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Abstract
The Sichuan–Yunnan–Guizhou metallogenic province of Southwest China contains more than 200 Mt of Pb–Zn ore in
carbonate-hosted Pb–Zn deposits, representing ~ 27% of the total Pb and Zn resources of China. Sources of metals and pathways
of ore-forming fluids were elucidated through a study of the Pb–Zn–S–Cd isotopic compositions of sphalerite from the
Tianbaoshan, Fusheng, Maozu, Jinshachang, and Daliangzi carbonate-hosted Pb–Zn deposits. δ34S values indicate that S in
the deposits is derived mainly from evaporites in Cambrian to Triassic sedimentary strata, sulfates coexisting with sulfides, and
Meso–Neoproterozoic folded basement. δ66Zn values and Pb isotopic ratios indicate that these metals originate mainly from
Sinian to lower Permian sedimentary rocks and Proterozoic basement. There is a trend towards isotopically heavier Cd and Zn
compositions of sphalerite from Maozu to Daliangzi, Jinshachang, and Tianbaoshan, which are all hosted in the upper Sinian
Dengying Formation. Previous studies showed that there would be a trend of enrichment in heavier Zn and Cd isotopes following
the migration of fluids and precipitation of minerals. The above observations suggest that the ore-forming fluids of these deposits
are probably derived from the same hydrothermal fluid system. The fluids most likely flowed through Maozu first, migrating
along the Xiaojiang and Anninghe fault belts and their branch faults to Daliangzi, Jinshachang, and Tianbaoshan, respectively. Zn
and Cd isotopes could be useful tools in tracing the pathways of ore-forming fluids in this district, and heavier Zn and Cd isotopic
compositions could provide a geochemical fingerprint for detecting remote orebodies in large hydrothermal fluid systems.
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Introduction

The Sichuan–Yunnan–Guizhou (BSYG triangle^) Pb–Zn
metallogenic province in the western Yangtze Block of

Southwest China contains more than 400 Pb–Zn deposits,
with ~ 200 Mt of Pb–Zn ore having average Pb and Zn
grades of 5 wt% and 10 wt%, respectively. Resources iden-
tified in this area represent ~ 27% of the total Pb and Zn
resources of China (Zhang et al. 2013; Zhou et al. 2014b).
The deposits are hosted in Sinian to Permian carbonate
rocks, structurally controlled by thrust faults and folds,
and spatially associated with ~ 260 Ma Emeishan flood
basalts (Zhou et al. 2002, 2014b). Many Pb–Zn deposits
in the area are known for extreme enrichment in trace ele-
ments, such as the Huize Ge-rich (Fu 2004; Han et al.
2012; Ye et al. 2011; Wu 2013; Zhu 2014), Fule Cd-rich
(Si 2005; Zhu et al. 2013, 2017; Zhu 2014), and
Tianbaoshan Cd-rich (Fu 2004; Zhu 2014) deposits. To
better constrain their origins and to trace their metal
sources, various deposit types have been proposed on the
basis of their geology and geochemistry including, for
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example, results of fluid inclusion and C–H–O–S–Pb iso-
topic studies (Xie 1963; Huang et al. 2003, 2004; Li 2003;
Li et al. 2007; Zhu et al. 2013; Zhang et al. 2015).
BMagmatic hydrothermal^ (Xie 1941, 1963), Bsedimentary
reworking^ (Tu 1984; Zhang 1984; Chen 1986; Zhao
1995; Liu and Lin 1999), and the most representative
MVT (Zhou et al. 2001; Zhang et al. 2007; Han et al.
2007a; Hu and Zhou 2012; Wu et al. 2013) deposits have
previously been described.

Sulfur and Pb isotopes have long been used to trace metal
sources and constrain origins of Pb–Zn deposits. Lead isoto-
pic studies have indicated that metals in the SYG Pb–Zn
deposits are sourced from Precambrian basement and/or
Paleozoic host rocks (e.g., Zhou et al. 2001; Zhou et al.
2013a, b, c, 2014a, b), while S isotopic studies have indicated
that reduced S was produced by thermochemical sulfate re-
duction (TSR) of evaporites in host strata (e.g., Han et al.
2007a; Zhou et al. 2014a, b). Liu et al. (2017) considered that
S in the SYG deposits was produced from sulfates in the
Youjiang Basin where a thermal anomaly of 200–350 °C de-
veloped during the Middle Triassic. This anomaly may have
caused TSR, reducing aqueous sulfate in basin brine. Recent
studies indicate that stable Cd and Zn isotopes have potential
in elucidating ore formation processes (Kelley et al. 2009;
Zhu et al. 2013; Wen et al. 2016). Zhu et al. (2013) found
that the various types of Pb–Zn deposits have characteristic
Cd contents and isotopic compositions, and Wen et al. (2016)
postulated that Cd isotopic compositions could be an effec-
tive indicator of ore formation processes and deposit classifi-
cation. Previous studies have also shown that during the evo-
lution of fluids from early to late stages, residual fluids and
late-stage sulfide precipitates exhibit heavier Zn isotopic
compositions than those precipitated earlier (Mason et al.
2005; Wilkinson et al. 2005; John et al. 2008; Sivry et al.
2008; Kelley et al. 2009; Dekov et al. 2010; Zhou et al.
2014a, b). There are also significant differences in Zn isotopic
compositions among various crustal sources. For example,
the average δ66Zn values for silicate Earth and deep seawater
are 0.28‰ ± 0.05‰ (Chen et al. 2013) and ~ 0.50‰ (Little
et al. 2014; Zhao et al. 2014), respectively, while δ66Zn
values of marine carbonate can isotopically heavier up to ~
1.3‰ (Pichat et al. 2003; Kunzmann et al. 2013), with such
differences indicating a potential for Zn isotopes in tracing
sources of the metal. These studies suggested that different
stratigraphic units could exhibit similar or different Zn isoto-
pic compositions, and leaching and concentration of Zn in
fluid during migrating through the host-rock sequence could
also change their isotopic compositions. This provides a pos-
sibility utilizing Zn isotopes to demonstrate the sources and
pathways of ore-forming fluids for the Pb-Zn deposits.

However, there is a lack of systematic and comparative
studies of the SYG Pb–Zn metallogenic province, especially

for non-traditional isotopes such as Zn and Cd, and the
metal sources remain controversial. The present study aimed
to elucidate metal sources and the pathways of their ore-
forming fluids. Sphalerite separates from five representative
carbonate-hosted Pb–Zn deposits within different strati-
graphic sequences, namely the Tianbaoshan, Fusheng,
Maozu, Jinshachang, and Daliangzi deposits in the south-
western part of the SYG Pb–Zn metallogenic province, were
selected for systematic Pb–Zn–S–Cd isotopic study
(Fig. 1a).

Geological background

Geological setting

The SYG triangle, on the southwestern margin of the Yangtze
Block (Fig. 1b), covers an area of ~ 170,000 km2 within north-
eastern Yunnan Province, northwestern Guizhou Province,
and southwestern Sichuan Province (Hu et al. 2016). The
triangle is confined by three regional fault belts extending
deep into basement rocks: the N–S-trending Anninghe, NE–
SW-trending Mile–Shizong, and NW–SE-trending Weining–
Shuicheng fault belts. It also contains the deep-seated N–S-
trending Xiaojiang fault belt (Fig. 1a). These long-lived fault
belts have been activated and reactivated by a number of tec-
tonic events and may have acted as conduits for Emeishan
basalts and hydrothermal fluids (Zhang 2008). The area also
contains numerous secondary NE–SW- and NW–SE-trending
faults and fold-and-thrust belts (Fig. 1a).

The stratigraphy of the SYG triangle includes pre-
Sinian basement, Sinian to lower Mesozoic submarine sed-
imentary sequences, and Jurassic to Cenozoic terrigenous
sediments. The crystalline basement of the Yangtze Block
is thought to consist of Archean (3.3–2.9 Ga) metamor-
phic rocks (Qiu et al. 2000; Gao et al. 2011). The late
Paleoproterozoic to early Mesoproterozoic Dongchuan
(1.7–1.5 Ga) and Mesoproterozoic Kunyang (1.2–0.9 Ga)
groups are widely distributed throughout the study area
and are dominated by siltstones, slates, sandstones, and
dolostones interbedded with tuffaceous units (Zhao et al.
2010; Hu et al. 2017a, b). These rocks form the basement,
which is tightly folded but only weakly metamorphosed
(Zhou et al. 2013b).

The southwestern Yangtze Block was a passive continen-
tal margin during the Sinian to Middle Triassic, leading to
deposition of thick submarine sedimentary sequences that
cover the basement rocks and are dominated by carbonates
and clastic sediments (Wu et al. 2013). The lower Sinian
units are dominantly coarse volcaniclastic sediments, while
the uppermost unit is a thick dolostone layer. Cambrian
rocks are dominantly clastic sediments and include black
shales, sandstones interlayered with dolostones, and
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Fig. 1 (a) Simplified geological map of the Sichuan-Yunnan-Guizhou MVT triangle (after Zhang et al. 2015; Zhu et al. 2016). (b) Simplified tectonic
map of South China (after Zhu et al. 2016)
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limestones. Ordovician sediments are dominantly lime-
stones, dolostones, marls, and shales. Silurian sediments
are dominated by fine-grained sandstones, shales,
dolostones, and limestones. Devonian sediments are domi-
nated by quartz sandstones, calcareous sandstones, shales,
limestones, dolomitic limestones, and dolostones, all of
which are overlain by Carboniferous limestones, oolitic
limestones, dolomitic limestones, and dolostones. Lower
Permian sediments include microcrystalline limestones,
brecciated limestones, dolomitic limestones, dolostones,
and argillaceous siltstones, overlain by voluminous
Permian Emeishan flood basalts erupted and emplaced at
263–251 Ma (Zhong and Zhu 2006; He et al. 2007; Xu
et al. 2008). The closure of the Paleo-Tethys Ocean was
followed by tectonism related to the Indosinian Orogeny
and post-Late Triassic completion of suturing between the
Indochina and South China blocks around the study area
(Cai and Zhang 2009). This led to the development of a
series of thrust belts and foreland basins on the periphery
of the region. The SYG triangle was also affected by sub-
sequent continuous intracontinental deformation and the de-
position of terrigenous sandstones, conglomerates, and fresh-
water marls of Jurassic to Cenozoic age (Wu et al. 2013).

The Tianbaoshan deposit

The Tianbaoshan Pb–Zn deposit is hosted in Sinian carbon-
ate rocks and is structurally controlled by the N–S-trending
Anninghe fault belt and its branch structures (Fig. 1a). In the
Tianbaoshan ore district, the Sinian stratum represents the
upper Sinian Dengying Formation, comprising mainly
dolostone. The overlying middle Cambrian Xiwangmiao
Formation is dominated by clastic rocks and black shales,
while the Upper Triassic Baiguowan Formation is composed
of continental sandstone and shale. NW–SE- and NNW–
SSE-trending faults and NE–SW-trending folds are inten-
sively developed in the ore district (Fig. 2a). The main folds
are the Tianbaoshan syncline and its secondary synclines
and anticlines (e.g., Xinshangou, Shagou synclines and
anticlines; Fig. 2a). In the ore field, diabase dikes occur in
the N–S- and NW–SE-trending faults and usually cut the
orebodies.

Major orebodies occur in dolostone of the upper Sinian
Dengying Formation and are structurally controlled by
concealed NW–SE-trending fractures (Fig. 2a). Underground
mining and exploratory drilling provide excellent access to two
ore sections (Tianbao and Xinshan) and three orebodies. The
largest orebody is in the Tianbao section and is 400 m deep,
285m long, and 2–50mwide. Ores in this body contain 1.8Mt
Pb–Zn with grades of 1.3–2.5 wt% Pb, 7.8–10.1 wt% Zn, and
96.3 g t−1 Ag (Wang et al. 2000). The ores also contain small
amounts of Ge, Ga, and Cd (Fu 2004) thought to be hosted in

sphalerite and galena (Zhou et al. 2011). The orebodies are
stratabound as tabular, lenticular, and vertical pipe forms with
sharp boundaries with host rocks.

The Pb–Zn ores are predominately sulfides, with small
amounts of oxidized ores. Ore minerals include sphalerite,
galena, pyrite, chalcopyrite, arsenopyrite, freibergite, and
pyrargyrite, with calcite, dolomite, and quartz as gangue
minerals (Fig. 4 T1–T4). Sulfide ores exhibit crystalline,
metasomatic, emulsion, graphic, heterogranular, and
cataclastic textures, with massive, disseminated, brecciat-
ed, veined, and banded structures (Wang et al. 2000; Zhu
et al. 2016). Ores of the Tianbaoshan deposit have under-
gone diagenetic, hydrothermal, and oxidized phases of
development. The hydrothermal period involved sulfide–
quartz, sulfide–carbonate, and carbonate stages. Two prin-
cipal mineral assemblages, pyrite–chalcopyrite–arsenopy-
rite–quartz and sphalerite–galena–pyrite–calcite, formed
in the sulfide–quartz and sulfide–carbonate stages, respec-
tively (Wang et al. 2000; Zhou et al. 2013a). In the py-
rite–chalcopyrite–arsenopyrite–quartz assemblage, pyrite
is fine-grained (0.1–0.5 mm) with xenomorphic granular
textures. In the sphalerite–galena–pyrite–calcite assem-
blage, sphalerite is fine- to coarse-grained (0.06–11 mm)
with xenomorphic to automorphic granular textures, and
is brown to yellow in color; galena has xenomorphic to
automorphic granular textures (Wang et al. 2000; Zhou
et al. 2013a). Wall-rock alteration includes dolomitization,
calcitization, silicification, and ferritization, of which do-
lomitization, calcitization, and silicification are closely
associated with Pb–Zn mineralization (ESM 1; Zhou
et al. 2013a).

The Fusheng deposit

In the Fusheng ore field, the stratigraphic sequence in-
cludes Quaternary, Lower Triassic, and Permian strata
(Fig. 2b). The Lower Permian Maokou Formation is
the principal ore-hosting sequence and predominantly
comprises gray dolomitic limestone and dolostone over-
lain by middle Permian Emeishan flood basalts. The
Emeishan flood basalts are in turn overlain by the upper
Permian Xuanwei Formation, which comprises mainly
sandstone, siltstone, and shale. The Lower Triassic
Feixianguan and Yongningzhen formation strata com-
prise siltstone, shale, dolostone, mudstone, and lime-
stone. Two fault systems are present in this area with
N–S- and NE–SW-trending faults, which all formed dur-
ing post-ore stages (Fig. 2b).

The Fusheng orebodies are 50–200 m long, 20–80 m
wide, and 0.2–7 m thick. They are stratabound and lentic-
ular in shape, with local pinching and swelling. Ores in the
Fusheng deposit are dominantly sulfide ores, with small
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Fig. 2 (a) Geological map of the
Tianbaoshan deposit (after He
et al. 2016). (b) Geological map
of the Fusheng deposit. (c)
Geological map of the Daliangzi
deposit (after Zhang et al. 2015)
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amounts of oxidized ores near the faults. The ore mineral-
ogy is relatively simple and includes mainly sphalerite, ga-
lena, pyrite, calcite, and dolomite (Fig. 4 F1–F4). Sulfide
ores exhibit brecciated, massive, disseminated, and veined
structures, of which brecciated ore is the dominant type
(Fig. 4 F1, F2). The principal ore minerals have colloform,
microcrystalline to coarsely crystalline granular, and
euhedral–subhedral–anhedral granular textures (Fig. 4 F3,
F4). The mineralization has been divided into three stages
(Si 2005): a sedimentary diagenetic stage, including sedi-
mentary pyrite in host carbonate rocks; a hydrothermal ore-
forming stage, including sphalerite, galena, pyrite, dolomite,
and calcite; and a supergene stage, including smithsonite
and dolomite.

Sphalerite is fine-grained to macrocrystalline, euhedral to
anhedral, with grain sizes of 0.1–10 mm. It occurs in brecci-
ated, massive, banded, and disseminated aggregates together
with galena, pyrite, dolomite, and calcite. Galena is fine-
grained to macrocrystalline, euhedral to subhedral or
subhedral to anhedral, with grain sizes of 1–30 mm (Fig. 4
F3). Dolomite occurs as coarse-grained crystals (1–3 mm) in
euhedral–subhedral granular aggregates and occurs primarily
in massive and banded aggregates and as veinlets within
orebodies (Fig. 4 F1, F2, F3). Calcite occurs mainly in dolo-
mite, and sometimes as veinlets within massive sphalerite and
galena. Wall-rock alteration includes dolomitization,
calcitization, and silicification.

The Daliangzi deposit

The stratigraphic sequence in the Daliangzi ore district
includes Quaternary, Lower Cambrian, and upper Sinian
strata (Fig. 2c). The upper Sinian Dengying Formation is
the principal ore-hosting sequence. It is up to 473 m thick
and contains thin-bedded to massive dolostone, thin-
bedded muddy siltstone, P-bearing dolostone, phosphate
rock, and quartz-banded dolostone. The overlying Lower
Cambrian Qiongzhusi, Canglangpu, and Longwangmiao
formations contain mainly sandstone, shale, and dolostone.
The ore district is located in a graben with many fissures
and fractures, with faults F1 and F15 (branches of the
Xiaojiang fault belt) being the largest (Fig. 2c). The area
to the north of F1 and south of F15 is a fault block
structure containing another 40 faults, including some
block fracture zones (R in Fig. 2c). The orebodies are
closely related to the fractures and block fracture zones.
No igneous rocks crop out in the mine area, although
middle Permian Emeishan basalts occur on the northwest
outer margin of the district.

The Daliangzi deposit contains five orebodies occurring as
veins cross-cutting the bedding. The ore mineralogy is rela-
tively simple and includes mainly sphalerite, galena, pyrite,

calcite, and dolomite (Fig. 4 D1–D4). The major ore minerals
are sphalerite and galena, associated with minor pyrite, chal-
copyrite, arsenopyrite, marcasite, freibergite, and pyrargyrite.
Gangue minerals are primarily dolomite and calcite, with mi-
nor quartz. The ores have massive, brecciated, and dissemi-
nated structures and occur as stockwork. Ore textures are
fine-grained, spherulitic, framboidal, metasomatic, and emul-
sion. The ores generally occur as cavity or fracture fillings in
dolomitic wall rocks. The mineralization has been divided
into sedimentary, hydrothermal, and weathering periods
(Zheng and Wang 1991). Minerals formed during the sedi-
mentary period include dolomite, rare pyrite, and sphalerite.
The hydrothermal period can be subdivided into three stages:
pyrite–arsenopyrite, sphalerite–galena, and sphalerite–quartz.
In the pyrite–arsenopyrite stage, a mineral association of py-
rite + arsenopyrite + chalcopyrite + marcasite + quartz was
formed. During the sphalerite–galena stage, an association of
sphalerite + galena + chalcopyrite + calcite + quartz was
formed (Zheng and Wang 1991). Minerals with a higher de-
gree of idiomorphism, formed in the sphalerite–quartz stage,
include sphalerite, calcite, quartz, and galena. The deposit
was weathered after formation and formed a mineral associ-
ation comprising mainly smithsonite and cerussite (Zheng
and Wang 1991). Wall-rock alteration includes silicification,
dolomitization, calcitization, and pyritization distributed lo-
cally in orebodies and wall rocks.

The Maozu deposit

Orebodies of the Maozu deposit are hosted in dolostone of
the upper Sinian Dengying Formation and are structurally
controlled by Maozu fold-and-thrust tectonic fractures
(Fig. 3 D–1). In the Maozu ore field, upper Sinian carbon-
ates and Cambrian sediments (dominantly sandstone, lime-
stone, and black shale) formed the Ganshulin and Baika
synclines, and Hongfadong and Changpo anticlines (Fig.
3 D–1). The Ganshulin, Baika, Hongfadong, and Changpo
structures trend axially NNE or NE. Four orebodies are
delineated in the upper part of the Dengying Formation
and five in the lower part, with one body being 240–
930 m long, 45–725 m wide, and 1.7–8.3 m thick and
containing 0.77–6.11 wt% Pb and 3.85–11.48 wt% Zn.
The orebodies are stratabound and located within wall-
rock boundaries or occur as veins cross-cutting the bedding
(Fig. 3 D–2; Liu 2009).

Ores are predominantly sulfides, with small amounts of
oxidized ores, and their mineralogy includes sphalerite, gale-
na, pyrite, and chalcopyrite, with calcite, dolomite, and quartz
as gangue minerals (Fig. 4 M1–M4). Sulfide ores have
euhedral–subhedral–anhedral granular, metasomatic,
colloform, and mosaic textures; with massive, dissemi-
nated, banded, and veined structures. Mineralization can
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Fig. 3 (D-1) Geological map of
the Maozu deposit (after Zhou
et al. 2013d). (D-2) A-A′ cross
section of the Maozu deposit
(after Zhou et al. 2013d). (E-1)
Geological map of the
Jinshachang area (after Zhou et al.
2015). (E-2) Geological map of
the Jinshachang deposit (after
Zhou et al. 2015). (E-3) Cross
section (O–P) of the Jinshachang
deposit (after Zhang et al. 2015)
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be considered in terms of diagenetic, hydrothermal, and
oxidized periods, of which the hydrothermal period can
be further subdivided into sulfide–carbonate–quartz and
carbonate stages. For the sulfide–carbonate–quartz stage,

mineral assemblages are pyrite–sphalerite–dolomite,
quartz–sphalerite–chalcopyrite–galena–dolomite, and
sphalerite–galena–dolomite–quartz (Fig. 4 M1–M4;
Zhou et al. 2013d). Wall-rock alteration involved mainly
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Fig. 4 Field, ore, and microscopic pictures of the Tianbaoshan (T1–
T4), Fusheng (F1–F4), Daliangzi (D1–D4), Maozu (M1–M4) and
Jinshachang (J1–J4) Pb-Zn deposits. (T1) breccia Zn-Pb ore; (T2)
massive Zn-Pb ore; (T3) metasomatic sphalerite and galena–
granular quartz–patch calcite; (T4) vein calcite in the early stage
sphalerite and galena. (F1) field photograph of ore body; (F2) sphal-
erite and galena vein in dolomite; (F3) disseminated galena with
patchy sphalerite and dolomite; (F4) metasomatic sphalerite and ga-
lena in patch dolomite. (D1) Oxidized ores in host rocks; (D2) brec-
cia Zn–Pb ore; (D3) metasomatic sphalerite and galena–patch dolo-
mite and quartz–granular pyrite; (D4) photomicrograph showing

massive galena and spotted chalcopyrite and sphalerite. (M1) dissem-
inated galena in dolostone; (M2) disseminated sphalerite in
dolostone; (M3) metasomatic sphalerite and galena–patch dolomite
and quartz; (M4) metasomatic sphalerite and patch chalcopyrite in
dolomite and quartz. (J1) patchy fluorite and sphalerite in dolostone;
(J2) disseminated galena and patchy sphalerite in barite; (J3) patchy
fluorite in granular sphalerite and galena; (J4) metasomatic sphalerite
and barite–xenomorphic granular pyrite. Mineral abbreviations: Brt,
barite; Cal, calcite; Cp, chalcopyrite; Dol, dolomite; Flu, fluorite; Gn,
galena; Py, pyrite; Qz, quartz; Sph, sphalerite
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dolomitization, calcitization, Fe–Mn carbonatization, and
ferritization, of which dolomitization and calcitization
were closely associated with Pb–Zn mineralization, and
Fe–Mn carbonatization and ferritization are the impor-
tant indicators for ore prospecting at the surface (Zhou
et al. 2013d).

The Jinshachang deposit

The stratigraphic sequence in the Jinshachang ore dis-
trict includes Sinian dolostone; Cambrian sandstone,
limestone, and shale; Ordovician limestone and sand-
stone; Silurian limestone, sandstone, and mudstone; low-
er Permian limestone and shale; and middle Permian
Emeishan flood basalts. Mineralization is hosted by up-
per Sinian Dengying dolostones and lower Cambrian
Meishucun phosphoric dolostones located in areas asso-
ciated with the NW–SE-trending Jinshachang anticline,
WNW–ESE-trending Jinshachang thrust fault, and sev-
eral second-order faults around the deposit (Fig. 3 E–1,
E–2).

The deposit contains ~ 0.42Mt of Pb–Zn and comprises 27
orebodies. The main orebodies are 72–665 m long, 137–
175 m wide, 1–6 m thick, and with grades of 0.79–
10.76 wt% Zn, 1.56–7.14 wt% Pb, and 14.1–128.3 g t−1 Ag
(Guo 2007). The orebodies dip at 5°–25°, and most form
stratabound lenses within interlayered fracture zones.
Several small vein-like orebodies are associated with
second-order faults (Fig. 3 E–3).

Ores include sulfide and oxidized ores and a mixture
of these (Bai et al. 2013; Zhang et al. 2015), and min-
eralization can be considered in terms of hydrothermal
and oxidized periods. Ore minerals include sphalerite,
galena, and pyrite, with barite, fluorite, quartz,
dolostone, and calcite as gangue minerals (Fig. 4 J1–
J4). Sulfide ores are dominated by massive, disseminat-
ed, brecciated, and veined structures. The minerals dis-
play idiomorphic–hypidiomorphic–xenomorphic granu-
lar, metasomatic dissolution, intersertal, and cataclastic
textures (Fig. 4 J3, J4; Bai et al. 2013; Zhang et al.
2015). Oxidized and mixed ores display complex assem-
blages of smithsonite, limonite, cerusite, sulfide, quartz,
fluorite, barite, and carbonate minerals (Bai et al. 2013;
Zhang et al. 2015). The hydrothermal period can be
divided into pyrite–silicified dolostone, sulfide–barite–
fluorite, and barite–fluorite–quartz stages, with the sec-
ond being the main stage containing sphalerite–fluorite
(Fig. 4 J1), sphalerite–galena–barite (Fig. 4 J2), sphal-
erite–galena–fluorite (Fig. 4 J3), and galena–barite–fluo-
rite (Fig. 4 J4; Bai et al. 2013; Zhou et al. 2015). Wall-
rock alteration includes silicification, fluoritization,
baritization, and dolomitization (Bai et al. 2013; Zhang
et al. 2015).

Sampling and analytical methods

Sample collection and preparation

Representative samples from different locations and ore
types were collected from underground ore bodies of the
studied Pb–Zn deposits. The approximate sampling posi-
tions are projected on surface as shown in Figs. 2 and 3.
A total of 45 sphalerite samples from the Tianbaoshan (3),
Fusheng (8), Daliangzi (17), Maozu (6), and Jinshachang
(11) Pb–Zn deposits were analyzed for S, Pb, Zn, and Cd
isotopes. Twenty-four galena (Tianbaoshan 2, Fusheng 4,
Daliangzi 10, Maozu 2 and Jinshachang 6) and 2
Jinshachang barite samples coexisting with sulfides were
analyzed for S isotopes.

Minerals were handpicked under a binocular micro-
scope, and then crushed and pulverized in an agate mor-
tar. Sphalerite separates analyzed for Zn and Cd isotopes
were pretreated by chemical separation and purification
to avoid interferences and matrix effects. Chemical sep-
aration and purification procedures were conducted at the
State Key Laboratory of Ore Deposit Geochemistry
(SKLODG), Inst i tute of Geochemistry, Chinese
Academy of Sciences, Guiyang, China. During these
steps, 2–5 mg sphalerite powder samples was weighted
into Savillex screw top beakers and then digested using a
mixture of ultrapure HCl (2 ml) + HNO3 (1 ml). After
complete dissolution, 1 ml 8 N HCl was added to the
beaker and then heated to dryness at 70–80 °C. This
process was repeated two times to ensure that all cations
were converted to chloride species (Huang et al. 2016).
The final residues were dissolved in 1 ml 8 N HCl and
3 ml 2 N HCl in preparation for chemical separation and
purification of zinc and cadmium, respectively. Zinc and
cadmium were extracted by pre-cleaned 100–200 mesh
AG-MP-1M (3 ml, chloride form) anion exchange resin,
using a procedure adapted from Maréchal et al. (1999)
and Wen et al. (2016), respectively. After chemical sep-
aration and purification, the Zn and Cd fractions were
dissolved in 2 ml 2% HNO3 in preparation for isotope
analysis. All reagents were purified in an ultra-clean lab-
oratory; HNO3 and HCl were purified by sub-boiling
distillation; and Milli-Q H2O (18.2 MΩ) was used.

Sulfur isotopic analysis

Sulfur isotope analyses were performed using an EA-
MAT-253 mass spectrometer at the SKLODG. Samples
were combusted with copper oxide under vacuum at
1000 °C to produce SO2 which was used for the gas mass
spectrometer measurements (Robinson and Kusakabe
1975). S isotopic compositions are reported relative to
the Vienna Canyon Diablo Troilite (V–CDT) international
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standard. Sulfur isotopic data are reported in standard δ–
notation in per mil: δ34/32S = [(34S/32S)sample/(

34S /32S)V-CDT
− 1] × 1000‰. Measured δ34S (δ34S = δ34SVCDT = δ34/32S)
values of IAEA-S1, IAEA-S2, and IAEA-S3 standards
are − 0.09‰ ± 0.16‰, 22.49‰ ± 0.21‰, and − 32.59‰
± 0.16‰ (mean ± 2SD; 2SD stands for two times the
standard deviation of the population of duplicate mea-
surements of a sample solution), respectively. These
values agree well with those reported previously (Zhu
et al. 2016).

Lead isotopic analysis

Lead isotopic measurements were conducted on a Neptune
Plus multi-collector inductively coupled plasma mass spec-
trometer (MC–ICP–MS) at the SKLODG. For Pb isotopic
analysis, sphalerite separates were crushed and pulverized in
an agate mortar, followed by decomposition using a mixture
of ultrapure HNO3 and HCl. After incipient dryness,
decomposed samples were dissolved in HCl for Pb column
separation using conventional ion exchange chromatography
(Zhu et al. 2018). Samples were doped with Tl to facilitate
corrections for instrumental mass bias based on an exponential
mass law dependence. Duplicate analyses of the NBS-981 Pb
isotopic standard gave a reproducibility of 206Pb/204Pb =
16.9360 ± 0.0063, 207Pb/204Pb = 15.4898 ± 0.0086, and
208Pb/204Pb = 36.7029 ± 0.0263 (mean ± 2SD), in agreement
with reference values reported previously (Belshaw et al.
1998; Zhou et al. 2013a, 2013b, 2013d, 2013e; Gao et al.
2018).

Zinc isotopic analysis

Zinc isotopic analyses were carried out using a Neptune Plus
MC–ICP–MS at the SKLODG. The sample standard
bracketing method was used for Zn isotopic analyses to cor-
rect for instrumental mass fractionation (Zhu et al. 2002;
Schoenberg and Von 2005; Borrok et al. 2007; Li et al.
2008; Dauphas et al. 2009; Duan et al. 2016). Zn concentra-
tions in samples and reference standards (IRMM-3702) were
matched to within 10%. Analyses were conducted in static
mode; blank signals were subtracted from each of the mea-
sured masses; instrumental drift was corrected by averaging
ratios measured in bracketing reference solutions; and only
sections with linear or smooth drifts for the reference solution
were used to calculate sample δ values. IRMM-3702 was used
as an internal reference standard and CAGS Zn as a secondary
reference material. Zinc isotopic data are reported in standard
δ–notation in per mil: δx/64Zn = [(xZn/64Zn)sample/(

xZn
/64Zn)IRMM-3702 − 1] × 1000‰, where xZn means the 66Zn,
67Zn, or 68Zn isotope. Repeated measurements of the CAGS
Zn solution gave a δ66/64Zn (δ66Zn) value of − 0.87‰ ±
0.08‰ (mean ± 2SD), within the range of previous

determinations (− 0.77 to − 0.87‰; Tang et al. 2016). The
δ68Zn–δ66Zn diagram (Fig. 5a) shows that Zn isotopic com-
positions of all sphalerite samples plot within error limits of
the theoretical equilibrium mass fractionation lines, indicating
that isobaric interferencewas effectively removed by chemical
purification and correction during analysis. All δ66Zn values
are reported relative to the JMC Lyon Zn standard 3-0749 L
(δ66ZnJMC-Lyon = δ66ZnIRMM-3702 + 0.32; ESM 2).

Cadmium isotope analysis

Cadmium isotopic analyses were performed on a MC–
ICP–MS at the SKLODG. Matrix effects, concentration
effects, and medium effects during Cd isotopic analysis
have been studied previously by Wombacher et al. (2003,
2004) and Christophe et al. (2005). Here, the standard sam-
ple bracketing method was again used, with concentrations
in samples and standards (NIST SRM-3108 Cd) being
matched to within 10%. This and other conditions were
the same as those reported for Zn in the BZinc isotopic
analysis^ section. NIST SRM 3108 Cd was used as an
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internal reference standard, and JMC Cd as a secondary
reference material. Standard δ notation, as defined by the
relationship shown below, was used to present the results:
δx/110Cd = [(xCd/110Cd)sample/(

xCd/110Cd)NIST SRM 3108–
1] × 1000‰, where xCd means the 111Cd, 112Cd, 113Cd,
or 114Cd isotope. Repeated measurements of the JMC Cd
solution gave a δ114/110Cd (δ114Cd) value of − 1.63‰ ±
0.05‰ (mean ± 2SD), within the previously reported range
of − 1.56 to − 1.63‰ for this solution (Abouchami et al.
2012; Zhang et al. 2016). The δ114Cd–δ112Cd diagram
(Fig. 5b) shows that the Cd isotopic compositions of all
sphalerite samples fall within error limits of the theoretical
equilibrium mass fractionation lines, indicating that isobar-
ic interferences were effectively removed by chemical pu-
rification and correction during analysis. All δ114Cd values
a re repo r t ed re l a t i ve to the Spex Cd s tanda rd
(δ114CdSpex = δ

114CdNIST SRM 3108 + 0.11; ESM 2).

Results

Sulfur isotopic composition

Sphalerite separates from the Tianbaoshan, Fusheng,
Daliangzi, Maozu, and Jinshachang Pb–Zn deposits have
δ34S values (n, mean ± 1σ; n is the number of samples, 1σ is
the standard deviation of values for n sample) of + 4.3 to +
5.4‰ (n = 3, + 4.8‰ ± 0.6‰), + 14.5 to +15.9‰ (n = 8, +
15.1‰ ± 0.4‰), + 14.3 to + 15.8‰ (n = 17, + 14.9‰ ±
0.4‰), + 12.4 to + 14.0‰ (n = 6, + 12.9‰ ± 0.6‰), and +
4.0 to + 12.6‰ (n = 11, + 7.1‰ ± 2.9‰) (ESM 2), while ga-
lena has δ34S values of + 2.2 to +3.2‰ (n = 2, + 2.7‰ ±
0.7‰), + 9.2 to + 11.5‰ (n = 4, + 10.9‰ ± 1.1‰), + 10.8 to
+ 12.2‰ (n = 10, + 11.4‰ ± 0.5‰), + 5.9 to + 11.7‰ (n = 2,
+ 8.8‰ ± 4.1‰), and + 3.0 to + 7.2‰ (n = 6, + 4.7‰ ± 1.6‰)
(ESM 3), respectively. Barite separates from the Jinshachang
deposit have δ34S values of + 20.8 to + 32.6‰ (n = 2, +
26.7‰ ± 8.4‰) (ESM 3; Fig. 6).

Pb isotopic composition

Sphalerite separates from the Tianbaoshan, Fusheng,
Daliangzi, Maozu, and Jinshachang deposits have
206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios, respectively,
as follows (ESM 2): 18.4155–18.4371, 15.7244–15.7272, and
38.761–38.771; 18.5637–18.6078, 15.6887–15.6939, and
38.563–38.586; 18.2364–20.2592, 15.6810–15.8405, and
38.478–40.466; 18.2112–19.6482, 15.6762–15.7859, and
38.407–39.824; and 20.6093–21.1834, 15.8516–15.8976,
and 40.768–41.442. Pb isotopic compositions of sphalerite
separates from the Jinshachang deposit are much more radio-
genic than those from the other deposits (Fig. 7).

Zn isotopic composition

Sphalerite separates from the Tianbaoshan, Fusheng,
Daliangzi, Maozu, and Jinshachang deposits have δ66Zn
values (n, mean ± 1σ) of + 0.23 to + 0.26‰ (n = 3, + 0.24‰
± 0.01‰), + 0.09 to + 0.33‰ (n = 8, + 0.23‰ ± 0.08‰), −
0.21 to + 0.22‰ (n = 17, − 0.01‰ ± 0.13‰), − 0.49 to −
0.10‰ (n = 6, − 0.22‰ ± 0.15‰), and − 0.05 to + 0.16‰
(n = 11, + 0.05‰ ± 0.06‰), respectively (ESM 2). δ66Zn
values of upper Sinian to lower Permian sedimentary whole-
rock samples range from − 0.24 to + 0.32‰, with a mean of +
0.11‰ ± 0.18‰ (Zhou et al. 2014b; He et al. 2016; He 2017).
In contrast, Sedimentary whole-rock samples from the
Proterozoic folded basement and Permian Emeishan flood
basalts samples have whole-rock δ66Zn values of + 0.07 to
+ 0.62‰, + 0.32 to +0.44‰, with a mean of + 0.35‰ ±
0.08‰, + 0.29‰ ± 0.18‰, respectively (Zhou et al. 2014b;
He 2017).

Cd isotopic composition

Sphalerite separates have an overall range in δ114Cd values of
− 0.10 to +0.53‰, with a variation of 0.63‰ and mean of +
0.18‰ ± 0.16‰ (ESM 2). Sphalerite from the Tianbaoshan,
Fusheng, Daliangzi, Maozu, and Jinshachang deposits has
δ114Cd values (n, mean ± 1σ) of + 0.25 to + 0.29‰ (n = 3,
+ 0.28‰ ± 0.02‰), + 0.07 to + 0.53‰ (n = 8, + 0.40‰ ±
0.17‰), − 0.10 to + 0.44‰ (n = 17, + 0.11‰ ± 0.13‰), −
0.05 to +0.10‰ (n = 6, + 0.05‰ ± 0.06‰), and + 0.08 to +
0.22‰ (n = 11, + 0.16‰ ± 0.05‰), respectively (ESM 2).

Discussion

Possible sources of sulfur

Primary ores in the Tianbaoshan, Fusheng, and Daliangzi
Pb–Zn deposits have a simple S mineralogy that lacks
sulfates. δ34SΣS– f lu id values of the Tianbaoshan,
Fusheng, and Daliangzi deposits, calculated from δ34S
values of sphalerite and coexisting galena, are + 4.2‰
(Zhu et al. 2016), + 14.6‰, and + 10.3‰, respectively.
Besides, in the temperature range 110–290 °C, the δ34S
value of sphalerite is very similar to that of original ore-
forming fluid (Ohmoto and Rye 1979; Seal 2006), so the
average δ34S value of sphalerite may alternatively be used
as an estimate of the fluid value. The δ34S values of ore-
forming fluid determined by these two methods are very
similar. The largest difference occurs in the Daliangzi de-
posit, where the average δ34S value of sphalerite is only
4.6‰ greater than the fluid value calculated from sphal-
erite and coexisting galena. This observation indicates
that sulfur isotopic compositions of sulfides could reflect
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ore-forming fluid (δ34SΣS–fluid) values (Ohmoto 1972) of
the Tianbaoshan, Fusheng, and Daliangzi Pb–Zn deposits.

Assuming sulfide precipitation under thermal equilibri-
um conditions, isotopic fractionation factor (α) given by
Ohmoto and Rye (1979) may be used to calculate the tem-
perature of formation of the coexisting sphalerite–galena
pairs:

1000lnαSp�Gn ¼ 0:73� 106=T2;

where 1000lnαSp�Gn≈Δ
34SSp�Gn and T ¼ ∘

K

Calculated ore-forming temperatures for the Tianbaoshan,
Fusheng, and Daliangzi deposits are 121–288 °C (average
191 °C), 151–196 °C (171 °C), and 128–182 °C
(163 °C) (ESM 4; Clayton 1981), respectively. These tem-
peratures are roughly consistent with homogenization
temperatures based on previous fluid inclusion studies of
the Tianbaoshan (80–275 °C; Yu 2014), Fusheng (130–
240 °C; Si 2005), and Daliangzi (140–230 °C; Zheng and
Wang 1991) deposits (ESM 1), indicating that precipita-
tion of sulfide minerals occurred under conditions of S
isotopic equilibrium.

Fig. 6 Histogram of δ34S values of sulfur-bearing minerals from the
Tianbaoshan (TBS), Fusheng (FS), Daliangzi (DLZ), Maozu (MZ),
Jinshachang (JSC) Pb-Zn deposits. The sources of published data are as

follows: Daliangzi (Yuan et al. 2014), Jinshachang (Tu 1984; Liu and Lin
1999; Bai et al. 2013), Maozu (Liu and Lin 1999; Liu 2009; Zhou et al.
2013d), Tianbaoshan (Fu 2004; Zhou et al. 2013a; Zhu et al. 2016)
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Previous studies have obtained sulfide δ34S values for
the Tianbaoshan, Fusheng, Daliangzi, and Maozu Pb–Zn
deposits of + 0.0 to + 9.6‰ (Fu 2004; Zhou et al. 2013a;
Zhu et al. 2016), + 9.2 to + 15.9‰, + 9.7 to +20.6‰
(Yuan et al. 2014), and + 5.9 to +19.2‰ (Liu and Lin
1999; Liu 2009; Zhou et al. 2013d), respectively (Fig. 6;
ESM 2 and 3). The Jinshachang deposit differs from the
other four in that it contains sulfates (barite) coexisting
with sulfides. Sulfide δ34S values there (ESM 2 and 3)
are + 1.1 to + 13.4‰ (Tu 1984; Liu and Lin 1999; Bai
et al. 2013), while barite δ34S values are + 20.8 to
+35.2‰ (Bai et al. 2013), similar to those of Cambrian–
Triassic seawater sulfates (+ 15 to + 35‰) and evapo-
rates (+ 15 to + 30‰) in Cambrian–Triassic sedimentary
strata (Claypool et al. 1980; Liu and Lin 1999; Seal 2006;
Han et al. 2007a; Bai et al. 2013; Zhou et al. 2013d; Zhou
et al. 2015).

The obviously lighter δ34S values for the Tianbaoshan
deposit indicate a different S source for this deposit.

There are three interpretations concerning the source of
S for the Tianbaoshan deposit: (1) a mixture of mantle
and sedimentary rock sources (Guan and Li 1999; Kou
et al. 2015); (2) TSR reaction of evaporates in host strata
resulting in lower δ34S values than the other SYG Pb–Zn
deposits (Shao and Li 1997; Li 2003; Fu 2004; Zhang
2008; Wu 2013; Zhou et al. 2013a); and (3) reduced S
leaching from the basement (Zhu et al. 2016). It has been
confirmed that large amounts of volcanic or intrusive
rocks (Meso–Neoproterozoic folded basement) exist be-
neath the Sinian Dengying Formation (Liu and Lin
1999; Fu 2004). Zheng and Wang (1991) suggested that
S of the Daliangzi deposit is derived from Sinian seawater
sulfate (δ34S ~ + 20‰), where sulfate solution flowing
through carbonate rock layers was reduced by organic
matter to produce H2S. Previous studies (Zhou et al.
2013d; Zhou et al. 2015) indicated that reduced S in hy-
drothermal fluids of the Maozu and Jinshachang deposits
is derived predominantly from evaporates (gypsum and
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Fig. 7 a Plots of 207Pb/204Pb vs
206Pb/204Pb of sphalerite samples
from the studied Pb-Zn deposits.
b Plots of 208Pb/204Pb vs
206Pb/204Pb of sphalerite samples
from the studied Pb-Zn deposits.
Data of the bulk-rock Pb isotopic
compositions are from Zheng and
Wang (1991), Zhang et al. (1998),
Hu (1999), Liu and Lin (1999),
Fu (2004), Huang et al. (2004),
Han et al. (2007a), Yan et al.
(2007), Zhou et al. (2001, 2013d,
2013e), Huang et al. (2015), and
Zhou et al. (2015). Lead isotopic
ratios for sedimentary rocks and
Emeishan flood basalts are age-
corrected at 206 Ma.
(206Pb/204Pb)t = (

206Pb/204Pb)p–
μ(eλt-1), (207Pb/204Pb)t =
(207Pb/204Pb)p - μ/137.88(e

λ’t-1),
(208Pb/204Pb)t = (

208Pb/204Pb)p -
ω(eλ^t-1), λ= 1.55125 × 10−10 t−1,
λ’= 9.8485 × 10−10 t−1,
λ^ = 0.49475 × 10−10 t−1,
t= 206 Ma
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barite) in Cambrian sedimentary strata (Liu and Lin 1999;
Han et al. 2007b). The Δ34Ssulfate–sulfide in sulfate reduc-
tion processes can be as high as + 10 to + 15‰ (Ohmoto
et al. 1990; Ohmoto and Goldhaber 1997; Basuki et al.
2008).

In conclusion, it appears that S in the Tianbaoshan deposit
originates mainly from the Meso–Neoproterozoic folded
basement beneath the Dengying Formation; S in the
Fusheng, Daliangzi, and Maozu deposits is derived mainly
from evaporates or seawater sulfates in Cambrian–Triassic
sedimentary strata; and S in the Jinshachang deposit may be
derived from both folded basement and sulfates coexisting
with sulfides. The distinct δ34S values in the studied deposits
are thus due to variable δ34S values of evaporates in different
host strata or to different ore-forming temperatures during
TSR.

Possible sources of lead

U and Th contents of sulfide minerals are too low to
influence their initial Pb isotopic compositions, whereas
Pb isotopic compositions of the Proterozoic folded base-
ment rocks, Cambrian, Devonian to Lower Permian sedi-
mentary rocks and Middle Permian Emeishan flood ba-
salts need to be corrected for ages. Geochronological
studies on the SYG province show that the ages of Pb–
Zn mineralization range between 226 and 166 Ma (Zhou
et al. 2015; Zhou et al. 2013d, e) while the eruption age of
the Emeishan basalts is ~ 260 Ma (Zhou et al. 2002;
Zhong and Zhu 2006; Zhong et al., 2011). The initial Pb
isotopic compositions for all the studied rocks are calcu-
lated to an age of 206 Ma, consistent with the treatment of
Zhou et al. (2015).

In 207Pb/204Pb–206Pb/204Pb and 208Pb/204Pb–206Pb/204Pb
diagrams (Fig. 7a, b), sphalerite data for the five deposits
display linear correlations and overlap the upper Sinian
dolostone and Devonian to lower Permian sediment
fields. Data for most sphalerites of the Tianbaoshan,
Fusheng, Daliangzi, and Maozu deposits plot in the upper
Sinian dolostone and Devonian to lower Permian sedi-
ment fields. In contrast, several exceptional sphalerites
from the Daliangzi and Maozu deposits plot in the
Proterozoic basement field, while those from the
Jinshachang deposit plot in the Proterozoic basement
and Cambrian sediment fields (Fig. 7a, b). Most sphal-
erites of the Tianbaoshan, Fusheng, Daliangzi, and
Maozu deposits overlap the field of Permian Emeishan
flood basalts in the 208Pb/204Pb–206Pb/204Pb diagram
(Fig. 7b), but not in the 207Pb/204Pb–206Pb/204Pb dia-
gram (Fig . 7a) . This sugges ts tha t Pb of the
Tianbaoshan and Fusheng deposits originates predomi-
nantly from upper Sinian and Devonian to lower
Permian sedimentary rocks; Pb of the Daliangzi and

Maozu deposits has multiple sources including
Proterozoic basement and upper Sinian and Devonian
to lower Permian sedimentary rocks; and the more ra-
diogenic Pb isotopic compositions of sphalerites from
the Jinshachang deposit indicate that Pb there is most
likely derived from Cambrian sedimentary rocks and
Proterozoic basement. The Emeishan flood basalts are
unlikely to have provided Pb for the studied deposits
as they exhibit different ranges of Pb isotopic composi-
tions. Moreover, large-scale hydrothermal alteration of
the Emeishan basalts associated with the formation of
these Pb-Zn deposits has not been reported yet.

Possible sources of zinc

Previous studies have indicated that Zn and Cd isotopes in
sphalerite have similar isotopic fractionation mechanisms
because of their similar chemical and crystallographic
properties (Schwartz 2000; Yang et al. 2015; Zhu et al.
2015; Wen et al. 2016). Although cadmium concentration
in the Earth’s crust is extremely low (0.2 ppm; Tu et al.
2004), it can substitute extensively for Zn in sphalerite
and is typically hosted in Pb-Zn deposits with concentra-
tions of several hundred to several thousand ppm (Zhu
et al. 2013). Therefore, Cd and Zn isotopes of the studied
Pb-Zn deposits could be combined to demonstrate their
possible sources of Zn. Three causes have been proposed
to explain the variations of Zn and Cd isotope composi-
tions in hydrothermal systems: (1) the sources (Wilkinson
et al. 2005; Zhou et al. 2014a, b); (2) temperature effects
(Mason et al. 2005; John et al. 2008; Toutain et al. 2008;
Yang et al. 2015); and (3) isotopic fractionation during
fluid evolution and mineral precipitation (Mason et al.
2005; Kelley et al. 2009; Gagnevin et al. 2012; Gao
et al. 2018). The application of Zn and Cd isotopes in
elucidating the formation of the SYG Pb–Zn deposits is
discussed here, taking these considerations into account.

As aforementioned, the Daliangzi and Maozu deposits
have the same Pb source, and their ore-forming fluid
temperatures (140–230 °C and 153–248 °C, respective-
ly), estimated in fluid inclusion studies (ESM 1), are
generally similar. Furthermore, the almost linear correla-
tion between sphalerite 206Pb/204Pb ratios and δ66Zn
values in the five deposits also indicates that Pb and Zn
might originate from the same source rocks. However,
δ66Zn and δ114Cd values of the Daliangzi (− 0.21 to
+ 0.22‰ and − 0.10 to + 0.44‰, respectively) and
Maozu (− 0.49 to − 0.10‰ and − 0.05 to + 0.10‰, re-
spectively) deposits are significantly different, suggesting
that the δ66Zn and δ114Cd variations are most likely due
to isotopic fractionation during fluid evolution and
mineral precipitation, with precipitation temperature not
exerting significant control of sphalerite Zn and Cd

Miner Deposita (2020) 55:491–513504



isotopic compositions. This is consistent with the
conclusions of Wilkinson et al. (2005) for the Irish ore
field. In addition, Zn isotopic compositions of sedimen-
tary rocks from Sinian to lower Permian strata exhibit
similar ranges (− 0.24 to + 0.32‰; Fig. 8). It is therefore
inferred that compositional variations in primary source
rocks are not the main cause of variations in sphalerite
Zn isotopic compositions.

In contrast, the Tianbaoshan deposit exhibits much heavier
δ66Zn values (+ 0.18 to + 0.73‰) than the other deposits (Fig.
8). A previous study presented that sedimentary rocks of the
Proterozoic folded basement have δ66Zn value of + 0.07 to +
0.62‰ (He et al. 2017; Fig. 8). The leaching experiments of
Fernandez and Borrok (2009) demonstrated that the leached
fluid is enriched in heavy Zn isotopes relative to the
sphalerite-rich rocks (0.0 to + 0.2‰, Δ66Znsolution-rock).
Therefore, there are three explanations for the Zn isotopic
characteristics of the Tianbaoshan deposit (Fig. 8): (1) Zn

originates from Proterozoic folded basement; (2) Zn is derived
from Sinian to lower Permian sedimentary rocks; (3) Zn has
multiple sources, i.e., Sinian to lower Permian sedimentary
rocks and Proterozoic folded basement, consistent with the
conclusion of He (2016). In our opinion, the first explanation
is unlikely as the above Pb isotopic compositions indicate that
the metals are mainly derived from upper Sinian to lower
Permian sedimentary rocks for this deposit. Alternatively,
the second and third explanations are both possible because
heavier δ66Zn values could result from a later stage of fluid
evolution and mineral precipitation in a hydrothermal fluid
system. However, if the third explanation is reasonable only
small amounts of Zn can be derived from Proterozoic folded
basement as the lack of radioactive Pb in the Tianbaoshan Pb-
Zn deposit.

Sphalerite Zn isotopic compositions in the Fusheng,
Daliangzi, Maozu, and Jinshachang deposits range from −
0.25 to +0.33‰, overlapping the ranges of Sinian to lower
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Fig. 8 Comparison of zinc isotopic compositions (δ66Zn relative to JMC-
Lyon) of sphalerite from the studied Pb-Zn deposits with data from var-
ious types of Pb-Zn deposits worldwide (after Duan et al. 2016; He et al.
2016). Data sources: TBS (He et al. 2016), sedimentary rocks (Maréchal
et al. 2000; Weiss et al. 2007; Bentahila et al. 2008; Little et al. 2016; Lv
et al. 2016), the Earth (Chen et al. 2013), Marine carbonate (Pichat et al.
2003), Irish-type (Wilkinson et al. 2005; Gagnevin et al. 2012), SEDEX
(Kelley et al. 2009), magmatic-hydrothermal type (Maréchal et al. 1999;

Duan et al. 2016; Li et al. 2017), VHMS (Jiang et al. 2001; Mason et al.
2005), MVT (Albarède 2004; Pašava et al. 2014), SYG (Zhou et al.
2014a, b; Zhou et al. 2016), EFR, SEDR (Zhou et al. 2014b; He 2017).
Abbreviations: EFB, Permian Emeishan flood basalts; SEDR,
Sedimentary rocks in the studied area; Pt, Proterozoic folded basement;
Z, Sinian; ∈, Cambrian; S, Silurian; D, Devonian; C, Carboniferous; P,
Permian; TBS, FS, DLZ, MZ, JSC are abbreviations of the Tianbaoshan,
Fusheng, Daliangzi, Maozu, Jinshachang Pb-Zn deposits, respectively
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Permian sedimentary rocks (except for one sample from the
Maozu Pb–Zn deposit; − 0.49‰), but most samples have ligh-
ter Zn isotopic compositions than Emeishan flood basalts and
Proterozoic folded basement (Fig. 8). In contrast, Fusheng
sphalerites have heavier δ66Zn values (+ 0.09 to +0.33‰) than
Daliangzi, Maozu, and Jinshachang deposits (− 0.25 to +
0.22‰). As this deposit is hosted in lower Permian strata, its
characteristics could correspond to a later stage of fluid evo-
lution and mineral precipitation in a hydrothermal fluid sys-
tem. The present study therefore indicates that Zn of the
Fusheng, Daliangzi, Maozu, Jinshachang, and Tianbaoshan
deposits is predominantly derived from Sinian to lower
Permian sedimentary rocks, while in the Tianbaoshan deposit
minor Zn originates from Proterozoic folded basement be-
neath the Sinian Dengying Formation.

Implications for metal sources and pathways
of ore-forming fluids

In combination with previously published Tianbaoshan
data (+ 0.01 to + 0.57‰; Zhu et al. 2016), sphalerites
from the Tianbaoshan, Fusheng, Daliangzi, Maozu, and
Jinshachang deposits have δ114Cd values of − 0.10 to +
0.57‰, consistent with the general range for sphalerites
of Pb–Zn deposits in SW China (− 0.59 to + 0.57‰;
Fig. 9). Zhu et al. (2013) indicated that Pb–Zn deposits
with different origins are plotted within distinct fields in
a 1/Cd–δ114Cd diagram (Fig. 10a). Data for all samples
from the present study plot in the MVT field (Fig. 10a),
consistent with their geological characteristics (ESM 1).
Furthermore, data for most samples from the five
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Fig. 9 Summary of Cd isotopic
compositions of solid samples
(After Zhu et al. 2015). Data
sources: (a)Schmitt et al. 2009;
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deposits plot within the low-temperature field as defined
by Wen et al. (2016) (Fig. 10b), with Cd isotopic com-
positions and elemental ratios distinct from those of
high-temperature systems such as porphyry, magmatic-
hydrothermal, skarn, and volcanic massive sulfide
(VMS) deposits and sedimentary exhalative systems
(SEDEX deposits). This observation agrees well with
the homogenization temperatures based on previous fluid
inclusion studies and geological characteristics of these
deposits (ESM 1). In conclusion, the sources, ore-
forming fluid pathways, and metallogenic processes of
the studied deposits are comparable with MVT Pb-Zn
deposits.

The lack of correlation between δ66Zn and δ34S values
of the Tianbaoshan, Fusheng, Daliangzi, and Maozu de-
posits (Fig. 11a) implies that Zn and S are derived from
different fluids. Furthermore, the large variations in
δ66Zn, but insignificant variations in δ34S values, indicate
rapid deposition of ores when Zn-bearing fluid reacted
with S-bearing fluid. In contrast, Jinshachang deposit data
can be grouped into lower and higher δ34S values
(Fig. 11a), implying that S originates from two sources:
Proterozoic folded basement and sulfates coexisting with
sulfides. The almost linear correlation between δ66Zn and
δ34S values (Fig. 11a) in each of these Jinshachang
groups may be explained by either long-distance

a

b

Fig. 10 a The Cd contents and
isotopic compositions of the
studied Pb-Zn deposits (after Zhu
et al. 2013). b Distribution of Zn/
Cd ratios versus Cd isotopic
compositions of the studied Pb-
Zn deposits (after Wen et al.
2016)
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migration of ore-forming fluid or long-period ore precip-
itation. Moreover, 206Pb/204Pb ratios exhibit no correla-
tion with δ34S values for all five deposits (Fig. 11b), pos-
sibly also due to mixing of Pb- and S-bearing fluids. At
least two stratigraphic end-members provided Pb for the
studied deposits: upper Sinian and Devonian to lower
Permian sedimentary rocks with less radiogenic Pb, and
Proterozoic basement and Cambrian sedimentary rocks
with more radiogenic Pb (Fig. 11b). Furthermore, Pb of
the Daliangzi and Maozu deposits likely originated from
both these end-members, with upper Sinian and Devonian
to lower Permian sedimentary rocks providing more Pb.
The weak l inear correla t ion between sphaler i te
206Pb/204Pb ratios and δ66Zn values (Fig. 11c) indicates
that parts of Pb and Zn in the studied deposits may orig-
inate from the same source rocks, and the significant var-
iations in δ66Zn values (Fig. 11c) may be due to kinetic
Raleigh fractionation during fluid evolution and mineral
precipitation.

The weak positive correlation between δ114Cd and
δ66Zn values (Fig. 11d) indicates that the isotopic frac-
tionation mechanisms of Cd and Zn in hydrothermal
systems could be similar as mentioned previously (i.e.,
the sources, temperature effects, and isotopic fraction-
ation during fluid evolution and mineral precipitation).
As a result, Zn and Cd isotopic compositions became
heavier from Maozu to Daliangzi, Jinshachang, and
Tianbaoshan (Fig. 11d). Ore-hosting strata of the four deposits
are all of the upper Sinian Dengying Formation. If their ore-
forming fluids were derived from the same hydrother-
mal fluid system, there would be a trend of enrichment
in heavier Zn and Cd isotopes following the migration
of fluids and precipitation of minerals. As illustrated in
Fig. 1, there are several hundred Pb-Zn deposits of dif-
ferent size in the SYG area, and the distribution of the
Pb–Zn deposits is controlled by several regional faults.
These faults could be linked at depth to act as fluid
pathways. Also, the ancient elevation for Maozu is the
highest, assuming that these locations of Pb-Zn miner-
alization experienced similarly late-stage uplift. In com-
bination of Cd and Zn isotopic fractionation character-
istics presented in this study, we propose that the ore-
forming fluids most likely flowed through Maozu first,
then migrated along the Xiaojiang and Anninghe fault
belts and their branch faults (Fig. 1), migrating to
Daliangzi, Jinshachang, and Tianbaoshan, respectively.
The lack of correlation between δ114Cd and δ66Zn
values of the Fusheng deposit (Fig. 11d) could be ex-
plained by the addition of different hydrothermal fluids
or the rapid precipitation of ores. Isotopically heavier

Zn and Cd compositions could thus provide a geochem-
ical fingerprint for detecting remote orebodies in large
hydrothermal systems.

Based on the above considerations, we infer that the
metallogenic processes involved in the studied Pb–Zn de-
posits are as follows. Tectonic events related to the
Indosinian Orogeny and post-Late Triassic completion of
suturing between the Indochina and South China blocks
around the study area (Cai and Zhang 2009) led to the
development of a series of thrust belts and foreland basins
on the periphery of the SYG triangle. During diagenesis
in these foreland basins, basinal brines formed from sea-
water or evaporative brines buried with sediments.
Evaporative brines and dissolved halite provided the chlo-
ride (ESM 1) for metal complexation, while clastic basinal
sediments and folded basement provided Zn, Pb, Fe, and
other ore-forming metals (Wang et al. 2014). Orogenesis
during the Late Triassic contributed to long-distance mi-
gration and accumulation of basin brines, driven by grav-
ity and topography. The basin brines then migrated along
major faults and associated fracture zones or karst systems
into reactive carbonates, finally accumulating in different
open areas. During this migration, the basin brines
evolved into metal-bearing fluids through the extraction
of ore-forming metals from upper Sinian and Devonian
to lower Permian sedimentary rocks (Fusheng,
Daliangzi, and Maozu) or Proterozoic folded basement
(Tianbaoshan), while evaporative brines in host strata
evolved into reduced S-bearing fluids through TSR.
Some S in the Tianbaoshan and Jinshachang deposits is
derived from Meso–Neoproterozoic folded basement be-
neath the Dengying Formation. Faults provided a connec-
tion for the mixing of metal-bearing and reduced S-
bearing fluids, leading to precipitation of ore minerals
and formation of deposits. The formation of the
Jinshachang deposit may have involved long-distance mi-
gration of ore-forming fluid or a long period of ore pre-
cipitation, in contrast to the rapid precipitation of ores in
the Fusheng deposit, possibly related to whether there was
sufficient volume for ore deposition. Finally, the Pb–Zn
ores were hosted in structural fractures, block fracture
zones (Daliangzi deposit), and pre-ore carbonate dissolu-
tion caves (Fig. 4 F1), where the orebodies occur as open
space fillings in breccias (Fig. 4 D2, M1) and fractures
(Fig. 4 D1) or replacing host dolostone (Fig. 4 T1, T2),
and display characteristics of epigenetic, stratabound
(Fig. 4 F2), and carbonate-hosted sulfide bodies. The heat
source for the ore-forming fluids could have been derived
from abnormal geothermal gradients triggered by Late
Triassic orogenesis during basin evolution.
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Conclusions

This study of Pb–Zn–S–Cd isotopic compositions of sulfides
(sphalerite and galena) in the Tianbaoshan, Fusheng,
Daliangzi, Maozu, and Jinshachang Pb–Zn deposits has led
to the following conclusions.

(1) Mixing of metal-bearing and reduced S-bearing fluids
leads to precipitation of ore minerals and the formation
of Pb-Zn deposits. Sulfur in the studied deposits is main-
ly derived from evaporates or seawater sulfates in
Cambrian to Triassic sedimentary strata, Meso–
Neoproterozoic folded basement, and sulfates coexisting
with sulfides. At least two stratigraphic end-members
provide Pb and Zn for the studied deposits, i.e., upper
Sinian and Devonian to lower Permian sedimentary
rocks with less radiogenic Pb, and Proterozoic basement
and Cambrian sedimentary rocks with more radiogenic
Pb.

(2) It is proposed that the ore-forming fluids of the
Tianbaoshan, Daliangzi, Maozu, and Jinshachang de-
posits came from the same hydrothermal fluid sys-
tem. The ore-forming fluids most likely flowed
through Maozu first, then migrated along the
Xiaojiang and Anninghe fault belts and their branch
faults, to Daliangzi, Jinshachang, and Tianbaoshan,
respectively.

(3) Zn and Cd isotopic compositions could be useful
tools in tracing pathways of ore-forming fluids in
Pb–Zn deposits, and isotopically heavier Zn and Cd
compositions could provide a geochemical finger-
print for detecting remote orebodies in large hydro-
thermal fluid systems.
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