闻静,张羽旭,温汉捷,等.特殊地质样品中钼同位素分析的化学前处理方法研究[J]. 岩矿测试 2020 39(1):30-40. WEN Jing, ZHANG Yu - xu, WEN Han - jie, et al. Research on the Chemical Pretreatment for Mo Isotope Analysis of Special Geological Samples [J]. Rock and Mineral Analysis 2020 39(1):30-40. 【DOI: 10.15898/j. cnki.11-2131/td. 201906190087】

特殊地质样品中钼同位素分析的化学前处理方法研究

闻静¹²,张羽旭^{1*},温汉捷¹²,朱传威¹,樊海峰¹

(1. 中国科学院地球化学研究所, 矿床地球化学国家重点实验室, 贵州 贵阳 550081;

2. 中国科学院大学,北京 100049)

摘要: Mo 同位素的研究在地学领域应用广泛 ,它可以示踪 Mo 的全球循环、古海洋氧化还原条件、成矿过程、 天体演化过程等。应用多接收电感耦合等离子体质谱法(MC – ICP – MS)分析 Mo 同位素比值前需对样品 进行分离纯化 ,以富集 Mo 和去除 Zr、Ru、Fe、Mn 等干扰元素。处理某些 Fe 含量特别高且 Ca 含量也高的特 殊地质样品(如含大量黄铁矿的钙质泥岩、钙质页岩等) 若根据传统的阴阳离子交换树脂双柱法 ,需多次使 用阳离子交换树脂分离 Fe ,步骤较繁琐且 Mo 回收率也会降低 ,而根据传统的阴离子交换树脂单柱法 ,使用 1mol/L 氢氟酸 – 0. 5mol/L 盐酸介质会产生较多 CaF₂沉淀影响分离纯化效果。针对此类特殊地质样品 ,本 实验使用同一阴离子树脂柱(AG1 – X8 ,100 ~ 200 目) 对样品进行两次淋洗 ,第一次使用 6mol/L 盐酸 ,第二 次使用 1mol/L 氢氟酸 – 0. 1mol/L 盐酸和 6mol/L 盐酸。结果表明 Mo 的回收率 > 96% ,干扰元素的去除效 果好 ,尤其是 Ru 的去除率接近 100% ,比原方法提高了约 12%。对实际样品进行实验的结果也显示 ,Mo 的 回收率和干扰元素的去除都符合要求 $\delta^{98/95}$ Mo 测定值与文献报道值一致。改进后的阴离子交换树脂单柱 – 二次淋洗法适用于 Fe、Ca 含量较高的特殊样品 降低了分析成本 ,也适用于绝大多数地质样品。

关键词: Mo 同位素; 离子交换树脂法; 化学前处理; 高铁高钙地质样品; MC – ICP – MS 要点:

(1) 改进了 Mo 同位素分析的分离纯化方法 适用于高 Fe、高 Ca 的特殊地质样品 也适用于多数常规地质样品。

(2) 实验使用一种树脂(AG1-X8) 降低了分析成本和减小了工作量。

(3) Ru的去除率将近100% 比传统方法提高约12%。

中图分类号: 0628; 0657.63 文献标识码: A

镁、铁、铜、锌、钼、锂等非传统稳定同位素的研 究是地球化学学科中新兴领域,经过二十余年的发 展,已经涌现出丰富成果,其在古环境、地幔交代与 岩浆作用、成矿作用、环境变化、天体化学等方面都 取得了很好的进展^[1]。其中,钼作为一种氧化还原 敏感型元素,其同位素分馏明显受氧化还原条件的 控制,钼同位素对指示现代水圈中的 Mo 地球化学 循环^[2-7]、古环境^[8-17]、古气候^[18-26]和行星演化过 程^[27-30]有着特别的意义。另外,钼同位素对示踪成 矿过程以及成矿物质来源也有较大的潜力^[31-37]。 非传统稳定同位素的研究中,在理解目标元素 地球化学性质的基础上,需开展建立分析方法和国 际标准、明确各储库端元中的分布、研究分馏机理以 及将该同位素体系应用于不同领域等一系列工 作^[38]。其中,分析方法包括化学预处理和仪器分析 两部分。化学预处理通常采用离子交换树脂法,离 子交换树脂法是根据不同组分的离子对固定离子基 团的亲和力差别来达到分离的目的,淋洗液的介质、 浓度、体积以及树脂柱的高度和树脂流动相的流速 对分离的效果都有影响^[39]。分离的目的是富集目

通信作者: 张羽旭 博士 副研究员 从事矿床地球化学和非传统稳定同位素研究。E – mail: zhangyuxu98@163.com。

-30 -

收稿日期: 2019-06-19; 修回日期: 2019-08-01; 接受日期: 2019-10-21

基金项目: 国家自然科学基金项目(41573007 41503011)

作者简介: 闻静 硕士研究生 地质工程专业。E – mail: wenjing@ mail.gyig.ac.cn。

标元素和去除干扰元素,使干扰元素含量达到可以 忽略的范围,降低基质效应,提高质谱分析的准确 度。仪器分析现在常用的是多接收电感耦合等离子 体质谱法(MC – ICP – MS),MC – ICP – MS 相对于 传统的热电离质谱(TIMS),在保证精确度的前提 下,有电离范围大、分馏行为稳定等优点,大大扩大 了可测试元素的范围^[40]。

在 Mo 同位素的分析测试中,目前文献报道的 化学前处理方法主要有阴阳离子交换树脂双柱 法^[14,18,41-46]和阴离子交换树脂单柱法^[47-50]。在实 际操作中 即使对相同的目标元素 不同类型的地质 样品由于基质不同通常需要不同的前处理方法。随 着 Mo 同位素研究领域的不断拓展和深入,需对更 多不同类型的地质样品进行化学预处理。Ca 和 Fe 是主要的造岩和成矿元素,在地质样品中含量通常 较高。对 Fe 和 Ca 含量都高的特殊地质样品(如含 大量黄铁矿的钙质泥岩、钙质页岩等)如果用阴阳 离子交换树脂双柱法进行分离纯化 需多次使用阳 离子交换树脂分离 Fe 操作步骤较繁琐且 Mo 回收 率也会有所降低;如果用阴离子交换树脂单柱法进 行分离纯化,由于其使用1mol/L氢氟酸-0.5mol/L 盐酸介质 ,会产生大量 CaF2 沉淀从而影响分离纯化 的效果。本实验针对高 Fe 含量和高 Ca 含量的特殊 地质样品,对前人的方法^[43,48]进行改进,使用同一 阴离子树脂柱(AG1-X8,100~200目) 对样品先后 进行两次不同酸介质的淋洗,第一次使用 6mol/L 盐 酸去除 Ca、Zr 等大量基质元素 ,第二次使用 1mol/L 氢氟酸 – 0.1mol/L 盐酸和 6mol/L 盐酸去除 Fe 和 其他少量残留的元素,建立了适合这类特殊地质样 品的化学前处理方法——阴离子交换树脂单柱 - 二 次淋洗法。经过实际样品验证,应用该方法处理后 的溶液 其 Mo 的回收率和干扰元素的去除率均符 合 MC - ICP - MS(用双稀释剂法校正质量分馏) 测 定要求。

1 实验部分

1.1 仪器与工作参数

Vista MPX 型电感耦合等离子体发射光谱仪 (美国Varian 公司)。仪器工作条件:射频(RF)功率 1.20kW,等离子气流速 15.0L/min,辅助气流速 1.50L/min,雾化器压力 240kPa,一次读数时间 5s, 仪器稳定延时 15s,进样延时 30s,泵速 15r/min,清 洗时间 10s,读数次数为5次。分析线波长: Fe(238.204nm),Mn(257.610nm)。 ELAN DRC - e 型电感耦合等离子体质谱仪 (美国PerkinElmer 公司)。仪器工作条件: 十字交叉 雾化器 Scott 双通道雾室 ,2mm 石英进样管,射频 (RF)功率 1500W。检出限:⁹Be < 6. 0ng/mL,⁵⁹Co <1.0ng/L,¹¹⁵In < 1. 0ng/L,²³⁸U < 1. 0ng/L(标准模 式),⁸⁰Se < 8. 0ng/L(DRC 模式)。

Neptune plus 多接收电感耦合等离子体质谱仪 (MC – ICP – MS)。仪器工作条件:进样量 50 μ L/min 样品和标准均用 0.15mol/L 的硝酸作为介 质 测定中均用 3 个 blocks (每个 blocks 包含 15 个 cycles);杯的配置为 L3 (⁹⁵Mo)、L2 (⁹⁶Mo)、L1 (⁹⁷Mo)、C(⁹⁸Mo)、H1(⁹⁹Ru)、H2(¹⁰⁰Mo);用双稀释 剂法(⁹⁷Mo – ¹⁰⁰Mo)校正质量分馏,用 NIST3134 Mo 标准(lot#891307)为 Mo 同位素标准。

1.2 标准溶液和主要试剂

Mo 标准溶液为 JMC (Stock # 35758, Lot # 013989C,浓度: 1000 ± 3μg/mL)。Mo 标准工作液: 取 Mo 标准溶液 2mL 配成 100mL 5%的硝酸溶液 (浓度: 20μg/mL)。Ru 标准溶液为 JMC(Stock # 35767, Lot#013564SS,浓度: 1000 ± 3 μg/mL)。Ru 标准工作液:取 Ru 标准溶液 2mL 配成 100mL 20% 的盐酸溶液(浓度: 20μg/mL)。

阴离子交换树脂: Dowex AG1 – X8(100 ~ 200 目)。离子交换柱规格:内径 0.6cm,长 20cm,材料 为聚四氟乙烯。盐酸、硝酸和氢氟酸均为亚沸二次 蒸馏,实验用水为超纯水。

1.3 样品及相关处理

Mo 工作液的配制过程中,黄铁矿保证样品中较高的 Fe 含量,沉积物保证较高的 Ca 含量。在条件实验中,分离纯化的最后一步需分多次接收样品,测试每份淋洗液的 Mo 浓度,得到不同酸介质和淋洗液体积的 Mo 元素回收率。所以,在样品中加入 Mo标准工作液是为了确保每份淋洗液的 Mo 浓度都不低于仪器检出限。基于先前的方法及实验结果,本次实验预期是想提高 Ru 的去除率,且一般地质样品中 Ru 含量较低,所以加入 Ru 标准工作液提高样品中 Ru 含量。

Mo 工作液的配制过程为:称取 0.3g 黄铁矿、 1.0g水系沉积物国家标准物质 GBW07303 和 1.0g 水系沉积物国家标准物质 GBW07305 放入 50mL 聚 四氟乙烯烧杯中,加入 20mL 50% 王水,再加入 2mL Mo 标准工作液和 2mL Ru 标准工作液。置于电热 板(120℃) 上加热 样品溶解后离心取上清液,蒸干 酸液 配成 15mL 6mol/L 盐酸溶液。

-31 -

样品的化学前处理工作在中国科学院地球化学 研究所矿床地球化学国家重点实验室的超净实验室 完成,室内洁净度为1000级,超净工作台内为 100级。

1.4 化学分离与纯化

取2份 Mo标准工作液,每份5mL,先后按表1 中的两种方法进行分离纯化,其中方法2是在方法 1的基础上的进一步优化。两种方法都是使用5mL AG1-X8 树脂进行树脂柱填充。

方法 1(使用盐酸、硝酸收集 Mo):在样品引入 前分别用 3mol/L 硝酸、超纯水、1mol/L 盐酸洗涤, 然后用 6mol/L 盐酸平衡树脂,样品引入后再用 6mol/L盐酸洗涤,用 30mL 1mol/L 盐酸和 30mL 3mol/L 硝酸接收样品;将收集的样品蒸干配成 5mL 1mol/L 氢氟酸 - 0. 1mol/L 盐酸的溶液;用超纯水、 0. 1mol/L 盐酸洗涤树脂柱,用 1mol/L 氢氟酸 - 0. 1 mol/L 盐酸平衡树脂 样品引入后用 1mol/L 氢氟酸 - 0. 1mol/L 盐酸和 6mol/L 盐酸洗涤,最后用 30mL 1mol/L 盐酸和 30mL 3mol/L 硝酸接收样品。

方法 2(使用盐酸收集 Mo):使用 40mL 1mol/L 盐酸接收样品,收集 Mo 的过程简化,也简化了样品 引入前的洗涤过程。

表1 Mo 的分离纯化操作流程

Table 1 Elution sequence of the two - step single - column separation for Mo

步骤	材料和试剂	用量(mL)	操作步骤详细说明			
装树脂	AG1 – X8 树脂	5	_			
洗涤	3mol/L 硝酸	30	-			
洗涤	水	15	-			
洗涤	1mol/L 盐酸	30	-			
平衡	6mol/L 盐酸	15	-			
样品引入	样品(介质 6mol/L 盐酸)	5	-			
洗涤	6mol/L 盐酸	10 + 10 + 10	-			
收集 Mo	1mol/L 盐酸	30				
收集 Mo	3mol/L 硝酸	30	符区 00 mL 冶成收朱石力们怕大儿杀召里			
洗涤	水	10 + 10 + 10	为第二次过柱做准备			
洗涤	0.1mol/L 盐酸	10	为第二次过柱做准备			
平衡	1mol/L 氢氟酸 – 0.1mol/L 盐酸	15	-			
样品引入	样品(介质 1 mol/L 氢氟酸 – 0. 1 mol/L 盐酸)	5	第二次过柱			
洗涤	1mol/L 氢氟酸 – 0.1mol/L 盐酸	20	-			
洗涤	6mol/L 盐酸	10 + 10	-			
收集 Mo	1mol/L 盐酸	30	每 5mL 收集为一件样品, 共 6 件样品, 分析每件样品的相关元素含量			
收集 Mo	3mol/L 硝酸	30	每 5mL 收集为一件样品, 共 6 件样品, 分析每件样品的相关元素含量			
步骤	材料和试剂	用量(mL)	操作步骤详细说明			
装树脂	AG1 – X8 树脂	5	_			
洗涤	水	15	-			
洗涤	1mol/L 盐酸	30	-			
平衡	6mol/L 盐酸	15	-			
样品引入	样品(介质 6mol/L 盐酸)	5	-			
洗涤	6mol/L 盐酸	10 + 10 + 10	_			

收集 Mo 1mol/L 盐酸 40 将这 40mL 溶液收集后分析相关元素含量 10 + 10 + 10为第二次过柱做准备 洗涤 水 0.1mol/L 盐酸 10 为第二次过柱做准备 洗涤 平衡 1mol/L 氢氟酸 -0.1mol/L 盐酸 15 _ 样品引入 样品(介质 1 mol/L 氢氟酸 - 0.1 mol/L 盐酸) 5 第二次过柱 洗涤 1mol/L 氢氟酸 -0.1mol/L 盐酸 20 洗涤 6mol/L 盐酸 10 + 101mol/L 盐酸 40 每5mL 收集为一件样品,共8件样品,分析每件样品的相关元素含量 收集 Mo

-32 -

2 结果与讨论

2.1 方法1的实验思路及主要元素分离纯化效果 MC - ICP - MS 测试同位素组成的过程中,主要 干扰有同质异位素干扰、双电荷离子干扰以及基质

效应。 Mo 有 7 个 稳 定 同 位 素,分 别 为:⁹² Mo (14.84%)、⁹⁴ Mo(9.25%)、⁹⁵ Mo(15.92%)、⁹⁶ Mo (16.68%)、⁹⁷ Mo(9.55%)、⁹⁸ Mo(24.13%)和¹⁰⁰ Mo (9.63%)。 Mo 同位素测试过程中主要的干扰元素 为 Zr、Ru、Fe 和 Mn 以及其他基质元素(与 Ar 结合 形成多原子的干扰离子),各类潜在的干扰离子总 结见表 2。

针对 Fe 含量特别高且含 Ca 的特殊地质样品, 阴阳离子交换树脂双柱法^[43]在阴离子交换树脂这 一步去除了除 Fe 以外的大部分基质元素 而要去除 高含量的 Fe ,需多次过阳离子交换树脂 ,操作步骤 较繁琐且 Mo 回收率也会有所降低; 阴离子交换树 脂单柱法^[48] 使用 1mol/L 氢氟酸 - 0.5mol/L 盐酸 对去除 Fe 有很好的效果,适用于 Ca 含量极低的样 品(如黑色页岩),但由于直接使用 1mol/L 氢氟酸 -0.5mol/L 盐酸上样和洗脱,对于 Ca 含量较高的 样品 会产生大量 CaF, 沉淀从而影响分离纯化效 果。针对这些 Fe 含量特别高且含 Ca 的特殊地质样 品 已有的分离纯化方法均有不足之处 还有改进和 完善的空间。本研究将对这两种方法进行取长补短 和优化组合 得到一种针对该类特殊地质样品的分 离纯化方法,使用同一阴离子树脂柱(AG1-X8, 100~200目) 对样品先后进行两次不同酸介质的洗 脱,第一次使用 6mol/L 盐酸,去除 Ca、Zr 等大部分 基质元素 ,第二次使用 1 mol/L 氢氟酸 - 0.1 mol/L盐 酸和 6mol/L 盐酸 去除 Fe 和其他少量残留的元素。

按表 1 中方法 1(使用盐酸、硝酸收集 Mo)的实验操作步骤的结果见表 3 和图 1a。第一次经阴离子交换树脂淋洗后,Mo、Zr、Ru、Fe、Mn 的回收率分别为 97.6%、3.69%、12.2%、98.2%,0.42%。Ru

的去除效果较差,Fe则几乎没有被去除。第二次经 阴离子交换树脂淋洗后,Mo、Zr、Ru、Fe、Mn的总回 收率分别为96.7%、0、13.4%、0、0.22%(其中,盐 酸收集液中 Mo、Zr、Ru、Fe、Mn 的回收率分别为 93.9%、0、1.65%、0、0.20%;硝酸收集液中 Mo、Zr、 Ru、Fe、Mn 的回收率分别为 2.78%、0、11.7%、0、 0.02%)。

2.2 酸介质的影响

在 1mol/L 氢氟酸与低浓度盐酸的介质中, Mo(VI) 在阴离子树脂与介质中的分配系数 [当达到 吸附平衡时每千克干树脂中吸附的 Mo(VI) 总量与 1000mL 平衡液中 Mo(VI) 总量的比值]与盐酸的浓 度相关,分配系数随着盐酸的浓度变小而增大^[51]。 李津等^[48]用 1mol/L 氢氟酸 – 0.5mol/L 盐酸介质 取得了较好的效果,Mo 回收率达到 99.3% ~ 101.7%,本次实验中使用 1mol/L 氢氟酸 – 0.1mol/L盐酸介质也取得了较好的 Mo 回收率 (总和回收率 96.7%,单次回收率 99.1%),这表明 盐酸与氢氟酸的混合酸介质,对去除一些基质元素 有很好的效果,例如 U^[51],且在一定范围内盐酸的 浓度越低 Mo(VI) 在阴离子树脂与介质中的分配系 数越大,但当盐酸浓度低于阈值后,其浓度变化对 Mo 回收率的影响是可以忽略的。

在第二次阴离子交换树脂淋洗过程中,硝酸收 集液中 Mo 的回收率为 2.78%,但 Ru 的回收率为 11.7%;而盐酸收集液中 Mo 的回收率为93.9%,Ru 的回收率为1.65%。Ru 去除效果不太理想的主要 原因是使用了硝酸收集 Mo,在硝酸介质中 Ru 易与 树脂固定相分离而被淋洗下来。

2.3 分离纯化方法的优化

根据 Wen 等^[52]的报道,阴离子交换树脂会对 Mo 同位素产生较大分馏,但当经过阴离子交换树脂 后的 Mo 回收率达到 91% 以上,则由阴离子交换树 脂导致的Mo同位素分馏可以忽略,所以方法1(使

表 2 质谱分析 Mo 同位素组成过程中潜在的干扰离子

Table 2 Potential species interfering Mo isotope measured by MC - ICP - MS

被干扰核素	干扰离子(多原子)	干扰离子(单原子)
⁹² Mo	$^{54}{\rm Fe}^{38}{\rm Ar}^{+}$, $^{56}{\rm Fe}^{36}{\rm Ar}^{+}$, $^{54}{\rm Cr}^{38}{\rm Ar}^{+}$, $^{52}{\rm Cr}^{40}{\rm Ar}^{+}$	$^{92}{\rm Zr}$, $^{184}{\rm W}^{+}$, $^{184}{\rm Os}^{+}$ +
⁹⁴ Mo	$^{58}{\rm Fe}^{36}{\rm Ar}^{+}$, $^{56}{\rm Fe}^{38}{\rm Ar}^{+}$, $^{54}{\rm Fe}^{40}{\rm Ar}^{+}$, $^{58}{\rm Ni}^{36}{\rm Ar}^{+}$, $^{54}{\rm Cr}^{40}{\rm Ar}^{+}$	⁹⁴ Zr , ¹⁸⁸ Os ⁺ ⁺
⁹⁵ Mo	$^{57}{\rm Fe}^{38}{\rm Ar}^{+}$, $^{55}{\rm Mn}^{40}{\rm Ar}^{+}$, $^{59}{\rm Co}^{36}{\rm Ar}^{+}$	¹⁹⁰ Os ^{+ +} , ¹⁹⁰ Pt ^{+ +}
⁹⁶ Mo	$^{56}{\rm Fe}^{40}{\rm Ar}^{+}$, $^{58}{\rm Fe}^{38}{\rm Ar}^{+}$, $^{58}{\rm Ni}^{38}{\rm Ar}^{+}$, $^{60}{\rm Ni}^{36}{\rm Ar}^{+}$	$^{96}\mathrm{Zr}$, $^{96}\mathrm{Ru}$, $^{192}\mathrm{Os}^{++}$, $^{192}\mathrm{Pt}^{++}$
⁹⁷ Mo	$^{57}{ m Fe}^{40}{ m Ar}^{+}$, $^{59}{ m Co}^{38}{ m Ar}^{+}$, $^{61}{ m Ni}^{36}{ m Ar}^{+}$	¹⁹⁴ Pt ^{+ +}
⁹⁸ Mo	$^{58}{\rm Fe}^{40}{\rm Ar}^{+}$, $^{58}{\rm Ni}^{40}{\rm Ar}^{+}$, $^{60}{\rm Ni}^{38}{\rm Ar}^{+}$, $^{62}{\rm Ni}^{36}{\rm Ar}^{+}$	$^{98}{ m Ru}$, $^{196}{ m Pt}^{++}$, $^{196}{ m Hg}^{++}$
¹⁰⁰ Mo	$^{64}\mathrm{Ni}^{36}\mathrm{Ar}^{+}$, $^{64}\mathrm{Zn}^{36}\mathrm{Ar}^{+}$, $^{62}\mathrm{Ni}^{38}\mathrm{Ar}^{+}$, $^{60}\mathrm{Ni}^{40}\mathrm{Ar}$	¹⁰⁰ Ru ⁺ , ²⁰⁰ Hg ^{+ +}

— 33 —

表 3 通过离子交换树脂后的洗涤(收集)液的分析结果(方法 1)

Table 3 Analysis of the sample purified by the anion resin exchange column (Method 1)

项目	Mo(µg)	Zr(µg)	Ru(µg)	Fe(µg)	Mn(µg)
初始样品	32.9	6.83	11.4	50700	364
60mL Mo 收集液(第一次过柱)	32.1	0.252	1.39	49800	1.54
第一次过柱的回收率(%)	97.6	3.69	12.2	98.2	0.42
样品引入 + 洗涤液(第二次过柱)	0.0626	5.75	0.424	49800	1.54
Mo 收集液①	0.0194	< 0.0005	0.0875	< 0.0005	0.0502
Mo 收集液②	3.41	< 0.0005	0.0182	< 0.0005	0.137
Mo 收集液③	19.6	< 0.0005	0.0235	< 0.0005	0.124
Mo 收集液④	6.34	< 0.0005	0.0203	< 0.0005	0.132
Mo 收集液⑤	1.20	< 0.0005	0.0213	< 0.0005	0.141
Mo 收集液⑥	0.357	< 0.0005	0.0176	< 0.0005	0.151
盐酸收集液的总量	30.9	-	0.188	-	0.735
盐酸收集液的回收率(相对初始样品,%)	93.9	0	1.65	0	0.20
Mo 收集液⑦	0.163	< 0.0005	0.0227	< 0.0005	0.0774
Mo 收集液⑧	0.540	< 0.0005	0.242	< 0.0005	< 0.0005
Mo 收集液⑨	0.108	< 0.0005	0.367	< 0.0005	< 0.0005
Mo 收集液 ^①	0.0527	< 0.0005	0.313	< 0.0005	< 0.0005
Mo 收集液⑪	0.0321	< 0.0005	0.231	< 0.0005	< 0.0005
Mo 收集液⑫	0.0174	< 0.0005	0.158	< 0.0005	< 0.0005
硝酸收集液的总量	0.913	-	1.33	-	0.0774
硝酸收集液的回收率(相对初始样品,%)	2.78	0	11.7	0	0.02
总回收率▲(相对初始样品,%)	96.7	0	13.4	0	0.22

注: Mo 收集液①~Mo 收集液⑥为第二次过柱中依次收集的 5mL 1mol/L 盐酸收集液,分6 次收集,共 30mL 1mol/L 盐酸收集液; Mo 收集液 ⑦~Mo收集液⑫为第二次过柱中依次收集的 5mL 3mol/L 硝酸收集液,分6 次收集,共 30mL 3mol/L 硝酸收集液。总回收率表示第二次过 柱中盐酸收集液与硝酸收集液的总回收率。

用盐酸、硝酸收集 Mo)中阴离子交换树脂第一次淋洗的结果符合 Mo 回收率的要求。实验结果也表明,方法1使用硝酸收集 Mo 会产生约11.7%的 Ru 残留,而 Mo 回收率只提高了2.78%;使用 30mL 盐 酸收集 Mo 只会产生约1.65%的 Ru 残留,Mo 回收 率为93.9%(总和回收率93.9%,单次回收率 96.3%)。考虑到先用盐酸再用硝酸收集 Mo 的方 法中 .硝酸淋洗的 Mo 含量有限 ,但带入了较多的干 扰元素 Ru ,后续实验将硝酸收集 Mo 的步骤去掉 , 通过增加盐酸收集液的用量来提高 Mo 回收率 ,详 细操作步骤见表 1 中方法 2(使用盐酸收集 Mo)。 实验结果见表 4、图 1b 和图 2。

Table 4 Analysis of the sample purified by the anion resin exchange column (Method 2)

	Mo(µg)	Zr(µg)	Ru(µg)	Fe(µg)	Mn(µg)
	33.0	7.15	10.5	50600	357
40mL Mo 收集液(第一次过柱)	32.1	0.281	0.0295	50300	0.230
第一次过柱的回收率(%)	97.3	3.93	0.281	99.4	0.064
样品引入 + 洗涤液(第二次过柱)	-	-	-	-	-
Mo收集液①	0.0043	0.0005	< 0.0005	0.359	0.0013
Mo 收集液②	3.98	0.0027	< 0.0005	0.263	< 0.0005
Mo 收集液③	25.1	0.0077	< 0.0005	0.0551	< 0.0005
Mo 收集液④	2.46	0.0011	< 0.0005	0.265	< 0.0005
Mo 收集液⑤	0.231	0.0007	< 0.0005	0.114	0.0157
Mo 收集液⑥	0.0917	< 0.0005	< 0.0005	0.118	< 0.0005
Mo 收集液⑦	0.0262	< 0.0005	< 0.0005	0.118	< 0.0005
Mo 收集液⑧	0.0165	< 0.0005	< 0.0005	0.049	0.0012
收集液的总量	31.9	0.0127	0	1.34	0.0182
总回收率▲(相对初始样品,%)	96.7	0.178	0	0.003	0.003

注: Mo 收集液① ~ Mo 收集液⑧为第二次过柱中依次收集的 5mL 1mol/L 盐酸收集液 ,分 8 次收集 ,共 40 mL 1mol/L 盐酸收集液。

"▲"总回收率表示第二次过柱中盐酸收集液的总回收率。

— 34 —

表 4 通过离子交换树脂后的洗涤(收集)液的分析结果(方法 2)

图 1 (a) 方法 1 的 Mo 元素淋洗曲线; (b) 方法 2 的 Mo 元素淋洗曲线

Fig. 1 (a) Elution curve of Mo in Method 1; (b) elution curve of Mo in Method 2

从表 4 中可知,优化后的方法 Mo、Zr、Ru、Fe、 Mn 的总回收率分别为 96.7%、0.178%、0、 0.003%、0.003%。Mo 的回收率高,Zr、Ru、Fe、Mn 等干扰元素的去除效果好。从图 2 中可知,工作液 经过预处理纯化、分离之后,除 Nb、Ba、Li、U等几个 元素还有少量残留外(这几个元素不干扰 Mo 同位 素的测定,且原始液中的元素含量较低),其他元素 去除效果良好。方法 2(使用盐酸收集 Mo)——改 进后的阴离子交换树脂单柱 – 二次淋洗法,是本研 究推荐的化学前处理方法。

2.4 改进后的方法的实际应用效果

为了验证本实验的化学前处理方法的可靠性, 选取了实际地质样品进行化学前处理和质谱分析, 分别为黑色页岩、白云岩和水系沉积物。黑色页岩 的有机质含量高并含有较多黄铁矿,且基质复杂,在 离子交换树脂分离纯化过程会出现较明显的 Mo 同 位素分馏现象^[48],且黑色页岩中通常富集一些金 属元素,也会导致这些元素的去除率偏低,如 W^[44];白云岩由于Mo含量较低,分析白云岩中

图 2 Mo 工作液的预处理分离纯化效果(方法 2)

Fig. 2 Outcome of pretreatment for the mixed solution in Method 2

的 Mo 同位素通常要加大称样量,导致一些基质 元素的去除率较低^[44],且 Fe、Ca 含量一般较高。 水系沉积物样品(GBW07303)为标准地质样品, 方便进行 Mo 同位素组成的数据比对,且 Fe、Ca 含量较高。因此,本实验选择了这3种类型的4 件样品来验证采用改进后的阴离子交换树脂单 柱-二次淋洗法的可靠性。

采用改进后的阴离子交换树脂单柱 – 二次淋洗 法处理白云岩、黑色页岩和水系沉积物地质样品,所 得各元素的回收率与先前的阴阳离子交换树脂双柱 法结果^[44]进行比对(图3),可知改进后的方法对Sb、 Zn、Pb 的去除效果要好,但 Ba、Nb、Li 的去除效果稍 差。Mo 回收率和主要干扰元素的去除都符合要求, 除 Ba、Nb、Li 等几个元素还有少量残留外(这几个元 素不干扰 Mo 同位素的测定),其他元素去除效果良 好。说明改进后的方法对实际地质样品也是适用的。

表 5 为实际地质样品应用改进后的阴离子交换 树脂单柱 – 二次淋洗法分离纯化后,用 MC – ICP – MS 对样品 Mo 同位素组成进行分析测试(用双稀释 剂法校正质量分馏)的结果。比较不同性质的各样 品 $\delta^{98/95}$ Mo 测定值与文献报道值,碳质页岩样品的 测定值为 – 0. 21% ± 0. 08% ,文献报道值为 –0. 22% ± 0. 13%; 夹方解石脉的碳质页岩的测定 值为 1. 65% ± 0. 10% ,文献报道值分别为 1. 63% ± 0. 12% 和 1. 63% ± 0. 11%; 白云岩样品的测定值为 1. 30% ± 0. 12% ,文献报道值为 1. 29% ± 0. 14%; 水系沉积物 GBW07303 的测定值为 – 0. 35% ± 0. 10% ,文献报道值为 – 0. 35% ± 0. 10% ,文献报道值为 – 0. 38% ± 0. 16% 可知本 次实验的 $\delta^{98/95}$ Mo 测定值与文献报道值^[14,44]是相符 的 数值的变化范围在误差范围内。

-35 -

图 3 本研究与文献 [44] 的实际样品预处理分离纯化效果 Fig. 3 Outcome of pretreatment for the geological samples of

this research and Reference [44]

3 结论

随着 Mo 同位素研究的发展和深入,迫切需 要开发适用于更多性质特殊的地质样品且较简 便、节省人力物力的化学前处理方法,以拓展 Mo 同位素体系可应用的领域范围。目前应用质谱 分析地质样品的 Mo 同位素组成的预处理方法主 要有阴阳离子交换树脂双柱法和阴离子交换树 脂单柱法,本研究对这两种方法进行取长补短和 优化组合,得到一种针对 Fe 含量特别高且含 Ca 的特殊地质样品的分离纯化方法,改进后的阴离 子交换树脂单柱 – 二次淋洗法(使用盐酸收集 Mo)为本项目组推荐的方法。

表 5 实际地质样品经阴离子交换树脂单柱 – 二次淋洗法 分离纯化后的 Mo 同位素分析结果

Table 5 Mo isotope analysis of real geological samples pretreated by the modified separation method of anion exchange resin with single column – double

样品编号	样品性质	$\delta^{98/95}$ Mo(‰)	文献	
Xiaozhu – 01	碳质页岩	-0.21 ± 0.08 -0.22 ± 0.13	本研究 文献[44]	
Wj - 4	碳质页岩夹方解石脉	$1.65 \pm 0.10 \\ 1.63 \pm 0.12 \\ 1.63 \pm 0.11$	本研究 文献[44] 文献[14]	
Xiaozhu – 33	白云岩	1.30±0.12 1.29±0.14	本研究 文献[44]	
GBW07303	水系沉积物标准物质	-0.35 ± 0.10 -0.38 ± 0.16	本研究 文献[44]	
$(^{98} \text{Mo}/^{95} \text{Mo}) \neq \mathbb{R}$				

 $Mo(\%) = L \frac{1}{(98 \text{ Mo}/95 \text{ Mo})} NIST3134 \times 0.99975$

本方法不再使用阳离子交换树脂,改为重复使 用阴离子交换树脂(AG1 – X8),节约了成本和降低 了工作量;在第一次淋洗已经大大降低基质含量的 前提下,第二次淋洗过程中引入氢氟酸介质,避免了 氟化物沉淀的产生,又有效去除Fe、Ru等元素。采 用本方法处理高Fe、高Ca的特殊样品,Mo的回收 率达96.7% Zr、Ru、Fe、Mn等干扰元素的去除效果 好 特别是 Ru的去除率接近100%。

应用本方法对实际地质样品进行分离纯化,Mo 回收率、干扰元素的去除都符合质谱分析的分离纯 化要求 样品 Mo 同位素组成的测试值与文献报道 值一致。这种针对 Fe、Ca 含量较高的特殊样品所 建立的阴离子交换树脂单柱 – 二次淋洗法,也适用 于绝大多数地质样品同位素分析的分离纯化处理。

- 4 参考文献
- [1] 朱祥坤,王跃,闫斌,等.非传统稳定同位素地球化学的创建与发展[J].矿物岩石地球化学通报,2013,32
 (6):651-688.

Zhu X K ,Wang Y ,Yan B ,et al. Developments of non – traditional stable isotope geochemistry [J]. Bulletin of Mineralogy Petrology and Geochemistry ,2013 ,32 (6) : 651 – 688.

[2] Malinovsky D ,Hammarlund D ,Ilyashuk B ,et al. Variations in the isotopic composition of molybdenum in freshwater lake systems [J]. Chemical Geology 2007 ,236(3-4): 181-198.

-36-

- [3] Archer C ,Vance D. The isotopic signature of the global riverine molybdenum flux and anoxia in the ancient oceans [J]. Nature Geoscience 2008 ,1(9):597-600.
- [4] Nägler T F Neubert N Böttcher M E et al. Molybdenum isotope fractionation in pelagic euxinia: Evidence from the modern Black and Baltic Seas [J]. Chemical Geology 2011 289(1-2):1-11.
- [5] Noordmann J ,Weyer S ,Montoya Pino C ,et al. Uranium and molybdenum isotope systematics in modern euxinic basins: Case studies from the central Baltic Sea and the Kyllaren Fjord (Norway) [J]. Chemical Geology 2015 , 396(9): 182 – 195.
- [6] Dahl T W ,Wirth S B. Molybdenum isotope fractionation and speciation in a euxinic lake—Testing ways to discern isotope fractionation processes in a sulfidic setting [J]. Chemical Geology 2017 460(5):84 – 92.
- [7] Neely R A Gislason S R Ólafsson M et al. Molybdenum isotope behaviour in groundwaters and terrestrial hydrothermal systems ,Iceland [J]. Earth and Planetary Science Letters 2018 486(15):108 - 118.
- [8] Siebert C Nägler T F Blanckenburg F V et al. Molybdenum isotope record as a potential new proxy for paleoeanography [J]. Earth and Planetary Science Letters 2003 211(1-2):159-171.
- [9] Arnold G L ,Anbar A D ,Barling J ,et al. Molybdenum isotope evidence for widespread anoxia in Mid – Proterozoic oceans [J]. Science ,2004 ,304 (5667): 87 – 90.
- [10] Lehmann B ,Nägler T F ,Holland H D ,et al. Highly metalliferous carbonaceous shale and Early Cambrian seawater [J]. Geology 2007 35(5):403-406.
- [11] 蒋少涌、凌洪飞、赵葵东,等.华南寒武纪早期牛蹄塘 组黑色岩系中 Ni - Mo 多金属硫化物层的钼同位素 组成讨论[J].岩石矿物学杂志,2008,27(4): 341-345.

Jiang S Y ,Ling H F Zhao K D ,et al. Discussion on Mo isotopic compositions of black shale and Ni – Mo sulfide bed in the early Cambrian Niutitang Formation in South China [J]. Acta Petrologica et Mineralogica ,2008 ,27 (4):341 – 345.

- [12] Kendall B ,Komiya T ,Lyons T W ,et al. Uranium and molybdenum isotope evidence for an episode of widespread ocean oxygenation during the Late Ediacaran Period [J]. Geochimica et Cosmochimica Acta 2015 ,156 (1):173-193.
- [13] Kurzweil F ,Drost K ,Pašava J ,et al. Coupled sulfur ,iron and molybdenum isotope data from black shales of the Teplá—Barrandian unit argue against deep ocean

oxygenation during the Ediacaran [J]. Geochimica et Cosmochimica Acta 2015 ,171(15):121-142.

- [14] Wen H J ,Fan H F Zhang Y X ,et al. Reconstruction of Early Cambrian ocean chemistry from Mo isotopes [J]. Geochimica et Cosmochimica Acta , 2015 , 164 (1): 1-16.
- [15] Ruebsam W ,Dickson A J ,Hoyer E M ,et al. Multiproxy reconstruction of oceanographic conditions in the Southern Epeiric Kupferschiefer Sea (Late Permian) based on redox – sensitive trace elements ,molybdenum isotopes and biomarkers [J]. Gondwana Research 2017 , 44: 205 – 218.
- [16] Yin L , Li J , Tian H , et al. Rhenium osmium and molybdenum isotope systematics of black shales from the Lower Cambrian Niutitang Formation , SW China: Evidence of a well oxygenated ocean at ca. 520Ma [J]. Chemical Geology 2018 499(5): 26 – 42.
- [17] Chen J B ,Zhao L S ,Algeo T J ,et al. Evaluation of paleomarine redox conditions using Mo – isotope data in low – [Mo] sediments: A case study from the Lower Triassic of South China [J]. Palaeogeography , Palaeoclimatology , Palaeoecology , 2019 , 519 (1): 178 – 193.
- [18] Duan Y ,Anbar A D ,Arnold G L ,et al. Molybdenum isotope evidence for mild environmental oxygenation before the Great Oxidation Event [J]. Geochimica et Cosmochimica Acta 2010 74(23):6655 - 6668.
- [19] Wen H J ,Carigan J ,Zhang Y X ,et al. Molybdenum isotopic records across the Precambrian—Cambrian Boundary [J]. Geology 2011 39(8):775 - 778.
- [20] Eroglu S ,Schoenberg R ,Wille M ,et al. Geochemical stratigraphy sedimentology and Mo isotope systematics of the ca. 2. 58 – 2. 50 Ga – old Transvaal Supergroup carbonate platform, South Africa [J]. Precambrian Research 2015 266: 27 – 46.
- [21] Kurzweil F ,Wille M ,Schoenberg R ,et al. Continuously increasing δ^{98} Mo values in Neoarchean blackshales and iron formations from the Hamersley Basin [J]. Geochimica et Cosmochimica Acta , 2015 , 164 (1): 523 542.
- [22] Li G S ,Wang Y B ,Shi G R ,et al. Fluctuations of redox conditions across the Permian – Triassic Boundary—New evidence from the GSSP section in Meishan of South China [J]. Palaeogeography, Palaeoclimatology, Palaeoecology 2015 ,448(15): 48 – 58.
- [23] Dickson A J ,Jenkyns H C ,Porcelli D ,et al. Basin scale controls on the molybdenum – isotope composition of seawater during Oceanic Anoxic Event 2 (Late — 37 —

Cretaceous) [J]. Geochimica et Cosmochimica Acta, 2016 178(1):291 - 306.

- [24] Kurzweil F ,Wille M ,Gantert N ,et al. Manganese oxide shuttling in pre – GOE oceans—Evidence from molybdenum and iron isotopes [J]. Earth and Planetary Science Letters 2016 452(15):69 – 78.
- [25] Matthews A ,Azrieli Tal I ,Benkovitz A ,et al. Anoxic development of sapropel S1 in the Nile Fan inferred from redox sensitive proxies ,Fe speciation ,Fe and Mo isotopes [J]. Chemical Geology 2017 475(25):24 – 39.
- [26] Dong B H ,Long X P ,Li J ,et al. Mo isotopic variations of a Cambrian sedimentary profile in the Huangling area , South China: Evidence for redox environment corresponding to the Cambrian Explosion [J]. Gondwana Research 2019 69:45 - 55.
- [27] Murthy V R. Elemental and isotopic abundances of moly – bdenum in some meteorites [J]. Geochimica et Cosmochimica Acta ,1963 27: 1171 – 1178.
- [28] Nicolussi G K ,Pellin M J ,Lewis R S ,et al. Molybdenum isotopic composition of individual presolar silicon carbide grains from the Murchison meteorite [J]. Geochimica et Cosmochimica Acta ,1998 62(6): 1093 – 1104.
- [29] Burkhardt C ,Hin R C ,Kleine T ,et al. Evidence for Mo isotope fractionation in the solar nebula and during planetary differentiation [J]. Earth and Planetary Science Letters 2014 391(1):201 - 211.
- [30] Worsham E A ,Burkhardt C ,Budde G ,et al. Distinct evolution of the carbonaceous and non carbonaceous reservoirs: Insights from Ru ,Mo ,and W isotopes [J]. Earth and Planetary Science Letters ,2019 ,521 (1): 103 112.
- [31] Mathur R ,Brantley S ,Anbar A ,et al. Variation of Mo isotopes from molybdenite in high – temperature hydrothermal ore deposits [J]. Miner Deposita ,2010 ,45 (1):43-50.
- [32] Shafiei B ,Shamanian G ,Mathur R ,et al. Mo isotope fractionation during hydrothermal evolution of porphyry Cu systems [J]. Mineralium Deposita ,2015 ,50 (3): 281-291.
- [33] Lehmann B ,Frei R ,Xu L G ,et al. Early Cambrian black shale – hosted Mo – Ni and V mineralization on the rifted margin of the Yangtze Platform ,China: Reconnaissance chromium isotope data and a refined metallogenic model [J]. Economic Geology 2015 ,111(1):89 – 103.
- [34] Wang Y Zhou L ,Gao S ,et al. Variation of molybdenum isotopes in molybdenite from porphyry and vein Mo deposits in the Gangdese metallogenic belt, Tibetan Plateau and its implications [J]. Mineralium

— 38 —

Deposita2015 51(2):201-210.

- [35] Yao J M ,Mathur R ,Sun W D ,et al. Fractionation of Cu and Mo isotopes caused by vapor – liquid partitioning , evidence from the Dahutang W – Cu – Mo ore field [J]. Geochemistry ,Geophysics ,Geosystems ,2016 ,17 (5): 1725 – 1739.
- [36] Migeon V ,Bourdon B ,Pili E ,et al. Molybdenum isotope fractionation during acid leaching of a granitic uranium ore [J]. Geochimica et Cosmochimica Acta ,2018 ,231 (15):30-49.
- [37] 胡文峰 涨烨恺,刘金华,等.西藏冈底斯斑岩型铜钼 矿床的 Cu、Mo 同位素组成及其意义[J].地球科学, 2019 44(6):1923-1934.

Hu W F ,Zhang Y K ,Liu J H ,et al. The isotopic compositions of copper and molybdenum from porphyry Cu – Mo deposit in the Gangdese ,Tibet , and their significance [J]. Earth Science ,2019 ,44 (6) : 1923 – 1934.

- [38] 孟郁苗 胡瑞忠 高剑峰,等. 锑的地球化学行为以及 锑同位素研究进展[J]. 岩矿测试,2016,35(4): 339-348.
 Meng Y M Hu R Z Gao J F et al. Research progress on Sb geochemistry and Sb isotopes [J]. Rock and Mineral
- [39] 尹鹏,何倩,何会军,等.离子交换树脂法分离沉积物 中锶和钕的影响因素研究[J].岩矿测试,2018,37 (4):379-387.

Analysis 2016 35(4): 339 - 348.

Yin P , He Q , He H J , et al. Study on the factors influencing the separation of Sr and Nd in sediments by ion exchange resin [J]. Rock and Mineral Analysis , 2018, 37(4): 379 - 387.

- [40] 袁永海 杨锋,余红霞,等.微波消解-多接收电感耦合等离子体质谱高精度测定锶钕同位素组成[J]. 岩矿测试 2018 37(4):356-363.
 Yuan Y H, Yang F, Yu H X, et al. High - precision measurement of strontium and neodymium isotopic composition by multi - collector inductively coupled plasma - mass spectrometry with microwave digestion [J]. Rock and Mineral Analysis, 2018, 37 (4): 356-363.
- [41] Barling J Arnold G L Anbar A D. Natural mass dependent variations in the isotopic composition of molybdenum
 [J]. Earth and Planetary Science Letters 2001 ,193(3 4):447 457.
- [42] Pietruszka A J ,Walker R J ,Candela P A. Determination of mass dependent molybdenum isotopic variations by MC ICP MS: An evaluation of matrix effects [J]. Chemical Geology 2006 225(1-2):121 136.

[43] 张羽旭 温汉捷 樊海峰. 地质样品中 Mo 同位素测定 的前处理方法研究 [J]. 分析化学,2009,37(2): 216-220.

> Zhang Y X ,Wen H J ,Fan H F. Chemical pretreatment methods for measurement of Mo isotope ratio on geological samples [J]. Chinese Journal of Analytical Chemistry 2009 37(2):216 – 220.

- [44] 张羽旭. 非传统稳定同位素 Mo、Cd 的分析测试方法 及其地质应用[D]. 北京: 中国科学院大学 2010.
 Zhang Y X. The Researches on Analytical Methods of the Isotope Fractionation of Non - traditional Stable Isotopes (Mo Cd) and Its Application in Earth Sciences [D]. Beijing: University of Chinese Academy of Sciences 2010.
- [45] Liu J ,Wen H J ,Zhang Y X ,et al. Precise Mo isotope ratio measurements of low - Mo (ng • g⁻¹) geological samples using MC - ICP - MS [J]. Journal of Analytical Atomic Spectrometry 2016 31(6):1287 - 1297.
- [46] Magnall J M ,Gleeson S A ,Poulton S W ,et al. Links between seawater paleoredox and the formation of sediment – hosted massive sulphide (SHMS) deposits — Fe speciation and Mo isotope constraints from Late Devonian mudstones [J]. Chemical Geology ,2018 ,490 (25):45-60.
- [47] Pearce C R ,Cohen A S ,Parkinson I J. Quantitative separation of molybdenum and rhenium from geological materials for isotopic determination by MC – ICP – MS [J]. Geostandards and Geoanalytical Research 2009 33

(2):219-229.

- [48] 李津 朱祥坤 唐索寒. 钼化学纯化法及其适用的 MC ICP MS 仪器质量分馏校正方法对比 [J]. 岩石矿 物学杂志 2011 30(4):748 754.
 Li J Zhu X K ,Tang S H. Ion exchange separation of Mo and its suitability for sample standard bracketing and double spiking techniques of mass bias correction [J].
- [49] Li J Zhu X K ,Tang S H ,et al. High precision mea surement of molybdenum isotopic compositions of selected geochemical reference materials [J]. Geostandards and Geoanalytical Research ,2016 ,40(3): 405 – 415.

Acta Petrologica et Mineralogica 2011 30(4):748-754.

- [50] King E K ,Thompson A ,Chadwick O A ,et al. Moly bdenum sources and isotopic composition during early stages of pedogenesis along a basaltic climate transect [J]. Chemical Geology 2016 445(16):54 - 67.
- [51] Kraus K A ,Nelson F ,Moore G E. Molybdenum(VI) , tungsten(VI) and uranium(VI) in HCl and HCl – HF solutions [J]. Journal of the American Chemical Society , 1955 ,77(5): 3972 – 3977.
- [52] Wen H J ,Carigan J ,Cloquet C ,et al. Isotopic delta values of molybdenum standard reference and prepared solutions measured by MC – ICP – MS: Proposition for delta zero and secondary references [J]. Journal of Analytical Atomic Spectrometry, 2010, 25 (5): 716 – 721.

Research on the Chemical Pretreatment for Mo Isotope Analysis of Special Geological Samples

WEN Jing^{1 2}, ZHANG Yu – xu^{1*} , WEN Han – jie^{1 2}, ZHU Chuan – wei¹, FAN Hai – feng¹

- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China;
- 2. University of Chinese Academy of Sciences, Beijing 100049, China)

HIGHLIGHTS

- (1) The separation and purification method for Mo isotope analysis was improved. The method can be used for the special geological samples with high Fe and Ca contents, as well as most common geological samples.
- (2) Using one resin (AG1 X8) can reduce analytical cost and workload.
- (3) The removal rate of Ru for the improved method was 12% higher than the previous methods, up to 100%.

-39 -

ABSTRACT

BACKGROUND: Mo isotopes have been widely used in the field of geosciences. They can be used to trace the global cycle of Mo, paleoocean redox conditions, mineralization processes, and astronomical evolution. Before the analysis of Mo isotope by multi - collector inductivity coupled plasma – mass spectrometry (MC – ICP – MS), the samples must be pretreated to enrich Mo and remove the interference elements (Zr , Ru , Fe and Mn). According to the traditional anion - cation exchange resin double - column method, it is necessary to use a cation - exchange resin multiple times to separate Fe. The steps are more complicated and the Mo recovery will be reduced. According to the traditional anion - exchange resin single - column method, 1mol/L hydrofluoride acid - 0. 5mol/L hydrochloric acid medium will produce more CaF₂ precipitation and affect the separation and purification results.

OBJECTIVES: To develop a new method for managing Ca – bearing geological samples with high Fe content before Mo isotope analysis.

METHODS: For such special geological samples,

the same anionic resin column (AG1 – X8, 100 - 200 mesh) was used to rinse the sample twice, the first time using 6mol/L hydrochloric acid, and the second time using 1mol/L hydrofluoride acid – 0. 1mol/L hydrochloric acid and 6mol/L hydrochloric acid.

RESULTS: Results showed that Mo recovery was better than 96%, and the removal of the interference elements was good, especially the Ru removal rate, which was higher than the previous methods by 12%, up to 100%. The results of experiments on actual samples also showed that the recovery of Mo and the removal of interfering elements meet the requirements, and the measured values of $\delta^{98/95}$ Mo were consistent with those reported in the literature.

CONCLUSIONS: The improved anion exchange resin single – column elution method is suitable for special samples with high Fe and Ca content , which reduces the analysis cost and is applicable to most geological samples.

KEY WORDS: Mo isotopes; ion exchange chromatography; chemical pretreatment; special geological sample; MC - ICP - MS

The modified separation method of anion exchange resin with single column-double elution