion-controlled 
exchange between Mg and Fe in olivine and spinel can be used to infer 
the post-crystallisation thermal history of ultramafic igneous bodies 
(Ozawa, 1984). Diffusion can also lead to magnesium and iron isotope 
fractionation (Teng et al., 2011). 

Our understanding and ability to model all of these processes relies 
upon accurate determination of the Mg self-diffusion and Fe-Mg inter-
diffusion coefficients in olivine and thus this has been the focus of a 
range of experimental and computational studies reviewed by Chakra-
borty (2010). Generally there is a broad agreement as to the Mg self 
diffusion parameters in forsterite though there is around half an order of 
magnitude discrepancy between different experimental predictions 
(Andersson et al., 1989; Chakraborty et al., 1994; Fei et al., 2018; Jol-
lands et al., 2020; Morioka, 1981). Mg self-diffusion is found to be 
mildly anisotropic with diffusion along [001] found to be up to an order 
of magnitude faster than diffusion along [100] and [010] (Andersson 
et al., 1989; Chakraborty et al., 1994; Jollands et al., 2020). The acti-
vation volume for diffusion has been measured as 1–3.5 cm3/mol 
(Chakraborty et al., 1994) or 4.0–4.6 cm3/mol (Fei et al., 2018) which is 
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small in both cases suggesting pressure has little effect on the diffusion 
rate. So far, however, a mechanistic model of Mg diffusion has not been 
produced which limits our ability to extend Mg diffusion to novel con-
ditions and to make confident predictions as to its rate in various upper 
mantle conditions. Details of the diffusion process, such as the origin of 
diffusional anisotropy and the variation of this anisotropy with pressure, 
temperature and composition, can also be elucidated with a full mech-
anism. Thus in this work we studied the atomistic mechanisms of Mg 
self-diffusion using ab initio calculations. 

Previously the nature of intrinsic defects (Wright and Catlow, 1994; 
Braithwaite et al., 2003; Brodholt, 1997) has been studied using inter-
atomic potentials, embedded clusters and Density Functional Theory 
(DFT) while their mobility (Walker et al., 2009; Bejina et al., 2009; Jaoul 
et al., 1995) in forsterite have been studied using interatomic potentials. 
While these two questions are critical for determining cationic mobility 
in forsterite these studies have neglected important effects. First, inter-
atomic potentials often behave poorly in unusual geometries and these 
are often formed during diffusion. Second, these studies consider only 
activation energies and not the time taken for diffusing point defects to 
overcome these barriers. Third, these studies do not convert their 
diffusion pathways into a macroscopic diffusion model and thus calcu-
late rates of diffusion. Thus there exists no detailed exploration of Mg 
diffusion in forsterite using electronic structure methods. In this work 
we shall examine a possible mechanism for this diffusion. To simplify the 
discussion we shall consider only the Mg-end member of the olivine 
solid solution (forsterite) and we shall only explicitly calculate the effect 
of intrinsic defects without the effect of extrinsic defects arising from 
impurities. 

2. Methods 

Diffusion operates on a much longer timescale than is typically 
accessible by direct atomic simulations. Thus instead of simulating 
diffusion directly, we instead examine some rare events that are key to 
diffusion – hops of a point defect between adjacent sites. Repeated oc-
currences of these hops leads to a random walk of the defect and bulk 
self-diffusion (Tilley, 1987). Our approach to simulating Mg diffusion in 
forsterite follows three steps. First, we make use of density functional 
theory to determine the structure and relative stability of Mg point de-
fects in forsterite. These models represent the ground state end-points of 
the hops leading to diffusion. Second, we probe the energy landscape 
that must by traversed by the defect during a hop. This provides us with 
the energy barrier that must be overcome for the hop to proceed and the 
structure of the transition state (the configuration with the maximum 
energy on the minimum energy pathway between the start and the end 
point). Boltzmann statistics tell us how likely it is for a point defect to 
have enough energy at a given temperature to overcome the energy 
barrier while simulation of the lattice vibrations of the ground and 
transition states allow us to calculate the frequency at which each hop is 
attempted. Third, we combine information about multiple hops between 
different ground states using a kinetic Monte Carlo approach to access 
timescales long enough to observe the random walk and measure Mg 
diffusion in forsterite. 

2.1. Defect calculations using density functional theory and defect 
concentrations 

All input parameters to our models of magnesium diffusion in for-
sterite are derived from plane wave density functional theory (DFT; 
Hohenberg and Kohn, 1964; Kohn and Sham, 1965) which allows us to 
probe the energy periodic boxes of simulated atoms. This was used to 
evaluate the ground state defect structures and energies, the structures 
and energies of the transition states, and the way atoms vibrate in these 
configurations. This approach allows us to calculate the hop activation 
energies and rates as a function of temperature and pressure. These 
calculations were undertaken using version 16.11 of the CASTEP code 

(Clark et al., 2005). Full details of the simulation parameters are given in 
the Supplementary Information but in short we placed Mg, Si and O 
vacancies in (2x1x2) forsterite super cells and determined their energy 
as well as the energy of defect-free forsterite. This was done both stati-
cally and at temperature, using quasi-harmonic approximation and 
linear displacement techniques to determine the thermal energies. This 
was done at 0, 5, 10 and 15 GPa and at static (~0 K), 1000, 1300, 1500, 
1600 and 2000 K. Knowing the energy of each defect relative to for-
sterite we can then calculate the difference in energy between 
defect-containing and defect-free forsterite for each type of defect and 
use these to calculate a series of defect producing reactions such as the 
Mg Frenkel reaction MgMg

X → VMg
′ ′ + MgI

••. We then determine the 
equilibrium position of these reactions by minimising the free energy of 
forsterite (see Supplementary Information) which gives us the equilib-
rium concentration of defects. 

2.2. Defect hopping 

Once ground state structures, energies and concentrations for the 
defects had been determined, we enumerated the possible hops (where a 
defect moves from location to location) for VMg

′ ′ and MgI
•• and for each 

hop we determined its pathway, its transition state structure and its 
activation energy. We did this by using a constrained optimisation 
approach. We first determined an approximate path for the hop (for 
vacancy diffusion this consists of two vacancies with a Mg atom at a 
point between the vacancies, for interstitial diffusion the interstitial 
atom is located between stable interstitial sites). For each hop we tried 
multiple paths, but direct paths proved to have the lowest transition 
state energy in all cases. A path was defined by at least 10 images (with 
the Mg atom in different locations between the start and end point) and 
each image was relaxed with the migrating Mg fixed to the path by 
preventing its movement in one direction ([100] or [010] or [001]) with 
the fixed direction being that which has the longest distance along the 
path. This provides an energy profile along the path and a maximum 
energy point. We then searched for the transition state by moving along 
the path from the maximum energy point in 0.1 Å steps in both di-
rections until a maximum was found. This is the candidate transition 
state. While this method may not definitely find the transition state our 
frequency calculations (Supplementary Information) typically returned 
a single imaginary eigenvalue of the dynamical matrix, as expected for a 
transition state. In the few cases where this was not the case (all for 
interstitial diffusion) the candidate transition state was found by manual 
adjustment based on visualising the eigenvectors of the imaginary 
phonon frequencies until a single imaginary eigenvalue was found. It 
turned out that this manual adjustment changed the activation energy of 
the hop by <0.01 eV suggesting that the constrained optimisation 
method is highly reliable for finding activation energies even if they are 
in complex parts of the energy hypersurface. 

To determine the rate of hopping we used lattice dynamics (Sup-
plementary Information) to probe the vibration of atoms around the 
point defects in their ground state and transition state configurations. 
This allows us to model the effect of temperature on point defect 
mobility. The rate, k, at which a defect hops from one location to another 
is given by: 

k = vexp
(
∆Sm

kB

)

exp
(

−
∆Hm

kBT

)

(1)  

where v is the attempt frequency (in Hz) and the two exponential terms 
are the activation entropy and the activation enthalpy, respectively. The 
activation enthalpy term was calculated from our constrained optimi-
sation. In order to calculate the attempt frequency and activation en-
tropy we used Vineyard theory (Vineyard, 1957) which is based on 
absolute rate theory. Both of the temperature-based factors (vibrational 
entropy and attempt frequency) are combined into a modified attempt 
frequency (v*) which is found from the ratio of the calculated phonon 
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frequencies: 

v* = vexp
(
∆S
kB

)

=

∏N

j=1
νj

∏N− 1

j=1
νj′

(2)  

where νj are the lattice frequencies of a defect in its stable starting po-
sition and vj’ are the real lattice frequencies of the defect at the transi-
tion state of its hop. The latter has one imaginary frequency and so one 
less real frequency. Similar to our treatment of thermal expansion, this 
theory assumes harmonic small oscillations near the saddle point and 
thus assumes the system operates as a harmonic oscillator. The rate of 
each hop is thus determined from its activation energy (determined from 
the energy of the transition state) and its modified attempt frequency. 

2.3. From defects to diffusion 

The self-diffusion of Mg by a vacancy mechanism can be represented 
by: 

Dsd− vac
Mg = DVac

Mg NVac (3) 

Where DMg
Vac is the diffusion coefficient of Mg vacancies and NVac is 

the atomic fraction of Mg vacancies. A similar mechanism applies for 
diffusion by an interstitial mechanism. As shown below, our atomic scale 
simulations suggest that diffusion of both interstitials and vacancies can 
be important for magnesium diffusion in pure forsterite. To account for 
this possibility, we use the assumption that vacancies and interstitials 
diffuse independently of each other, which means that the total self- 
diffusion of Mg in forsterite is given by: 

Dsd
Mg = DVac

Mg NVac +DInt
MgNInt (4) 

Other diffusing species not considered in this paper, such as hydrated 
vacancies, would have their own term if present. The concentration 
terms in Eq. 4 are determined by varying the progress of defect forming 
reactions – specifically the Mg Frenkel reaction as discussed in the text – 
until the free energy is minimised (Section 2.1). 

Determining the diffusion coefficients for the individual defect spe-
cies is more complex. For systems with simple geometry, the diffusion 
coefficients can be found analytically from the attempt frequency, the 
migration entropy, the activation energy and the crystal structure. For 
example, for a single hop, the coefficient is given by (Poirier, 1985): 

DVac
Mg =

α
q

l2vexp
(
∆Sm

kB

)

exp
(

−
∆Hm

kBT

)

(5)  

where α is a geometric prefactor to account for the degeneracy of the 
hop, q is a dimensionality constant (q = 2, 4 or 6 for 1, 2 or 3D diffusion), 
l is the length of the hop and the two exponential terms are the activation 
entropy and the activation enthalpy, respectively. This approach has 
been used to determine diffusion coefficients in a number of minerals 
including MgO, bridgmanite and post-perovskite (e.g. Vocadlo et al., 
1995; Ammann et al., 2010). However, diffusion in forsterite involves 
defects moving from one site to an inequivalent site via multiple 
different hops and so it becomes cumbersome to attempt to develop 
equations of this type. Instead we seek a numerical estimate of the 
diffusion coefficients by implementing a kinetic Monte-Carlo (KMC; 
Bortz et al. (1975)) simulation of the motion of a defect in a forsterite 
crystal. 

First developed to allow the efficient simulation of Ising spin sys-
tems, KMC works by simulating the time evolution of a system between a 
collection of states, with transitions between states governed by a set of 
rules that includes a probability of that transition occurring in a given 
amount of time. Transitions between states are selected randomly 
(preserving the relative probability of each transition) and a clock is 

advanced by an appropriate amount after the state transition has been 
determined. This makes it useful for simulating complex transitions with 
many possible motions as the properties of each transition can be 
calculated independently and then put collectively into a KMC algo-
rithm. KMC has found a number of applications in extending atomic 
scale simulations to macroscopic behaviour, including the simulation of 
dislocation motion (Bulatov and Cai, 2006), chemical vapour deposition 
(Bagatur'yants et al., 2003) and point defect diffusion (Voter, 2007). 

For our simulations, we followed the rejection-free residence time 
method of Voter (2007). A brief overview of this method is given here, 
with more detail in the Supplementary Information. For each state in the 
system (e.g. a vacancy on M1) we enumerate all possible hops from that 
state and then calculate the rate of each hop (ki) (section 2.2, eq. 1 using 
eq. 2), the sum of the rates of all the hops (ktot) and the probability of 
each hop occurring pi = ki

ktot . We then use the weighted probability of 
each hop to randomly select a hop. We also randomly select a time for 
that hop to occur (the escape time): 

ti = −

(
1

ktot

)

ln
(
r2) (6) 

Where r2 is a pseudo-random number drawn from a uniform distri-
bution between 0 (inclusive) and 1 (exclusive) which can be represented 
as [0,1). At each stage of the calculation the randomly selected hop 
moves our defect a certain distance in a certain direction and the 
randomly determined escape time advances the clock. Thus, as this al-
gorithm progresses, we build a list of positions of the defect as a function 
of time as it undergoes a random walk through the (infinite) crystal 
structure. We then calculate the mean-squared displacement (MSD) of 
our defect (using the method of Leetmaa and Skorodumova (2015) as 
explained in the supplementary information) as a function of time. This 
can then be converted to diffusion: 
〈
x2〉 = qDt (7) 

Where q is the dimensionality constant as above. 

3. Results 

3.1. Crystal structure of olivine 

In order to understand and discuss diffusion in forsterite we must 
first consider its crystal structure. The highly anisotropic crystal struc-
ture of forsterite leads to its diffusional anisotropy. Forsterite's distorted 
hexagonal close packed oxygen sublattice contains two distinct octa-
hedrally co-ordinated M sites: M1, on an inversion centre, and the less 
symmetric M2, which sits on a mirror plane. M1 sites share edges and 
form continuous chains along [001] while M2 sites are isolated from 
each other (sharing an edge with an M1 site and corners with other M1 
and M2 sites). This structural anisotropy hits at a possible reason for the 
directional dependence of Mg diffusion in forsterite: vacancy mobility 
along chains of M1 sites could be high compared to more tortuous 
pathways between M1 and M2 sites (Brodholt, 1997; Bejina et al., 2009; 
Jaoul et al., 1995; Walker et al., 2009). There are also two normally 
unoccupied octahedral sites in the forsterite structure. Each is located 
half way between two occupied M sites (and shares faces with them) 
along [100]. We call the unoccupied octahedral site midway between 
two M1 sites I1, and the unoccupied octahedral site midway between 
two M2 sites I2. 

3.2. Defect energies and concentrations 

There are two sites for Mg vacancies in forsterite – the M1 and the M2 
sites. We calculate that M1 sites are strongly favoured over M2 sites with 
pressure increasing the vacancy preference for M1 sites (Table S1). This 
preference for M1 over M2 vacancies agrees with previous calculations 
though there is some difference in the energy of this preference (0.9–1.2 
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eV in this work, ~1.9 eV with forcefield calculations (Walker et al., 
2009) or ~ 0.8 eV previously using DFT (Brodholt, 1997)). 

We have also considered Mg interstitials. As with Walker et al. 
(2009) we found that the most stable position is a split interstitial at the 
M1 site with 2 Mg atoms displaced from the centre of this site in opposite 
[010] directions (shown in Fig. S1). This arrangement is very stable with 
alternative arrangements of the Mg at this site all relaxing into this one. 
Even placing a Mg atom in an I1 site causes it to relax into this split 
interstitial arrangement. The other stable configuration is found by 
placing an additional Mg in the I2 site. The Mg interstitial in the I2 site 
has an octahedral coordination like the M1 and M2 and is thus 
geometrically similar to them. At 0 GPa the split M1 interstitial is 
slightly favoured over the I2 arrangement (~0.2 eV) but with increasing 
pressure the I2 configuration is favoured (Table S1) as the split M1 
arrangement is larger than the I2 arrangement. In QM-MM embedded 
cluster calculations (Walker et al., 2009) the split M1 geometry was 
found to be favoured over an I1 interstitial geometry by ~4.4 eV but an 
I2 geometry was not reported. In our own forcefield calculations we 
were unable to stabilise an I2 arrangement as I2 arrangements always 
relaxed into M1 arrangements. Forcefields are thus likely poor at rep-
resenting these interstitial structures. 

To calculate diffusion rates the concentration of vacancies is required 
(Eq. 4). For intrinsic diffusion we have assumed this comes from mini-
mising the free energy of the Frenkel reaction (MgMg

X → VMg
′ ′ + MgI

••) 
(Dohmen and Chakraborty, 2007). When this reaction proceeds forward 
the positive enthalpy and the negative configurational entropy term 
both increase and at some concentration this provides a minimum en-
ergy. As the Mg vacancy and the Mg interstitial are each able to occupy 
two sites solving analytically for the free energy minimum is awkward. 
Instead we calculate the number of different arrangements of Mg va-
cancies and defects in the crystal considering all M1, M2, I1 and I2 sites 
and then calculate the probability of their occurrence and thus their 
configurational entropy. The steps for this are given in the supplemen-
tary information but the final result is that the equilibrium concentra-
tion in the intrinsic case comes from minimising the free energy, given 
by: 

∆G = ∆E× a − TSconfa (8)  

where a is a reaction vector for the Frenkel reaction (between 0 and 1), 
ΔE is the energy of the Frenkel reaction and Sconfa is the configurational 
entropy after the reaction has proceeded forward by a. The results of this 
minimisation are given in Table 1. Pressure strongly decreases the 
number of defects (by increasing the positive formation internal energy 
U) that are formed thermodynamically whereas temperature increases 
the number of defects (as the configuration entropy is multiplied by -T). 

We have assumed that the only relevant intrinsic defect reaction for 
Mg diffusion is the Mg Frenkel reaction. We can test this assumption by 
examining the energy of other potential intrinsic reactions that produce 

Mg defects to examine if they could compete energetically with the Mg 
Frenkel reaction. To do this we calculated the energy of the following 
reactions: 

R1) MgMg
X → VMg

′ ′ + MgI
••

R2) MgMg
X + OO

X → VMg
′ ′ + VO

•• + MgO 
R3) MgO → MgI

•• + OI
′ ′

R4) 2VMg
′ ′ + SiSi

X + 4MgO → VSi
′ ′ ′ ′

+ 2MgMg
X + Mg2SiO4 

R5) SiSi
X + 4MgO → VSi

′ ′ ′ ′

+ 2MgI
•• + Mg2SiO4 

R6) Mg2SiO4 + SiSi
X + 2MgMg

X → 2VMg
′ ′ + SiI•••• + SiSi

X + 4MgO 
In constructing these reactions we have assumed that the crystal 

remains charge neutral and thus all reactions are charge balanced. We 
have considered the most simple intrinsic reactions that produce a Mg 
vacancy or an Mg interstitial, more complex reactions that could be 
constructed by adding these reactions together are implicitly included. 
The Schottky defect which produces Mg, Si and O vacancies simulta-
neously is not included here because we predict that it has extremely 
high energy (>36 eV) and thus is very unlikely to occur as has also been 
found previously (Bejina et al., 2009; Walker et al., 2009). 

The energy of these reactions (R1-R6) is shown in Table S2 but all 
other reactions have substantially higher energies than the Frenkel re-
action (R1) and thus are considerably less favoured to occur. By calcu-
lating the free energy minimum of the above reactions we can calculate 
the equilibrium concentration of defects that occurs in pure forsterite. 
We did this with two frameworks- 1 where the only possible reaction is 
R1 and one where R1-R6 can all occur. By including the reactions R2-R6, 
which compete with R1 in configurational entropy space, we predict 
that the concentration of Mg defects changes by less than 0.001% when 
compared to the system with R1 alone. Thus alternative methods of 
intrinsic defect production do not significantly compete with the Mg 
Frenkel reaction R1 and can be safely ignored and from now on we shall 
only consider the Mg Frenkel reaction R1. It should be reemphasized 
that we are only considering pure forsterite and intrinsic defects in this 
work and extrinsic defects are likely to compete with R1. We shall 
consider the possible effect of extrinsic defects in the discussion section. 

All reactions above have been written in an MgO buffered system- to 
consider an enstatite buffered system appropriate amounts of the 
reaction: 

R7) MgO+ MgSiO3→Mg2SiO4 
Could be added to the system. In the pure forsterite system where 

only intrinsic defects are important we predict that Mg diffusion rates 
will be the same in MgO and MgSiO3 buffered systems because R1 does 
not depend upon SiO2 activity. Thus our results should apply in both of 
these systems. 

Experimentally a difference in Mg diffusion rates has been seen be-
tween MgO and MgSiO3 buffered systems (Jollands et al., 2020). This 
difference was explored in Muir et al. (2020) where it was predicted to 
arise due to interaction between extrinsic Al defects and MgSiO3. This 
difference does not apply therefore in the intrinsic-only system in this 
paper but is important for comparisons to experimental data in real 
crystals. While there are many possible extrinsic defect+buffer reactions 
in real crystals, in Muir et al. (2020) experimental results from Jollands 
et al. (2020) were matched by considering the MgO-buffered case as 
purely intrinsic defects and the MgSiO3 buffered case as intrinsic+Al 
extrinsic defects. This suggests that, at least in these specific experiments 
and compositions, the MgO-buffered experiments were closer to the 
pure intrinsic case and therefore we shall compare our theoretical 
intrinsic results to MgO-buffered experiments to avoid any Al + MgSiO3 
effects. 

3.3. Vacancy hops 

For Mg diffusion by vacancy hopping we found six different vacancy 
diffusion hops for which we calculated the geometries and energies of 
hopping. The hops that we have considered are shown and labelled in 
Fig. 1 with their dimensions listed in Table S3 and described in the 
Supplementary Information. 

Table 1 
Free energy of the Frenkel reaction at various pressures and temperatures and 
the corresponding concentration of vacancies and interstitials (in defects/unit 
cell) in a pure forsterite crystal where only the Mg Frenkel reaction forms sig-
nificant defects- this concentration is for each defect type so the concentration of 
total defects (vacancies + interstitials) is twice this number.   

0 GPa 5 10  

Formation Energy (eV) 
0 K 5.65 6.43 6.54 
1000 4.94 5.96 6.37 
1300 4.73 5.78 6.27 
1600 4.52 5.60 6.13   

Vacancy Concentration 
1000 4.13 × 10− 13 3.06 × 10− 15 9.23 × 10− 17 

1300 8.51 × 10− 10 8.81 × 10− 12 9.37 × 10− 13 

1600 9.59 × 10− 08 2.14 × 10− 09 2.89 × 10− 10  
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The activation energies and frequencies of these hops are presented 
in Table 2 and the barriers to diffusion are shown in Fig. 2. Notably the A 
hop which is directly along the [001] direction has a substantially lower 
activation energy than all other M1 hops. The easiest hop from an M2 
site is the C hop back to an M1 site. These two effects combine such that 
vacancies will diffuse easily along the [001] direction when in a M1 site 
and will have difficulty escaping to an M2 site. If they do escape to an M2 
site they will be converted quickly back to an M1 site. The weighted 
probability of these hops is shown in Fig. 2 (and an alternative repre-
sentative in Fig. S2) demonstrating the overwhelming dominance of the 
A hop. 

Comparing our activation energies to published values we find that 
our value for the favoured A hop of 0.75 eV is similar to literature values 
of 0.72 (Walker et al., 2009) and 0.62 eV (Bejina et al., 2009). Our other 
hops have some variation with those found in Walker et al. (2009). To 
test whether this was an effect of simply using DFT as against using 
forcefields we recalculated our results using GULP with the TBH1 
forcefield (Price et al., 1987; Sanders et al., 1984; Lewis and Catlow, 
1985) (Table S4, computational details in supplementary information). 
We find that generally DFT produces lower barriers than forcefield 
calculations but that the order of the hops is the same. Crucially the 
activation energy of the easiest A hop (which largely controls the overall 
diffusion) is very similar with both methods (0.75 eV with DFT, 0.77 eV 
with our forcefield) which means that both DFT and forcefield calcula-
tions return a very similar diffusivity for vacancy diffusion. 

We also considered the effect of pressure on the activation energies of 

these vacancies. As shown in Table S5 and Table S6 going from 0 to 10 
GPa makes negligible differences to the activation energy or v* of any of 
the hops. The effect of pressure on the vacancy concentration as 
described above is much more important. 

3.4. Mg interstitial hops 

As Mg interstitials occupy M1 and I2 sites – the latter of which are 
simply shifted M2 sites – the relative geometry of interstitial hops are 
identical to those of vacancies. These hops are pictured and labelled in 
Fig. 3 and their barriers in Fig. 4 (and tabulated in Table S7) with their 
energies and frequencies in Table 2 (and more pressures are listed in 
Table S6 and S8). The probability of any of the hops occurring is shown 
in Fig. 4 and alternatively in Fig. S3. These are again described in the 
supplementary information. 

Fig. 1. Diagram of possible vacancy hops between M1 and M2 sites. The absolute distances of these hops are listed in Table S3. Mg atoms are brown, Si atoms are 
blue with their tetrahedrons highlighted, oxygen atoms are red. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 

Table 2 
Activation energy and modified attempt frequency v* of various hops (shown in 
Figs. 1 and 3 with the hop distances outlined in Table S4 and S8) for forsterite at 
0 GPa uncorrected. Hop L could not be stabilised but is very high in energy. Hops 
with an asterisk go in the reverse direction where this is not equivalent.   

Vacancy Interstitial 

Ea (eV) ν* (Hz) Ea (eV) ν* (Hz) 

Hops from M1 Site 
A/G M1-M1 0.75 1.01 × 1013 3.22 9.11 × 1008 

B/H M1-M1 4.12 3.71 × 1015 3.16 1.22 × 1010 

C/I M1-M2/I2 1.45 2.37 × 1014 0.59 3.01 × 1009 

I* M1-I2   1.35 2.38 × 1008 

D/J M1-M2/I2 1.91 4.39 × 1014 0.56 2.02 × 1009 

D*/J* M1-M2/I2 1.91 4.39 × 1014 1.29 2.80 × 1009  

Hops From M2/I2 Site 
C/I M2/I2-M1 0.45 1.15 × 1014 0.39 1.41 × 1013 

I* M1-I2   1.15 1.11 × 1012 

D/J M2/I2-M1 1.00 2.13 × 1014 0.36 9.46 × 1012 

D*/J* M2/I2-M1 1.00 2.13 × 1014 1.09 1.31 × 1013 

E/K M2/I2-M2/I2 1.65 4.27 × 1014 1.08 5.53 × 1012 

F/L M2/I2-M2/I2 2.82 2.31 × 1015 N/A N/A  

Fig. 2. Plot of the activation energy barriers to Mg vacancy hopping in for-
sterite. The energy of a vacancy is plotted at M1 (blue) (defined as 0 eV) and M2 
(green) sites and at 7 points in-between each site with both the site and the 
intermediate points plotted with the same relative energy bar as shown. Many 
more intermediate points were used to determine the activation energy 
maximum than are shown here (see text for details). Hops in the [100] direction 
(hops B and F) are not shown but both of these hops have activation energies 
higher than all the hops pictured here. The black box represents a forsterite unit 
cell. For a sample M1 and an M2 site we have shown the main hops with a 
percentage likelihood of selecting this hop that was determined at 1300 K and 
0 GPa (uncorrected). (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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Interstitial hops I and J, which are between M1 and I2 sites, are the 
most favourable with activation energies <0.6 eV. In part this is because 
in the split M1 configuration one Mg at the M1 site is already close to an 
I2 site. Pressure has a small effect on the attempt frequency (Table S6) 
but a relatively large effect on the activation energy of these hops 
(Table S8) with hop I becoming nearly barrierless by 10 GPa. All va-
cancy hops and interstitial hops from the I2 site show similar attempt 
frequencies for hops with little geometry distortion (1 × 10− 13 to 3 ×
10− 15 Hz) whereas interstitial hops from the I1 site show much lower 
attempt frequencies due to the large geometry distortions involved. 

3.5. Diffusion 

Using our KMC algorithm we can convert hops into diffusion rates. 
The diffusion coefficients for both vacancy and interstitial hopping are 
presented in Table 3 (these are listed at 5 and 10 GPa in Table S9 and 

S10). Vacancy diffusion is highly anisotropic with diffusion along [001] 
being orders of magnitude faster than diffusion along [100] or [010]. 
This is an outcome of the individual hop geometries where the hop 
directly along [001] is ~0.75 eV easier than any other M1 hop. In the 
absence of any additional undiscovered hops/mechanisms this will al-
ways hold. Interstitial diffusion is much more isotropic than vacancy 
diffusion due to the favourability of M1 to I2 hops (I and J) which go in 
all three primary directions. 

To calculate total diffusion of Mg in forsterite we added together the 
rates of Mg vacancy and interstitial diffusion. This assumes that Mg 
Frenkel pairs are not associated with each other. To test this assumption, 
we calculated the binding energy of this pair by running separate sim-
ulations with isolated Mg vacancies and interstitials and then calcula-
tions with them adjacent in the same unit cell and comparing the 
difference in enthalpy. We find that the binding energy is approximately 
− 1.9 eV with a negative number indicating that bound defects are more 
stable than unbound defects. This is a large number but it is much 
smaller than the configurational energy gains of randomly scattering Mg 
vacancy and interstitial pairs for low concentrations. For the pairing 
energy to exceed this configuration entropy, the defect concentration 
would need to be above 1.2 × 10− 3 defects per unit cell at 1300 K, many 
orders of magnitude larger than the predicted vacancy concentrations 
(Table 1). Thus the Mg vacancy and interstitial pairs are unlikely to be 
associated with each other and can be modelled individually here. 

Fig. 5 compares our pressure corrected (pressure is shifted by − 3.95 

Fig. 3. Diagram of interstitial hops between M1 and I2 sites. The absolute distances of these hops are listed in Table S7. Octahedral holes are green. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 4. As Fig. 2 but for interstitial hops between M1 and I2 sites with the M1 
sites being defined as 0 eV. The layer closer to the bottom of the graph are M1 
and then I2 and M1 layers alternate going up the page. These sites are much 
closer in energy than the M1 and M2 sites for vacancy migration. Again hops 
along the [100] axis (H and L) are not shown but are very high in energy. With 
this projection I and I* and J and J* hops are on top of each other (as they are 
only varied along the [100] direction) but we have pictured the lower energy 
paths (I and J respectively). 

Table 3 
Diffusion coefficients (m2/s) of vacancies and interstitials in three directions at 
0 GPa (uncorrected) with 5 and 10 GPa (uncorrected) [001] diffusion co-
efficients also listed. For the other coefficients in [100] and [010] at 5 and 10 
GPa see Table S10 and S11.   

[100] [010] [001] [001] 5 
GPa 

[001] 
10 GPa 

Vacancy 

1000 
K 

1.58 ×
10− 14 

6.61 ×
10− 14 

1.91 ×
10− 10 

1.88 ×
10− 10 

1.88 ×
10− 10 

1300 
3.37 ×
10− 12 

1.42 ×
10–11 

1.48 ×
10− 09 

1.27 ×
10− 09 

1.19 ×
10− 09 

1600 9.15 ×
10− 11 

4.02 ×
10− 10 

5.71 ×
10− 09 

5.30 ×
10− 09 

4.93 ×
10− 09 

Interstitial 

1000 
3.47 ×
10− 13 

7.58 ×
10–13 

2.65 ×
10− 13 

6.13 ×
10− 12 

6.66 ×
10− 11 

1300 
1.39 ×
10− 12 

3.62 ×
10–12 

1.18 ×
10− 12 

1.39 ×
10− 11 

8.44 ×
10− 11 

1600 3.83 ×
10− 12 

7.86 ×
10–12 

3.96 ×
10− 12 

2.46 ×
10− 11 

1.01 ×
10− 10  
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GPa, see supplementary information) results with some experimental 
measures of Mg self-diffusion at 0 GPa. We only plotted results for ex-
periments buffered with MgO because enstatite has been observed to 
increase Mg diffusion rates by nearly 1 order of magnitude (Jollands 
et al., 2020) and thus involves more complex effects as discussed above. 
For Chakraborty et al., 1994 we plotted the results without buffer as the 
SiO2 activity of these experiments is likely controlled by MgO (Jollands 
et al., 2020). In the [001] direction our results are similar to those of 
Jollands et al., 2020. The absolute value of our results, however, is 
somewhat unreliable as it is largely dependent on the choice of V0

exp and 
thus the pressure correction. This is shown in Fig. S4 where a larger (− 5 
GPa) pressure correction was applied and we find diffusion rates in the 
[001] direction very similar to those of Chakraborty et al., 1994. The 
results presented in Fig. 5 use what we consider the most reliable 
pressure correction. Regardless our calculated [001] diffusion lies in the 
experimental range. In the [100] and [010] direction our results are 
within the experimental scatter of Andersson et al. (1989) but not that of 
Jollands et al., 2020 and with the alternative correction our results lie 
within those of Chakraborty et al., 1994 for the [010] but not the [100] 
direction. 

The experimental results and our theoretical results have some 
considerable differences from each other. While partly this is due to self- 
diffusion experiments being very difficult there is another possible 
cause. The most likely cause of these discrepancies is the presence of 
different extrinsic defects across different experimental samples. 
Different extrinsic defects, even if they do not diffuse themselves, could 
vary the Nvac and NInt terms in Eq. 4 and thus vary the diffusion rate. 
Such a variation would only have a very small effect on the experi-
mentally determined activation energy unless the extrinsic defects were 

themselves produced thermally. Traditional measures of crystal purity 
are not adequate to accurately judge this effect as the key parameter is 
not so much the presence of different extrinsic defects but how these 
defects affect the intrinsic defects on a sub ppb level. Our model only 
considers intrinsic defects and thus will always be expected to have some 
difference with real crystals. To fully address this a large thermodynamic 
model needs to be built which is beyond the scope of this work but 
different experiments and our results are all within an order of magni-
tude of each other suggesting that primarily Mg diffusion in forsterite 
operates through intrinsic defects with extrinsic defects only leading to 
mild secondary effects. 

Our ability to replicate the results of Jollands et al. (2020) suggests 
that our model for diffusion in forsterite accurately captures the situa-
tion in these experiments. Critically if interstitials are not included in our 
model while [001] diffusion can be modelled accurately, [100] and 
[010] diffusion would be orders of magnitude slower than has been 
observed in any experiment. 

We next consider the effect of pressure. Fig. 6 shows our [001] 
diffusion rates (with values listed in Table S11) as a function of pressure. 
Notably we find a larger pressure derivative for intrinsic diffusion co-
efficients than has been seen in the literature (Chakraborty et al., 1994; 
Fei et al., 2018). Our activation volumes are 6.69 cm3/mol at 1000 K, 
7.51 cm3/mol at 1300 K and 7.84 cm3/mol at 1600 K. The pressure 
dependence of diffusion is strongly controlled in our calculations by the 
pressure dependence of defect concentration (Table 1) with little effect 
of the defect mobility (Table 3). Small changes to the formation energy 
of the Frenkel defect can have a strong effect on this dependence. If the 
number of defects is held constant across pressure then the calculated 
activation volumes are much smaller, ranging from − 0.30 to 0.15 cm3/ 
mol. These lower activation volumes are of relevance for cases where 
pressure does not alter the number of vacancies. For example, in an 
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information) determined by fitting between our pressure corrected values (the 
same plot with a 5 GPa pressure correction is shown in Fig. S4). Rates have been 
separated by diffusion direction (colour- red = [001], green = [010], blue =
[100]) and by the work they come from (symbol-see below). The lines represent 
our own calculations. In this collection we have excluded work in olivine and 
work buffered by enstatite. The mark for Fei et al. (2018) was determined by 
our own extrapolation of the high temperature data across different pressures, 
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al . 1981 triangles, Jollands et al., 2020 squares, Chakraborty et al., 1994 cir-
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extrinsic regime (where vacancies form to charge balance impurities) 
the vacancy concentration is not temperature or pressure dependent and 
only the direct effect of pressure on vacancy mobility is important. In a 
real crystal with few impurities there will be a balance between the 
number of vacancies formed intrinsically via Frenkel pairs and the 
number of vacancies associated with impurities. In such a case, the 
effective activation volume will fall between our high and low values as 
is observed experimentally. This will also be the case when the pressure 
upon a crystal is modified during an experiment but the crystal is not 
given time to reequilibrate its defect concentration. 

With increasing extrinsic vacancies the anisotropy of diffusion also 
likely increases as discussed below. Thus we predict that a decreasing 
activation volume of diffusion (going from our high range to our low 
range) should be linked to an increasing anisotropy of diffusion (with 
[001] being the fast direction). A test of our predictions would be 
whether these 2 measurable parameters are actually interlinked. 

4. Discussion 

4.1. Anisotropic intrinsic diffusion 

One of the most notable features of our results is that Mg diffusion 
can be strongly anisotropic. Fig. 7 shows the anisotropy of Mg diffusion 
as a function of pressure. We find that anisotropy decreases with pres-
sure due to the increasing importance of interstitial diffusion, which is 
less anisotropic, while temperature has little effect on anisotropy. At 
1600 K and 0 GPa (corrected) we find the ratio of diffusion in different 
directions [001]:[100] to be ~15 and [001]:[010] to ~6. Experimental 
measures of these ratios yield lower anisotropy with [001]:[100] having 
values of ~3 (Chakraborty et al., 1994), 3.5–7 (Jollands et al., 2020) and 
7–40 (Andersson, 1987), and [001]:[010] having values of 4.5 (Chak-
raborty et al., 1994), 1.5–3.5 (Jollands et al., 2020) and 5–13 (Ander-
sson, 1987). These experimental measurements were all at ambient 
pressure. Our calculated values for diffusional anisotropy are somewhat 
larger than has been seen experimentally. Our pressure correction 
method has not been calibrated for defect production and mobility and if 
the pressure correction was somewhat larger our anisotropies would 

approach the experimental range. One possible way to reduce the 
anisotropy would be to increase the ratio of Mg interstitials to Mg va-
cancies which could occur in the presence of extrinsic sources of Mg 
interstitials or impurities that fill Mg vacancies. Alternatively, there 
could be some macroscopic effect (e.g. from grain boundaries or dislo-
cations) that reduces diffusional anisotropy in real crystals that we do 
not model. 

Another issue is the order of diffusion rates in the different di-
rections. Our calculations and some experiments (Andersson et al., 
1989; Jollands et al., 2020) predict diffusion rates to be ordered [001] >
[010] > [100] while Chakraborty et al. (1994) measured diffusion rates 
to be [001] > [100] > [010]. We do not have a source for this 
discrepancy as in our model both [010] and [100] diffusion are almost 
entirely controlled by interstitial I and J hops and thus their relative rate 
is fixed by the geometry of the crystal and not by any variable param-
eter. Temperature has an effect on the ratio of [100]:[010] diffusion but, 
as shown in Fig. 7, this is small and [010] diffusion is predicted to be 
always faster than [100] diffusion. We have no hops that could selec-
tively increase the [100] diffusion rate that are even close to being 
viable. Thus the presence of evidence suggesting that diffusion along 
[100] can sometimes be faster than diffusion along [010] suggests some 
kind of atomistic or macroscopic effect that is not being modelled in our 
system. 

4.2. Anisotropy changes in the upper mantle 

While the dependence of anisotropy on pressure is large this prob-
ably has little importance in the upper mantle. After applying pressure 
corrections a 0–10 GPa range in the upper mantle would be equivalent to 
~4–16 GPa in our pressure scales. The largest changes in anisotropy 
come at the lowest pressures and so across the pressure range of the 
upper mantle, changes in Mg diffusional anisotropy with depth will 
typically be up to an order of magnitude except at the coldest temper-
atures (1000K) where this could reach 1.5 orders of magnitude. These 
changes are likely to be too small to have any major effects on mantle 
rheology that change with depth except at the very top of the upper 
mantle where temperatures are low. 

4.3. The effect of extrinsic vacancies 

Other substances such as iron (Chakraborty, 2010; Dohmen et al., 
2007; Dohmen and Chakraborty, 2007) or water (Fei et al., 2018) that 
are in olivine can substantially change the diffusion rate. Without sub-
stantial changes to the diffusion mechanism there are two ways this can 
happen 1) through modifying the concentration of defects (NVac, NInt) or 
2) through modifying the mobility (DMg

Vac, DMg
Int) of defects. All sub-

stances that modify the diffusion rate likely do the former while only 
some do the latter. Iron can increase the number of Mg vacancies 
through the following reaction (Dohmen and Chakraborty, 2007; 
Chakraborty, 2010): 

R8) 6FeMg
X + SiO2 + O2(g) → 2VMg

′ ′ + 4FeMg
• + Fe2SiO4 

Whereas water can produce (2H)Mg
X vacancies. R8 has been invoked 

as the controlling reaction in Mg diffusion at intermediate temperatures 
in what is known as the Transition Metal Extrinsic Domain (TAMED) 
(Chakraborty, 2010). In the Fe-Mg interdiffusion case the mobility of 
vacancies is also modified as they include Fe self-diffusion coefficients. 
In this and other cases we expect the change in the concentrations of 
vacancies to generally outweigh the changes to the mobility of vacancies 
due to the small number of intrinsic defects produced by the Frenkel 
reaction. Extrinsic Mg vacancy concentrations can be many orders of 
magnitude higher than our predicted intrinsic Mg vacancy concentra-
tion in many systems. Thus the prime reason that various contaminants 
cause an increase in Mg diffusion rates is likely to be the production of 
more Mg vacancies. Critically Mg vacancies can be produced in this way 
but producing extrinsic Mg interstitials is much more difficult. This 
means that extrinsic defects are likely to produce a strong imbalance in 
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the Mg vacancy vs Mg interstitial ratio. 
Producing Mg vacancies in excess of Mg interstitials would cause 

strong changes to the anisotropy of diffusion. This effect is explored in 
Fig. 8 where we plot how increasing the diffusion rate solely by adding 
Mg vacancies changes the anisotropy of diffusion. We are not aware of 
any studies on diffusional anisotropy in forsterite with large amounts of 
defects so instead we use our model to predict the anisotropy from the 
measured diffusion rates. We do this by assuming two things: 1) any 
change in Mg diffusion rate from the Mg self diffusion rate (Dsd) in Eq. 4 
is due to extrinsic Mg vacancies and 2) that extrinsic Mg vacancies do 
not bind to any charge balancing impurities that produce them (DMg

Vac is 
identical for intrinsic and extrinsic Mg vacancies). Then we use Eq. 9: 

Dx = Dsd +DVac
Mg NVacex (9)  

where Dx is the target diffusion rate, Dsd is determined from Eq. 4 and 
Nvacex is the concentration of extrinsic Mg vacancies that is varied until 
Dx matches the desired value. Using this framework we explore the ef-
fects of two defective elements Fe (1–20%) (Dohmen and Chakraborty 
(2007) and water (1–100 ppm) (Fei et al., 2018). At 1300 K we predict 
these defects to increase diffusional anisotropy (compared to perfect 
forsterite) by 2–5 times at 5–10 GPa (uncorrected). As temperature in-
creases this effect decreases such that by 1600 K iron and water increase 
diffusional anisotropy by less than 1.2 times. Thus at the high pressures 
and temperatures of the upper mantle the measured experimental 
diffusion rates of both water and iron containing forsterite can be 
matched by adding in extrinsic Mg defects without large increases in 
diffusional anisotropy. Thus for these compositional ranges we do not 
expect extrinsic vacancies to lead to significant anisotropy for Mg 
diffusion in the upper mantle. With larger increases in the Mg diffusion 
rate through larger concentrations of extrinsic defects or at colder 
temperatures we do predict that there will be a large increase in diffu-
sional anisotropy and that this increase will be accompanied by a 
decrease in activation volume of diffusion. Thus we predict that diffu-
sion rate, diffusion anisotropy and activation volume of diffusion are all 
correlated to the concentration of extrinsic vacancies. 

5. Conclusions 

We find that the anisotropy of Mg diffusion in forsterite is heavily 
dependent upon conditions with pressure strongly decreasing the 
anisotropy while temperature only weakly affects it. In the presence of 
extrinsic vacancies temperature strongly controls diffusional anisotropy 
with samples at low temperatures having potentially extremely high 
diffusional anisotropy (>500 times faster in the [001] direction). This 
has strong implications for diffusion chronometry and conductivity (and 
other properties dependant on Mg diffusion rates) which need to include 
corrections for pressure, temperature and impurity content alongside 
orientation to account for this effect. 

In this work we outline a simple atomistic model which is able to 
replicate measured experimental diffusion rates along the [001] direc-
tion. We find that to explain experimental diffusion rates in the [100] 
and [010] directions interstitial diffusion is required alongside vacancy 
diffusion. 

The next step is to consider how other components could affect this 
diffusion such as is shown by our simple extrinsic vacancy model in 
Fig. 8. Additional components can either affect the number and balance 
of Mg vacancies and interstitials or they can affect the intrinsic diffusion 
of Mg vacancies and interstitials. The former effect can be considered by 
examining the energetics of defect forming reactions and how contam-
inants change these energetics- particularly through changing the 
configurational entropy balances- and the latter can be considered for 
contaminants that directly change Mg vacancies or interstitials by 
interacting with them. 
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