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ABSTRACT A wide-angle Fourier migrator is proposed to more accurately image complex media with
strong lateral velocity contrasts. The broadband wave-equation migrator is developed based on the pseudo-
Padé approximation, where the Padé coefficients are independent of spatial coordinates, leading to a pure
Fourier transform-based matching solution for one-way wavefield extrapolation. We use genetic algorithms
to estimate the constant Padé coefficients more accurately than is feasible with conventional least-squares
methods. Because of the global features of pure Fourier migrators, we present an angle-partitioning
optimization scheme with dip focusing to improve the performance of the Fourier migrator for super-wide-
angle waves and strong velocity contrasts. The wavefield gradient is used to calculate propagation angles
during dual-domain wavefield extrapolation. Particular attention is paid to the first-order optimized pseudo-
Padé Fourier (OPF1) migrator, which significantly improves the split-step Fourier (SSF) method for strong
lateral variations at the cost of one additional Fourier transform in each step. Wavefield extrapolation based
on the OPF1 method actually constitutes linear interpolation in the wavenumber domain between two split-
step terms. We benchmark the OPF1 migrator with other typical migrators based on the exact dispersion
equation. Numerical experiments with impulse responses, the SEG/EAGE salt model and 3D field data
demonstrate the excellent performance and efficiency of seismic imaging with the OPF1 migrator.

INDEX TERMS Angle-partitioning optimization, dual-domain Fourier migrator, genetic algorithm (GA),
pseudo-Padé series approximation, super-wide-angle imaging.

I. INTRODUCTION
Fourier wave-equation migration is a rapidly developing
area of research because of its computational efficiency in
commercial applications. This approach has been widely
recognized as a practical alternative to current industry
techniques for accurate seismic imaging. A major impe-
tus for studies on Fourier migrators is attributed to their
many desirable properties, such as the analytical extrapola-
tion of wavefields, preservation of amplitudes by honouring
Snell’s law, the simplicity of the algorithm and its high effi-
ciency with fast Fourier transforms (FFTs), and its immu-
nity to both grid dispersion and operator splitting errors.

The associate editor coordinating the review of this manuscript and
approving it for publication was Nilanjan Dey.

Particularly, fast wavefield extrapolation with dual-domain
implementation can be obtained by using a faster FFT
(possibly with FFT chips). One of the key issues associ-
ated with Fourier migrators in handling wide-angle waves
and lateral velocity variations simultaneously is the global
features of the Fourier transform; this issue has led to
the acknowledgement that velocity variations, propagation
angles, and imaging accuracies are closely related at a vari-
ety of scales. However, high-order approximations involve
extensive numerical calculations that do not conspicuously
simplify the problem to be solved relative to other methods.
Accordingly, in this article, we pursue a simple approx-
imation and achieve an optimal trade-off among velocity
variations, wide-angle waves, imaging accuracy, and compu-
tational efficiency. Themotivation of this research is to obtain
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the highest imaging accuracy for wide-angle waves with the
fewest FFTs.

Fourier imaging methods with different accuracies have
been extensively studied in recent decades, beginning with
the phase-shift propagator [1] for laterally homogeneous
media and the split-step Fourier (SSF) method [2] and phase-
screen propagator [3] for either weak-contrast media or small
angles. Progress in this field can be classified into three
categories: the approximation of the square-root operator,
the coefficient optimization of Fourier propagators, and
the partitioning of propagation angles. Slight modifications
to phase-screen propagators have produced pseudo-screen
propagators [3], [4], generalized-screen propagators (GSPs)
[5], [6], and broadband constant-coefficient propagators [7]
for moderate-contrast media. For high-contrast media with
wide angles, the most appropriate approach may be the
Rytov approximation [8] or separation-of-variables [9] screen
propagators. These dual-domain propagators are gener-
ally formulated by the first-order approximation of the
square-root operator, whereas higher-order approximations
enhance the imaging accuracy but require additional Fourier
transforms at each step, which considerably increases the
computational time, especially for immense 3D cases. For
high-contrast media with wide angles, currently, the most
economical method might be the hybrid Fourier finite-
difference (FFD) method [10], which is not a pure Fourier
migrator and hence needs an additional implicit FD correc-
tion. It is worthmentioning that Zhang et al. [11] applied first-
type Chebyshev polynomials to economize the result of the
Taylor expansion of the square-root operator. The resulting
Chebyshev Fourier migrator can be optimized to handle high-
contrast media with wide angles but at the cost of four Fourier
transforms in each step (twice the number of transforms in
the SSF method). In this study, we pursue a simple rational
approximation to the square-root operator; the resulting pure
Fourier migrator needs only three Fourier transforms in each
step for high-contrast media with wide angles.

The second category of Fourier migrators results from the
optimization of constant expansion coefficients [12], [13]
by least-square methods. Most optimization schemes used
for the FFD method [10] can be directly applied to Fourier
migrators, but limited improvement is achieved because the
aforementioned Fourier migrators are based mainly on the
low-accuracy Taylor expansion. The third type of scheme
used to improve the SSF method attempts to directly address
the difficulty associated with the global features of Fourier
migrators; such schemes include the phase shift plus inter-
polation (PSPI) [14], windowed phase-screen [15], and
optimum separable approximation [16] methods. These tech-
niques can image steep dips in complex media with strong
velocity contrasts but require many more FFTs or additional
computations. In this article, we take advantage of the genetic
algorithm (GA) for the global optimization of Fourier expan-
sion coefficients and propose an angle-partitioning optimiza-
tion method to enhance the localization of Fourier migrators
for individual propagation angles.

Most rational functions converge faster than the Tay-
lor expansion because of their well-posed approximation
behaviour for low-order terms [17], [18].Most Fourier migra-
tors obtained by the poorly convergent Taylor expansion
are characterized by few benefits, even with many high-
order terms. In contrast, rational approximations with supe-
rior accuracy can significantly improve the performance of
Fourier migrators for constructing the square-root operator.
In general, a first-order or, at most, a second-order approx-
imation is adequate for common seismic imaging applica-
tions in high-contrast media with wide angles. For example,
the Padé approximation, an efficient rational function, has
been used to construct various hybrid Fourier matching solu-
tions for one-way propagation problems in high-contrast
media; the corresponding migrators include the Padé FD
migrator [19], the split-step Padé propagator [20], and the
FFD migrator [10]. These rational approximations to the
square-root operator lead to variable Padé coefficients as
functions of the corresponding spatial coordinates and there-
fore require an additional implicit FD implementation.

To avoid additional implicit FD implementations, in this
article, we propose a pseudo-Padé expansion to the square-
root operator; this approach has been used for the Bloch-
Horowitz effective Hamiltonian [21]. The resultant Padé
coefficients are constant, allowing a pure Fourier transform-
based matching solution for seismic imaging. In particular,
the first-order pseudo-Padé Fourier migrator significantly
improves the SSF method for strong lateral variations at the
cost of one additional Fourier transform in each step. Wave-
field extrapolation is actually a linear interpolation problem
in the wavenumber domain between two split-step terms.
Thus, determining how to optimize the constant Padé coef-
ficients in terms of the maximum velocity contrasts and
designed propagation angles is crucial to assure the fast
convergence of a low-order pseudo-Padé expansion. We use
the GA to optimize the constant Padé coefficients for all
velocity contrasts. To localize the broadband pseudo-Padé
Fourier migrator for individual angles, we apply an angle-
partitioning optimization method [22] for dip focusing to
improve the wide-angle accuracy of the pseudo-Padé Fourier
migrator.

In this paper, a novel pure Fourier wave-equation migrator
is proposed. The rest of this paper is organized as follows.
In Section II, the proposed migrator is clearly described,
and we demonstrate its effectiveness by performing relative
phase-error analyses. In Section III, we conduct some numer-
ical experiments to illustrate the proposed scheme. Finally,
in Section IV, we discuss the practicality of the proposed
migrator and summarize its main advantages.

II. METHODOLOGY
A. FOURIER MIGRATOR USING THE
PSEUDO-PADÉ APPROXIMATION
We slice heterogeneous media horizontally into a stack of
slabs. Let u(kx , z) represent the 2D time-harmonic scalar

VOLUME 8, 2020 32055



C. Tang et al.: OPF1 Migrator in Terms of Propagation Angles

wavefield in the frequency-wavenumber domain, where z is
the depth and kx is the wavenumber with respect to the
x-coordinate. For a laterally heterogeneous slab span-
ning from z to z + 1z, Fourier wavefield extrapolation
can be generally expressed in the frequency-wavenumber
domain as

u(kx , z+1z) = û(kx , z) exp(ikz1z), (1)

where k2x + k2z = k2o and the reference wavenumber is
k0 = ω/υ0 with the reference velocity υ0 for the slab. The
intermediate wavefield û(kx , z) is given by different Fourier
migrators for different accuracies.

As described in Fu [23], applying the plane-wave represen-
tation of the Hankel function to the generalized Lippmann-
Schwinger integral equation [24] leads to the following
approximation of the square-root operator (refer to
Appendix A for details):

k̄z =
(
n− k̄2x

)/√
1− k̄2x , (2)

where n is the refractive index and the normalized wavenum-
bers are k̄x = kx

/
k0 and k̄z = kz

/
k0. Because the Born

approximation is used to reduce the two-way Lippmann-
Schwinger integral equation to a one-way version, (2) can be
regarded as the Born dispersion equation with an accuracy
curve that is much better than that of the SSF method [23].
However, wavefield extrapolation by (2) using Fourier trans-
forms is unstable because when k̄x ≈ 1 (90◦ propagation

angle), the denominator
√
1− k̄2x is close to 0.

To avoid a singularity, we can apply the Padé approxi-
mation to (2), resulting in stable and well-posed wavefield
extrapolation. However, the Padé operator is ‘local’ in that the
Padé coefficients vary with both n and k̄x . Hence, the imple-
mentation of the differential operator requires the FD scheme.
We rewrite (2) as

k̄z =
√
1− k̄2x + (n− 1)(1− k̄2x )

−1/2. (3)

To fit (3) into the pure Fourier matching framework,
we propose the following pseudo-Padé expansion (refer to
Appendix B for further details):

(1− k̄2x )
−1/2 = 1+

m∑
j=1

ajk̄2x
1+ bjk̄2x

, (4)

where the pseudo-Padé coefficients aj and bj are independent
of the refractive index n. We substitute (4) into (3) to yield
the pseudo-Padé dispersion equation:

k̄z =
√
1− k̄2x + (n− 1)+ (n− 1)

m∑
j=1

ajk̄2x
1+ bjk̄2x

. (5)

This equation theoretically has no singularity and can be
implemented for unconditionally stable wavefield extrapo-
lation. Formulating the intermediate wavefield û(kx , z) by

(5) yields the following Fourier wavefield extrapolation (1),
where we set Cj = ajk̄2x

/ (
1+ bjk̄2x

)
:

u(kx , z+1z) = {(1−
∑

j
Cj) exp[iko1z(n− 1)]u(kx , z)

+

∑
j
Cj exp[iko1z(2n− 2)]u(kx , z)}

× exp(ikz1z). (6)

Since the well-posed rational approximation in (5) is charac-
teristic of the fast convergence of low-order terms, the first-
order equation is usually adequate for common seismic
imaging applications. Thus, we take the first-order approx-
imation, and (6) becomes

u(kx , z+1z) = {(1− C1) exp[iko1z(n− 1)]u(kx , z)

+C1 exp[iko1z(2n− 2)]u(kx , z)}

× exp(ikz1z). (7)

We see that wavefield extrapolation by (7) actually consti-
tutes linear interpolation in the wavenumber domain between
two split-step terms. Therefore, the first-order pseudo-Padé
Fourier migrator significantly improves the SSF method for
strong lateral variations at the cost of only one additional
Fourier transform in each step.

Note that wavefield extrapolation by (7) tends to be numer-
ically unstable unless some restrictions are imposed on Cj.
That is, the wavefield energy for some n values will increase
during extrapolation. From (6), a stable numerical implemen-
tation requires∣∣∣1−∑

j
Cj +

∑
j
Cj exp[iko1z(n− 1)]

∣∣∣ ≤ 1. (8)

This criterion is not convenient because k0, n, and 1z are
involved. It follows from (8) that∣∣∣1−∑

j
Cj +

∑
j
Cj exp[iko1z(n− 1)]

∣∣∣
≤

∣∣∣1−∑
j
Cj
∣∣∣+ ∣∣∣∑

j
Cj exp[iko1z(n− 1)]

∣∣∣
≤

∣∣∣1−∑
j
Cj
∣∣∣+ ∣∣∣∑

j
Cj
∣∣∣ ≤ 1, (9)

if

0 ≤
∑

j
Cj ≤ 1. (10)

This inequality should be used as a constraint in the optimiza-
tion procedure employed to search for the optimal aj and bj.
Wavefield extrapolation by (6) under condition (10) will be
unconditionally stable.

B. OPTIMIZATION OF COEFFICIENTS BY
GENETIC ALGORITHMS
The optimization procedure employed to search for the opti-
mal aj and bj can be defined byminimizing the following cost
function:

J =
∫ 1

0

∫ ϕ

0
E2 (θ, n) dθdn, (11)
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where θ is the propagation angle, which varies from 0◦ to the
designed maximum angle ϕ. From (5), the dispersion error of
the pseudo-Padé approximation can be written as

E(θ, n) =
√
1− k̄2x + n− 1+ (n− 1)

∑
j
Cj −

√
n2 − k̄2x .

(12)

We see that the optimization procedure based on (11) and
(10) is a constrained nonlinear optimization problem for
multiparameter optimization. In general, local optimization
techniques such as the least-squares method and its variants
rely on exploiting limited information derived from a com-
paratively small number of models. Thus, a local optimiza-
tion method is likely to be trapped in local minima if the
starting values (aj and bj) are too far from the true values
[25], [26]. Theoretically, local optimization methods have
difficulty searching for the best fit over a wide range of
angles.

As an alternative, GAs are nonlinear global optimiza-
tion techniques based on the natural processes of biological
evolution and have been applied extensively to geophysical
optimization problems, e.g., seismic inversion [27], attribute
selection [28], migration velocity estimation [29], and resid-
ual statics corrections [30]. GAs are driven completely by
stochastic means. Essentially, the search mechanism does not
follow a deterministic set of rules, giving GAs the ability
to escape local minima without the need for starting values.
Thus, we use GAs to handle the optimization problem and
search for the optimal aj and bj over a wide range of angles.
The pseudo-Padé Fourier migrator proposed in this arti-

cle is a constant-coefficient operator. Because of its global
features, no single values of aj and bj can adapt to all the
velocity contrasts over a wide range of angles. To increase
the localization of the constant-coefficient operator, we use
angle-partitioning optimization [22] for dip focusing. The
coefficients aj and bj are estimated in the GA optimization
procedure for both the small-angle range (0◦∼50◦) and the
wide-angle range (50◦∼75◦). The resultant coefficients for
the first-order optimized pseudo-Padé Fourier (OPF1) migra-
tor are a1 = −0.627 and b1 = 0.122 over 0◦∼50◦ and
a1 = −0.654 and b1 = 0.087 over 50◦∼75◦, with the
phase-error analyses at refractive index n = 0.7 depicted
in Figure 1 at different relative phase errors. We see that the
small-angle curve (solid line) varies within 0◦∼50◦ under a
relative phase error of 1% but allows a maximum propagation
angle reaching 58◦ under a relative phase error of 5%. In con-
trast, thewide-angle curve (dashed line) varies within 0◦∼57◦

under a relative phase error of 2% but allows a maximum
propagation angle reaching 62◦ under a relative phase error
of 5%. An analysis of Figure 1 reveals that angle-partitioning
optimization has the ability to improve the performance of
the OPF1 migrator and further improve both the small-angle
curve and the wide-angle curve at individual propagation
angles for a particular target area. It is worth noting that the
OPF1 migrator for strong velocity contrasts still preserves

FIGURE 1. Comparison of the relative percentage phase errors versus the
propagation angles for the OPF1 method at refractive index n = 0.7. The
solid line denotes the small-angle range (0◦∼50◦), and the dashed line
denotes the wide-angle range (50◦∼75◦).

a dual-domain algorithmic structure that uses three Fourier
transforms alone to advance the wavefield.

C. OPTIMIZATION BY ANGLE PARTITIONING
In equation (5), n and k̄x are cross-coupled. Thus,
the OPF1 migrator is implemented in the frequency-
wavenumber domain. To perform the angle-partitioning opti-
mization procedure with the OPF1 migrator, we need to
calculate the wave propagation angle at any given point in
space in the frequency-wavenumber domain; this approach
has been widely used in seismic migration and velocity anal-
ysis [31]–[33]. In general, there are two kinds of calculation
schemes: ray-based [34], [35] and wavefield gradient meth-
ods [22]. Based on the corresponding high-frequency limita-
tion, ray-based methods are easier to implement and have a
much lower computational cost. However, the results of ray-
based methods are difficult to implement with Fourier-based
wavefield extrapolation methods. In contrast, the wavefield
gradient can be easily obtained from a Fourier-based one-way
propagator, and the wave propagation angles can also be cal-
culated at any specified point in space for a single-frequency
component. In addition, the wavefield gradient method is
fast and easy to implement with a Fourier wave-equation
migrator. Thus, we adapt the wavefield gradient method to
handle the angle-partitioning optimization procedure.

Based on the wavefield gradient vector, we obtain the wave
propagation angle with respect to the z direction:

θ (x, z) = tan−1
(∣∣∣∣∂u(x, z)∂x

∣∣∣∣/∣∣∣∣∂u(x, z)∂z

∣∣∣∣) , (13)

where ∂u(x,z)
∂x and ∂u(x,z)

∂z are the wavefield gradients with
respect to the x- and z-coordinates, respectively. Then,
we use the OPF1 migrator for the calculation of the wave
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propagation angle. Equation (7) can be expressed as

u(x, z1) = [FT−1x + i1zko(n− 1)FT−1x C1]

× ei1zkzFTxei1zko(n−1)u(x, zo), (14)

where FTx and FT−1x denote the forward and inverse
Fourier transforms, respectively, from the space domain
to the wavenumber domain in the x direction. Based
on (14), the wavefield gradient along the x-coordinate can be
written as
∂u(x, z1)
∂x

= [FT−1x + i1zko(n− 1)FT−1x C1]

× kxei1zkzFTxei1zko(n−1)u(x, zo). (15)

Based on the unintegrated form of (14), the wavefield gradi-
ent in the z direction is expressed as

∂u(x, z1)
∂z

= ikzu(x, z1)+ iko(n− 1)u(x, z1)

+ iko(n− 1)C1u(x, z1). (16)

Because the OPF1 migrator is a dual-domain propagator,
the wavefield gradient at a given point in space is usually a
complex number. Here, we choose the absolute values of (13)
as the wave propagation angles. Based on (13), (15), and (16),
we have the ability to calculate the wave propagation angle at
any given point in the frequency-wavenumber domain.

FIGURE 2. Flow diagram of the OPF1 migrator.

Figure 2 shows the flow diagram of the OPF1migrator, and
the corresponding implementation procedure can be summa-
rized as follows:

1) Calculate the wave propagation angles of seismic data
for all the frequency components at every point in
space.

2) Divide the target area into small-angle and wide-angle
ranges according to the calculated wave propagation
angles.

FIGURE 3. Comparison among the angular spectra of various methods for
a relative phase error of 1%. A large refractive index denotes weak lateral
velocity variations, while a small refractive index denotes strong lateral
velocity variations. The thin solid line denotes the SSF method, the dotted
line denotes the FFD method, the thick solid line denotes the
OPF1 method, the dashed-dotted line denotes the OCF method [11], and
the dashed lines denote the first to fourth orders of the GSPs.

3) Use a GA to search for the optimal coefficients
a1 and b1 for the small-angle range and the wide-angle
range, respectively.

4) Store these constant pseudo-Padé coefficients in a
lookup table.

5) Assign the stored coefficients a1 and b1 for each fre-
quency component at every point in space and perform
wavefield extrapolation with (7).

D. RELATIVE PHASE-ERROR ANALYSES
In this section, we will discuss the accuracy of the
OPF1 migrator with applications involving angular spectra
and dispersion circles. The optimized Chebyshev Fourier
(OCF) method [11], which is a pure Fourier migrator, has
sufficiently high accuracy (approximately 60◦ at a relative
error of 1%) for almost all velocity contrasts. Thus, we select
the OCF method as a reference to assess the OPF1 migrator.
Figure 3 shows the angular spectra of various methods for
a relative phase error of 1%. A large refractive index (n)
denotes weak-contrast media, while a small value denotes
high-contrast media. Obviously, the SSF method displays the
worst performance among all the methods tested. The first
to fourth orders of the GSPs exhibit different improvements
for weak contrasts but rapidly degenerate to the performance
of the SSF method with a decrease in the refractive index.
We see that the FFD, OPF1, and OCF methods perform well
for almost all the lateral velocity variations, and each curve is
nearly horizontal. The OPF1 method displays a significant
improvement over the GSP and SSF methods and almost
approaches the OCF method in terms of accuracy. Although
we can see that the OCF method yields a slight improvement
over the OPF1 method, the OCF migrator needs one addi-
tional Fourier transform in each time step.
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FIGURE 4. Comparison among the dispersion circles of various methods
for refractive index values of n = 0.3 (strong contrast), n = 0.65
(moderate contrast), and n = 0.9 (weak contrast). The solid lines denote
the exact dispersion circles, the dotted lines denote the OPF1 method
results, the dashed lines denote the FFD method results, and the
dashed-dotted lines denote the SSF method results.

To assess the global properties of the OPF1 migrator,
we evaluate the proposed method by comparing its dispersion
circles with those of the SSF, FFD, and exact dispersion
relations for refractive index values of n = 0.3 (strong
contrast), n = 0.65 (moderate contrast), and n = 0.9
(weak contrast) (Figure 4). Among these methods, the SSF
method has the lowest accuracy for all the n values tested. For
n = 0.9, the dispersion circles of the OPF1 and FFD meth-
ods fit the exact dispersion relations at almost all angles of
wave propagation. For n = 0.65 and n = 0.3, the dispersion
circles of the OPF1 and FFD methods have high accuracy
at small angles, and the accuracy decreases with increasing
angle. Obviously, the maximum propagation angles of the
OPF1 method exceed those of the FFD method for almost
all velocity contrasts, except in areas with very weak lateral
velocity contrasts (Figure 3 and Figure 4).

III. EXAMPLES
In this section, we use impulse responses, the 2D Soci-
ety of Exploration Geophysicists (SEG)/European Associ-
ation of Geoscientists and Engineers (EAGE) salt model,
and real 3D field data to illustrate the advantages of the
OPF1 method. All of the examples are implemented in
the Seismic Unix (SU) software system and are simulated
on a rack-mounted server with a 12-core Intel R© Xeon R©

Gold 5118.

A. IMPULSE RESPONSE
To illustrate the performance of the OPF1 method, we first
calculate several impulse responses. A 2D homogeneous
medium is defined for a system of 256×128 grids with a
grid spacing of 10 m. The real velocity is V = 4000 m/s.
A Ricker wavelet with a dominant frequency of 35 Hz is used
as the source and is located at the centre of the upper model
boundary. The travel time is 250ms, and the sampling interval

FIGURE 5. Comparison among the vertical slices of snapshots at 250 ms.
These results are obtained using the SSF and OPF1 methods. The
refractive indexes used are (a) n = 0.35 (strong contrast), (b) n = 0.65
(moderate contrast), and (c) n = 0.9 (weak contrast). The dashed
semicircles denote the theoretical curves and serve as the quality
benchmark.

is 2 ms. The frequency range is from 1 Hz to 100 Hz with
101 components.

Figure 5 shows vertical slices of the snapshots at 250 ms.
These plots show the impulse responses obtained by the SSF
and OPF1 methods. The refractive indexes used for each plot
in Figure 5 are (a) n = 0.35 (strong contrast), (b) n = 0.65
(moderate contrast), and (c) n = 0.9 (weak contrast). The
dashed semicircles are the exact impulse responses and serve
as the quality benchmark. Obviously, the impulse responses
of the SSF method deviate significantly from the theoretical
curves except in the weak-contrast media (n = 0.9). In con-
trast, the OPF1 method always shows a stable performance,
and the results remain close to the theoretical positions within
a propagation angle of 60◦ for all three n values tested.

Figure 6 shows the superpositions of the vertical slices
of the impulse responses obtained by the FFD (left part
of each plot) and OPF1 (right part of each plot) methods.
When using a grid interval of 10 m, the OPF1 method shows
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FIGURE 6. Superpositions of the vertical slices of the snapshots at
250 ms. Each plot contains two equivalent parts. The parts shown are
obtained using the FFD (left part of each plot) and OPF1 (right part of
each plot) methods. A homogeneous medium with V = 4000 m/s and
n = 0.65 is used. The grid interval used for the migration is (a) 10 m and
(b) 20 m, as labelled in each part. The dashed semicircles denote the
theoretical position of the impulse response.

a slight improvement over the FFD method for n = 0.65
(Figure 6a). When a relatively coarse grid of 20 m is used,
the FFD method produces significant numerical dispersion
and strongly distorts the impulse responses at wide angles,
as shown in Figure 6b. In contrast, the OPF1 method, which
is immune to numerical dispersion, always produces a good
result with high accuracy and no numerical dispersion.

B. 2D SEG/EAGE SALT MODEL
In the second example, we compare the 2D migrated images
obtained using the OPF1 migrator with those acquired using
the SSF, FFD and PSPI methods. These methods have dif-
ferent imaging accuracies and computational efficiencies;
therefore, they constitute good benchmarks for testing the
novel OPF1 migrator. As mentioned above, we conclude that
the main advantage of the OPF1 migrator is that it can be
applied to image steeply dipping reflectors with strong veloc-
ity contrasts. The SEG/EAGE salt model (Figure 7a) has steep
dip reflectors (the largest value is approximately 70◦) and
extreme lateral velocity perturbations (nmin≈ 0.35). Thus,
we select the SEG/EAGE salt model to demonstrate the valid-
ity of the OPF1 method.

Figure 7b shows the calculation results for sinθ (θ is
the wave propagation angle with respect to the z direction
at a given point) at 60 Hz based on (13), (15) and (16).
Obviously, waves travel though the salt body at wide

FIGURE 7. Distribution of sinθ for the SEG/EAGE salt model with
vertically propagating plane waves. (a) The SEG/EAGE salt model.
(b) Distribution of sinθ at a frequency of 60 Hz. (c-d) Distributions of the
small-angle and wide-angle parts for frequencies of 30 and 35 Hz,
respectively. Black areas denote the small-angle range (0◦∼50◦), and
white areas denote the wide-angle range (50◦∼90◦).
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propagation angles, and the salt body complicates the subsalt
wavefield. According to the characteristics of the salt model,
we set the boundary angle to be θb = 50◦. For θ (x, z)< 50◦,
the given point (x, z) falls within the small-angle range (the
value of sinθ is 0 in Figure 7c, 7d), whereas it falls within the
wide-angle range otherwise (the value is 1 in Figure 7c, 7d).
We note that the wide-angle parts for 30 Hz and 35 Hz
(Figure 7c, 7d) are very similar overall. In this case, we
can calculate the wave propagation angles for every five
frequency components and compute the others via interpo-
lation; this approach is sufficient for ensuring the accuracy
of the OPF1 migrator and can improve the computational
efficiency. Once the wave propagation angles are obtained,
we can assign the stored coefficients for all the frequency
components involved at every point in space. To further
improve the accuracy of the OPF1 migrator, we can calculate
additional single-frequency components and perform fewer
interpolations.

The salt model contains several key targets (illustrated
in Figure 7a) to demonstrate the validity of seismic migration
methods, such as a strong velocity contrast along steep salt
flanks (A), horizontal subsalt interfaces (B) and steep subsalt
faults (C and D). In Figure 8, we show the resulting post-
stack depth-migrated images for the salt model from the SSF,
FFD, PSPI, and OPF1 methods. From the outline of the salt
body (marked by the blue lines in Figure 8), we note that the
salt body is well imaged by almost all the migration methods
tested, except for the SSF method. The SSF method works
accurately only for either weak contrasts or small propagation
angles, and it leads to a poor image of the steep salt root
(Figure 8a). The FFD method, which involves one implicit
FD correction and two Fourier transforms for each step, is not
a pure Fourier method; Figure 8b reveals that the primary
structural elements, except the steep fault C, are imaged
well by the FFD method with weak migration noise. The
PSPI method, which involves multiple Fourier transforms
for each step, is implemented using wavefield interpolation.
In Figure 8c, we see that the PSPI method produces a good
image with high accuracy and weak migration noise; similar
to the result with the FFD method, however, the steep subsalt
fault C is not well imaged. The steep subsalt fault C is difficult
to image for the above migration methods because the high-
velocity salt body acts as an acoustic lens, spreading energy in
a ‘random’ way [36]. In addition, the PSPI method attenuates
the boundary reflections of the steep salt flank A; this can
be explained by the migrator being influenced by attenuation
at high wavenumbers. The OPF1 method, which requires
only three Fourier transforms for each step, is a pure Fourier
method. Compared with the FFD method, the OPF1 migra-
tor partly attenuates coherent noise in the subsalt region
because it provides better focusing capabilities for wide-
angle waves. Moreover, compared with the PSPI method,
the OPF1method produces better images of the steep salt root
and the complex subsalt structures, particularly for the steep
subsalt fault C (marked by the red arrow in Figure 8d), which
cannot be imaged by most of the other methods (Figure 8d).

FIGURE 8. Post-stack depth-migrated sections obtained by the (a) SSF,
(b) FFD, (c) PSPI and (d) OPF1 methods for the SEG/EAGE salt model. The
outline of the salt body is marked in blue.

Thus, these migration results demonstrate the validity of the
OPF1 method in imaging complex structures with strong
velocity contrasts.
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FIGURE 9. Pre-stack depth-migrated sections obtained by the
(a) Kirchhoff and (b) OPF1 methods for complex fault blocks/zones in
eastern China.

C. FIELD DATA
To further test the imaging capability of the OPF1 method
in commercial applications, we consider real 3D field data
acquired in eastern China that contain a number of complex
geological structures. The complexities encountered during
seismic imaging in this complex region are summarized as
follows: (1) small faults/blocks and thin-bedded depositional
units lead to low signal-to-noise (S/N) ratios and strong
lateral velocity perturbations, and (2) the data set contains
several steep faults and dipping interfaces. Conventional
seismic migration methods have difficulty describing wide-
angle waves with strong lateral velocity variations. Hence,
in Figure 9, we compare the results of pre-stack depth
migration with the real data set using commercial software
(Kirchhoff) and the OPF1 method. We easily discover that

TABLE 1. Number of FFTs required in the extrapolation for each depth
slice.

the OPF1 migrator produces a higher-quality image of the
dipping interfaces and small faults/blocks, which are imaged
in place, than the conventional Kirchhoff depth migration
approach for this real dataset (marked by the blue cir-
cles in Figure 9). In the depth-migrated section using the
Kirchhoff method (Figure 9a), the small faults/blocks in
deep areas cannot be characterized due to a poor imaging
quality. In addition, steeply dipping events are not well
reconstructed and are smeared by coherent noise from incor-
rectly migrated data. The OPF1 migrator (Figure 9b) not
only greatly improves the imaging quality in both shallow
and deep areas, leading to a sharp image comprising small
faults/blocks and steep fault planes, but also focuses steeply
dipping events and suppresses coherent noise. The improve-
ments in this migration result (Figure 9b) are consistent with
the observations obtained from the SEG/EAGE salt model
test, as illustrated in Figure 8. Obviously, the OPF1 migrator
is more proficient at focus the energy of high-wavenumber
fields than conventional migration methods; thus, the pro-
posed approach can be recognized as a practical alternative
to current commercial migration techniques.

IV. DISCUSSION AND CONCLUSION
Both relative phase-error analyses and numerical experiments
demonstrate that the OPF1 method can image steep dips
for almost all velocity contrasts. The maximum propaga-
tion angles of the OCF migrator [11] are always approxi-
mately 60◦ under a relative error of 1%, and these values
are approximately 5◦ higher than those of the OPF1 method
(Figure 3). However, four Fourier transforms are required
for each depth slice to advance the wavefield (Table 1).
In contrast, the coefficients of the OPF1 method, which are
calculated before migration, are stored in a lookup table
(Figure 2), and only three Fourier transforms are required
for the OPF1 method (Table 1); thus, the computational effi-
ciency of the OPF1 method is higher than that of the OCF
method. In general, the maximum propagation angle of 55◦

(for a relative phase error of 1%) is adequate for common seis-
mic imaging applications. Compared with the SSF method,
the OPF1 migrator can handle wide-angle waves and strong
lateral velocity variations simultaneously at the cost of one
additional Fourier transform for each depth slice (Table 1).
Therefore, we believe that the OPF1 method achieves an
acceptable trade-off between the migration accuracy and
computational efficiency.

To handle wide-angle waves and strong lateral velocity
contrasts simultaneously, we propose an optimized pseudo-
Padé Fourier migrator using GAs and an angle-partitioning
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optimization scheme. In this paper, we first apply a pseudo-
Padé expansion to the square-root operator, and the resultant
coefficients are constant, leading to a pure Fourier transform-
based matching solution for seismic imaging. Then, we use
a GA to search for the optimal constant Padé coeffi-
cients. Finally, we present an angle-partitioning optimization
scheme for dip focusing to reduce the phase error for wide
angles in high-contrast media. In this case, the wavefield
gradient is used to calculate propagation angles. Based on
our relative phase-error analyses and numerical experiments,
the main advantages of the OPF1 method can be summarized
as follows:

1) The OPF1 migrator is adequate for common one-way
wavefield extrapolation applications, and its accurate
dip angles (approximately 55◦ at a relative phase error
of 1%) are similar to those of the FFD and OCF meth-
ods for arbitrary lateral velocity contrasts.

2) The OPF1 migrator requires only three Fourier trans-
forms formigration, and it is obviously superior tomost
of the current Fourier methods in terms of the computa-
tional cost. In addition, this approach has the potential
ability to improve the computational efficiency of the
transform by using a much faster FFT (possibly with
FFT chips) compared to the traditional FFD method.

3) The OPF1 migrator is a pure Fourier method; thus, it is
immune to numerical dispersion for coarse grids and
high-frequency waves. In addition, this migrator has no
operator splitting errors for 3D cases; thus, it can be
easily extended from two to three dimensions.

APPENDIX
A. BORN DISPERSION RELATIONSHIP FOR THE ONE-WAY
LIPPMANN-SCHWINGER INTEGRAL EQUATION
This appendix illustrates a brief derivation of (2). Wave
propagation in heterogeneous media can be described
by the generalized Lippmann-Schwinger integral equa-
tion. We slice heterogeneous media horizontally into a
stack of heterogeneous slabs and apply the plane-wave
representation of the Hankel function to the generalized
Lippmann-Schwinger integral equation. We obtain the fol-
lowing one-way Lippmann-Schwinger integral equation:

(kz + k ′z)u(kx , z+1z)−
1zk0
2

Fx(kx , z+1z)

=

[
2kzu(kx , z)+

1zk0
2

Fx(kx , z)
]
exp (ikz1z) , (A-1)

where u is the seismic displacement vector, kx and kz are the
horizontal and vertical wavenumbers, respectively, k ′z is the
vertical wavenumber related to the media immediately fol-
lowing the slab, k0 is the reference wavenumber, Fx (kx , z) =
FTx {ik0 [n (r)− 1] u (r)} with FT x being the Fourier trans-
form from x to kx , and n (r) is the refractive index, with r
being the position vector. This equation preserves the main
characteristics of wavefields in heterogeneous media and
reduces the corresponding computational cost.

We normalize the wavenumbers k̄x = kx
/
k0, k̄z =

kz
/
k0, k̄ ′x = kx

/
k ′0, and k̄

′
z = kz

/
k ′0, where k

′

0 is the back-
ground wavenumber of the adjacent media. For convenience,
we take the refractive index n(r) of the slab as different
n values to avoid the convolution of Fx(kx , z+1z); thus,
the following analysis within the Fourier domain proceeds by
decomposing the heterogeneous slab into a series of homoge-
neous slabs. In this sense, (A-1) can be written as

u(kx , z+1z)[1−
ik01zO(n)

2(k̄z + k̄ ′z)
]

= u(kx , z)[1+
ik01zO(n)

2(k̄z + k̄ ′z)
] exp(ikz1z), (A-2)

where O(n) is the relative slowness perturbation defined as
O(n) = n(r)2− 1, with n(r) being the refractive index. (A-2)
can be written as

u(kx , z+1z) = u(kx , z)

× exp

[
2i arctan

(
k01zO(n)

2(k̄z + k̄ ′z)

)]
exp (ikz1z) . (A-3)

With the Taylor series expansion of the arctangent terms of
(A-3) inside the bracket for∣∣∣∣∣k01zO(n)2(k̄z + k̄ ′z)

∣∣∣∣∣ ≤ 1 (A-4)

and taking the first-order term, we obtain

arctan

(
k01zO(n)

2(k̄z + k̄ ′z)

)
≈
k01zO(n)

2(k̄z + k̄ ′z)
. (A-5)

Substituting (A-5) into (A-3) yields

u(kx , z+1z) = u(kx , z)

× exp

[
i
k01zO(n)

2(k̄z + k̄ ′z)

]
exp (ikz1z) . (A-6)

From equation A-6, we obtain the following degenerate
dispersion equation for the one-way Lippmann-Schwinger
integral equation for heterogeneous slabs:

k̄z =
√
1− k̄2x +

2 (n− 1)√
1− k̄2x +

√
1− k̄ ′2x

. (A-7)

Let k̄x ≈ k̄ ′x without considering refracted waves, and substi-
tute this relation into (A-7) to yield the following degenerate
dispersion equation:

k̄z =
(
n− k̄2x

)/√
1− k̄2x . (A-8)

B. PSEUDO-PADÉ APPROXIMATION
This appendix illustrates a brief derivation of (4). The
Fourier matching algorithms based on (3) may not be suf-
ficiently accurate for forward wave propagation in complex
media with strong velocity contrasts. To avoid additional
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implicit FD implementation steps, we consider the following
separation-of-variables operator decomposition:

k̄z
(
k̄x , n

)
≈

m∑
j=1

fj
(
k̄x
)
gj (n) . (B-1)

In this approach, we need to address the following two prob-
lems: the construction of the splitting operators fj

(
k̄x
)
and

gj (n) and the application of the Fourier transform algorithm
to (B-1).

Initially, from the physical understanding of (B-1), the
best way to construct the splitting operators fj

(
k̄x
)
and gj (n)

might be to take gj (n) as a function of the split-step term
(i.e., gj(n) = (n− 1)j) and then to approximate fj(k̄x) as a term
of the rational functions; that is, fj

(
k̄x
)
= ajk̄2x

/(
1+ bjk̄2x

)
,

where the coefficients aj and bj do not vary with the refractive
index n and can be modified to reduce dispersion errors.
Actually, because |k̄x | ≤ 1 for one-way propagation, the term
(1 − k̄2x )

−1/2 can be approximated by the following pseudo-
Padé expansion:

(1− k̄2x )
−1/2 = 1+

m∑
j=1

ajk̄2x
1+ bjk̄2x

. (B-2)
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