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Abstract In order to obtain Pb content in soil quickly and

efficiently, a multivariate linear regression (MLR) and a

principal component regression (PCR) Pb content estima-

tion model were established on the basis of hyperspectral

techniques, and their applicability in different soil types

was evaluated. Results indicated that Pb exhibited strong

spatial heterogeneity in the study area, and more than 82%

of the samples exceeded the background value. In addition,

the pollution range was large. Pb was sensitive in the near-

infrared band, and the correlation of absorbance (AB) was

most significant of all the transformed forms. Both models

achieved optimal stability and reliability when AB was

used as an independent variable. Compared with the PCR

model, the stability, fitting accuracy, and predictive power

of the MLR model were superior with a coefficient of

determination, root mean square error, and mean relative

error of 0.724%, 24.92%, and 28.22%, respectively. Both

models could be applied to different soil types; however,

MLR had better applicability compared with PCR. The

PCR model that distinguished different soil types had

better reliability than one that did not. Thus, the model

established via hyperspectral techniques can achieve large-

area, rapid, and efficient soil Pb content monitoring, which

can provide technical support for the treatment of heavy

metal pollution in soil.

Keywords Hyperspectral data � Heavy metal � Pb �
Estimation

1 Introduction

A large amount of domestic and industrial wastes have

been discharged into soils. Chemical fertilizers are also

used in agriculture. Therefore, the soils accumulate heavy

metal Pb, which enters the human body through the food

chain and other means and poses a serious threat to human

health (Li et al. 2013a; Song et al. 2017). Therefore, the

estimation of soil Pb content is crucial.

Traditionally, the determination of heavy metal content

in soil requires extensive sampling and long-term labora-

tory measurement analysis. This method has high mea-

surement accuracy but is costly in terms of time and

economy and has low efficiency; monitoring the spatial

distribution information of large-area and continuous ele-

ments is difficult and may damage the soil environment

(Ren et al. 2009; Song et al. 2015; Wang et al. 2018).

Hyperspectral technology can effectively estimate heavy

metal content in soil in a nondestructive manner while

saving substantial time and money and considerably

improve estimation efficiency (Gholizadeh et al. 2015; Guo

et al. 2015; Tao et al. 2016). Some scholars have achieved

the indirect inversion of heavy metal content by using the

intrinsic relationship between heavy metals and soil com-

ponents, such as organic matter, iron manganese oxide, and

clay minerals (Sun et al. 2018; Lu et al. 2019). Although
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good results have been obtained, the degree of heavy metal

adsorption by these soil components is often affected by

differences in heavy metal elements and soil conditions.

Therefore, the applicability of the model in studies of other

elements or other soil conditions has to be examined fur-

ther. Existing heavy metal prediction models are divided

into linear and nonlinear models. Some scholars have

predicted heavy metal Pb content based on nonlinear

models, such as neural networks (Tian et al. 2019), random

forests (Tan et al. 2020), and support vector machines (Tan

et al. 2014). Although the results are satisfactory, the

construction of these models often requires programming,

which is difficult and prone to overfitting, thus resulting in

inaccurate results. Other scholars have estimated Pb con-

tent using linear models, such as multiple linear regression

(MLR), multiple linear stepwise regression, and partial

least squares regression (Tan et al. 2014; Zhang et al. 2014;

Yao et al. 2014; Maliki et al. 2014), which have also

achieved the desired results. Moreover, the linear model is

relatively easy to develop, simple to calculate, and easy to

operate.

The current study on soil Pb content focuses on non-

karst ecosystems; the soil distribution in karst areas is

discontinuous, and spatial heterogeneity is strong (Zhang

et al. 2010), making studying soil Pb content difficult.

Therefore, research on soil Pb content in karst areas is

relatively lacking. In addition, several problems arise in the

application of hyperspectral technology in a karst region.

On the one hand, the hyperspectral data commonly used

today come from three types of remote sensing satellite

imagery and field and laboratory spectrometers. The terrain

of a karst area is complex and diverse, and rocks are

exposed to nakedness. The low signal-to-noise ratio of the

sensor and the complex error source may affect the quality

of the field spectrum and remote sensing image, making

effective soil spectral information difficult to obtain and

current research strongly dependent on laboratory spectra.

Moreover, spectral data based on laboratory analysis are

prone to errors due to external factors and defects in the

instrument itself. Therefore, preprocessing the soil spec-

trum and optimizing the hyperspectral signal are necessary

to improve prediction accuracy. Whether the model

established by indoor spectral data can be applied to field

and remote sensing images remains unclear due to the

regional uniqueness of soil and the uncertainty of the field

environment. On the other hand, current research is either

conducted on a single soil type or does not consider the soil

type, and the applicability of the model under different soil

types has yet to be studied.

In view of the above limitations, this study took the

Houzhai River Watershed in Guizhou Province as a case

study. On the basis of the measured Pb content and

hyperspectral data, an MLR and a principal component

regression (PCR) estimation model was built. Moreover,

the applicability of these two models in different soil types

was evaluated. The aim was to explore the possibility of

using hyperspectral techniques to estimate Pb content in

karst areas and provide new ideas for the rapid monitoring

of heavy metal elements in the soil of other ecosystems.

2 Materials and methods

2.1 Study area and soil samples

Located in the west of the Qianzhong Plateau, the Houzhai

River Watershed has a well-developed karst landform,

which is the watershed between the Yangtze and the Pearl

River systems (Li et al. 2013a, b). Its latitude and longitude

ranges are 105� 410 E–105� 480 E and 26� 130 N–26� 170 N,
respectively. The elevation is 1220–1560 m and the

watershed area is approximately 75 km2. The terrain in the

watershed is high in the southeast and low in the northwest.

Land use includes forest land, cropland, grassland, con-

struction land, and waters. The upper reaches are mainly

forest land, whereas the middle and lower reaches are

mainly cropland. The watershed has many soil types,

including limestone, paddy, and yellow soils, and the

spatial distribution pattern is complex (Zhang et al. 2018).

A total of 98 soil samples of different soil types

weighing approximately 1 kg were collected in the water-

shed. The sampling depth was 0–20 cm, and the range was

wide (Fig. 1). Each sample was divided into two parts after

natural air-drying and removal of impurities. The samples

were ground and filtered through a 200-mesh nylon sieve.

One part was used for chemical analysis, and the other was

for spectral analysis.

2.2 Determination of soil Pb content and spectral

data

The soil samples were subjected to microwave digestion

with hydrochloric–nitric–perchloric acid, and Pb content

was determined via inductively coupled plasma mass

spectrometry (PerkinElmer, Canada). Quality control was

performed using the standard samples (AGV-

2 = 12.191 mg/kg; AMH-1 = 9.822 mg/kg; GBPG =

13.054 mg/kg) to ensure the quality of the analysis.

Spectral determination of soil samples was performed in

the laboratory using a Cary 5000 UV–Vis–NIR spec-

trophotometer (Agilent Technologies, USA). The band

ranged from 500 to 2500 nm, the sampling interval was

1 nm, and three spectra were collected for each soil sam-

ple. Unscrambler software was used to perform principal

component analysis on 98 samples, thus eliminating two

outliers; the average of the spectral reflectance of 96
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samples was taken as the original reflectance spectral value

(Xu et al. 2011; Li et al. 2017).

2.3 Data processing and analysis

The spectrometry process was susceptible to errors due to

random factors. In contrast to the number of samples, the

process had many variables, and the overlap of information

between adjacent bands caused spectral data redundancy

and some interference to the data analysis. The original

spectral data were preprocessed via Savitzky–Golay

smoothing, resampling (RE), continuum removal (CR),

reflectance first derivative (RFD), reflectance second

derivative (RSD), absorbance (AB), first derivative of

absorbance (AFD), and second derivative of absorbance

(ASD), thereby effectively reducing the influence of noise,

purifying the spectral information, and reducing errors

(Fig. 2) (Shi 2014; Peng et al. 2014; Ma et al. 2016; Wang

et al. 2018; Tu et al. 2018).

Fig. 1 Overview of the study area and distribution of samples. a distribution of samples, b elevation, c soil types and d land use types
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2.4 Model building and accuracy evaluation

The soil samples were sorted in accordance with the Pb

content in descending order. One out of every three sam-

ples was used as a validation sample (a total of 32,

accounting for 33.3% of the total samples), and the

remaining samples were used for calibration (a total of 64,

accounting for 66.7% of the total samples). The correlation

between Pb content and spectral data after RE, RFD, RSD,

CR, AB, AFD, and ASD was analyzed, and the feature

bands were screened. With the feature bands and soil Pb

content taken as the independent and dependent variables,

respectively, the MLR and PCR models were built. The

applicability of both models in different soil types was

evaluated. The model results were evaluated using the

coefficient of determination R2 and root mean square error

(RMSE). The larger the R2, the better the stability of the

model; the smaller the RMSE, the higher the accuracy of

the model. The mean relative error (MRE) and 1:1 line

were used as criteria for judging the estimation capability

of the model. The smaller the MRE, the closer the sample

point was to the 1:1 line, and the stronger the estimation

capability of the model. The calculation formulas for R2,

RMSE, and MRE are as follows:

R2 ¼
Pn

i¼1 Yp � �Y
� �2

Pn
i¼1 Ym � �Yð Þ2

; ð1Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i

Ym � YPð Þ2
s

; ð2Þ

MRE ¼ 1

n

Xn

i¼1

Ym � YP

Ym

�
�
�
�

�
�
�
�� 100; ð3Þ

where Yp is the predicted value, Ym is the measured value,
�Y is the average value of the measured values, and n is the

number of samples.

3 Results

3.1 Soil Pb content analysis

The calibration and validation samples are similar in

average and standard deviation and the range is relatively

uniform and balanced (Table 1). The total sample set has a

coefficient of variation of 0.60. The distribution of Pb in

the soil is not uniform, showing significant spatial hetero-

geneity. Seventy-nine out of the 96 samples exceed the

national standard natural background value (China

National Environmental Monitoring Center 1990), that is,

82% of the sample content exceeds the standard, and the

total average value is 1.8 times the national background

value. This result indicates that the soil in the Houzhai

River Watershed is heavily polluted by heavy metal Pb,

and corresponding treatment measures must be taken. Soil

types comprise 27 yellow, 23 paddy, and 46 limestone

soils. The overall content of Pb in yellow soil is the highest,

followed by limestone and paddy soils. In terms of land

use, the content of grassland is the highest, followed by

cropland (Fig. 3).

3.2 Feature bands of heavy metal

The ‘‘burr’’ after smoothing by Savitzky–Golay and RE is

significantly reduced, and the spectral information is sig-

nificantly improved (Fig. 2). The spectral curve of the soil

shows an upward trend. Three significant absorption bands

are observed at approximately 1400, 1900, and 2200 nm,

and the degree of absorption is slightly different. This

result is consistent with the study of Teng et al. (2016).

The spectral characteristics of the soil in the study area

are the same, and the spectral curves of different soil types

are slightly different (Fig. 4). The average absorbance of

different soil types follows the order paddy soil[ yellow

soil[ limestone soil (Fig. 4d). The average reflectance of

soil samples follows the order limestone soil[ yellow

soil[ paddy soil. Studies have shown that the use of

Fig. 2 Spectral data smoothing and resampling. a Original spectral curve, b spectral smoothing and c spectral resampling
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spectral information can indirectly predict heavy metal

content (Song et al. 2015); thus, the screening of spectral

feature bands is an important step in the establishment of a

Pb content prediction model. The absorption bands of the

spectral curves after CR are concentrated at approximately

530, 950, 1410, 1910, 2200, and 2260 nm (Fig. 4a). The

absorption bands of the spectral curve after RFD are con-

centrated near 630, 810, 1390, 1440, 1900, 2160, 2250,

2310, and 2440 nm (Fig. 4b). The absorption bands of the

spectral curve after RSD are concentrated near 590, 800,

1380, 1440, 1870, 2140, 2240, 2300, and 2440 nm

(Fig. 4c). The absorption bands of the spectral curve after

AB conversion are concentrated at 790, 1410, 1920, 2220,

and 2260 nm (Fig. 4d). The absorption bands of the spec-

tral curve after AFD and ASD conversion are the same as

that of RFD and RSD.

The water absorption bands are generally around 1400

and 1900 nm. The absorption bands of soil organic matter

are at approximately 500, 600, 800, 2200, and 2300 nm. To

avoid interference with modeling, the bands between 2400

and 2500 nm are not considered as feature bands due to the

large noise (Wang et al. 2007; Cheng et al. 2017). Finally,

combined with the six variations, the feature absorption

bands of the soil spectrum are concentrated near the near-

infrared bands of 1440, 1870, 2140, 2160, 2240, 2250, and

2260 nm.

Table 1 Descriptive statistics of soil Pb content (mg/kg)

Sample set N Max Min Mean SD Kurt Skew CV Background value (pH\ 6.5) Excess number

Calibration set 64 221.27 24.16 64.40 39.51 3.68 1.86 0.61 35 79

Validation set 32 164.43 19.88 61.45 35.04 1.96 1.53 0.57

Total set 96 221.27 19.88 63.42 38.11 3.22 1.77 0.60

N number of samples, SD standard deviation, Kurt kurtosis, Skew skewness, CV coefficient of variation

Fig. 3 Statistics of total Pb

content in the soil. a Statistics of
Pb content in different soil types

and b statistics of Pb content in

different land-use types
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The Pearson method was used to analyze the correlation

between the Pb content and the spectral values of the

feature absorption bands of the six transformed forms.

There no significant correlation between the spectral values

corresponding to the seven bands and the Pb content after

CR (Table 2), So CR should not be considered as a variable

when modeling. In addition, the correlation coefficient

after AB conversion is improved compared with the orig-

inal reflectance, and the overall correlation is strongest,

indicating that the spectral data after transformation have

the highest correlation with the Pb content. To improve the

accuracy of the model and achieve better estimation

results, this study selected the band that is significantly

correlated at the 0.01 level as the spectral feature band of

heavy metal Pb in soil. The feature bands of RE, RFD, AB,

and AFD are at 1870, 2140, 2160, 2240, 2250, and

2260 nm. The feature bands of RSD and ASD are at 1440,

1870, 2140, 2240, 2250, and 2260 nm.

3.3 Hyperspectral estimation model and accuracy

evaluation

3.3.1 Modeling results

The spectral value of the spectral feature band and the Pb

content were taken as the independent and dependent

variables, respectively, to establish the models. R2 in six

variants is greater than 0.5 (Table 3), indicating that the

MLR model is reliable and can be used to estimate Pb

content (Wang et al. 2014; Tao et al. 2018). The model

with AB conversion has the best effect. The R2 of the

calibration and validation sets are 0.649 and 0.799,

Fig. 4 Spectral curve

transformation. a CR, b RFD,

c RSD, d AB, e AFD and f ASD
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respectively, and RMSE are 24.805 and 25.034, respec-

tively. Although the calibration set of ASD has the largest

R2 and the smallest RMSE, the stability and accuracy of

the verification set are far less than the model built by AB.

Moreover, the accuracy of the model built by RE is much

higher than that of several variables other than AB. The

stability and accuracy of the model constructed with dif-

ferent spectral variables follow the order

AB[RE[ASD[RSD[AFD[RFD.

Similar to the modeling results of the MLR model, the

effect of the PCR model is the best in modeling the spectral

variables after AB transformation, and the modeling effect

with RE as variable is second (Table 4). The model con-

structed with AB as variable, regardless of whether it is the

calibration set or the R2 and RMSE of the validation set,

reaches the maximum and minimum. The model effects

constructed from different spectral variables follow the

order AB[RE[ASD[RSD[RFD[AFD.

3.3.2 Accuracy comparison

In summary, the MLR and PCR models are the most

stable models constructed with AB as independent vari-

ables. Overall, the stability and fitting effects of the MLR

model are superior to the PCR model. A scatter plot of the

measured and predicted values of the MLR and PCR

models built with the AB as an independent variable is

created. The closer the sample point is to the 1:1 line (i.e.,

Y = X line), the closer the estimation result of the model is

to the true value, and the stronger the estimation capability.

Moreover, MRE is the reference indicator. The smaller the

value of MRE, the stronger the model prediction capability.

The overall MRE of both models is less than 30%,

which means that the estimation accuracy is higher than

70%, and all models have certain soil Pb metal estimation

capability (Fig. 5). The prediction capability of the MLR

model is relatively stronger than that of the PCR model.

Table 2 The correlation

coefficients between soil heavy

metal Pb content and spectral

variables

Band (nm) RE RFD RSD AB AFD ASD CR

1440 - 0.238* - 0.168 - 0.611** 0.263* 0.124 0.648** 0.127

1870 - 0.348** - 0.516** - 0.479** 0.348** 0.575** 0.542** 0.159

2140 - 0.487** - 0.698** - 0.664** 0.493** 0.726** 0.715** 0.084

2160 - 0.560** - 0.684** 0.088 0.569** 0.723** 0.091 0.110

2240 - 0.599** - 0.637** - 0.677* 0.610** 0.634** 0.689** 0.280

2250 - 0.622** - 0.643** - 0.302** 0.633** 0.652** 0.408** 0.220

2260 - 0.631** - 0.646** - 0.363** 0.643** 0.652** 0.379** 0.220

*Significant correlation at the 0.05 level (both sides)

**Significant correlation at the 0.01 level (both sides)

Table 3 The MLR model of

soil total Pb content
Spectral variable Calibration set Validation set Total

R2c RMSEc R2v RMSEv R2t RMSEt

RE 0.614 26.006 0.798 25.113 0.706 25.560

RFD 0.551 28.054 0.742 28.404 0.647 28.229

RSD 0.607 26.247 0.736 28.671 0.672 27.459

AB 0.649 24.805 0.799 25.034 0.724 24.920

AFD 0.596 26.606 0.724 29.363 0.660 27.985

ASD 0.660 24.418 0.723 29.434 0.692 26.926

Table 4 The PCR model of

soil total Pb content
Spectral variable Calibration set Validation set Total

R2c RMSEc R2v RMSEv R2t RMSEt

RE 0.595 25.155 0.532 24.056 0.564 24.606

RFD 0.535 26.943 0.444 26.211 0.490 26.577

RSD 0.484 28.108 0.52 24.352 0.502 26.230

AB 0.629 24.067 0.533 24.039 0.581 24.053

AFD 0.582 25.547 0.372 27.866 0.477 26.707

ASD 0.535 26.954 0.507 24.697 0.521 25.826
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The sample point is closer to the 1:1 line, and the MRE

value is low. The MRE is 28.22%, and the prediction

accuracy reaches 71.78%.

3.3.3 Analysis of the applicability of models in different

soil types

The above studies confirm that both models have certain

reliability, but the applicability of these models in different

soil types need further analysis due to a noticeable soil

differentiation in the karst area. The MLR and PCR models

are built by distinguishing three different soil types,

namely, yellow, lime, and paddy soils, with the best pre-

dicted AB as an independent variable. The R2 of the MLR

and PCR models of the three soil types are greater than 0.6,

indicating that both models have certain applicability and

can be used to predict Pb content in different soil types

(Fig. 6). Overall, the prediction effects of the MLR and

PCR models in different soil types are not much different.

However, the R2 of the MLR model is larger than that of

the PCR model, indicating that the prediction effect of the

MLR model on different soil types is better than the PCR

model, especially for the prediction of limestone soil. The

R2, RMSE, and MRE of the MLR model are better than

those of the PCR model, which are 0.747%, 22.28%, and

25.37%, respectively. That is, the applicability of the PCR

model is not as strong as the MLR model. However, the

prediction accuracy of the PCR model slightly improves

after distinguishing the soil type compared with the pre-

vious one, and the R2 increases from 0.581 to over 0.614,

with a maximum value of 0.709 (Table 4). When using the

PCR model for Pb content prediction, an improved effect

can be achieved by distinguishing soil types for prediction.

4 Discussion

The MLR model can prevent the omission of effective

independent variables, and the PCR model can effectively

solve the collinearity problem between independent vari-

ables (Xu et al. 2013; Ye et al. 2017). These models are

widely used in spectroscopy prediction research because

they are simple, easy to develop, and low cost (Wang et al.

2017). In this study, the two methods are used to model

heavy metal Pb content in a small watershed of a typical

karst plateau, with the spectral feature band as an inde-

pendent variable. The extraction of spectral information of

heavy metals in soil is difficult, and the modeling accuracy

is easily subjected to interference from other composition

information because soil heavy metals are not the dominant

factor controlling spectroscopy remote sensing informa-

tion. Therefore, removing the bands that are susceptible to

interference from other information is the key to estab-

lishing a hyperspectral model (Zhang et al. 2015). First,

Fig. 5 Comparison of

measured and predicted Pb

content. a Prediction of MLR

model with AB as independent

variable and b prediction of

PCR model with AB as

independent variable
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several mathematical transformations are performed on the

spectral reflectance to remove the interference of the noise

on the spectral information to simplify the finding of the

reflection valley and the absorption peak of the soil spec-

trum. Second, the bands that may interfere with informa-

tion, such as moisture and organic matter, are removed, and

Pearson correlation analysis is used to screen the spectrally

sensitive bands of Pb content in the near-infrared, which is

similar to the previous studies (Jiang et al. 2017; Zhang

et al. 2017). Finally, a hyperspectral quantitative estimation

model between spectral variables and soil heavy metal Pb

is built. The R2, RMSE, and MRE indicators are used for

modeling and evaluation. The best stability and reliability

are achieved when the models are built on the basis of AB;

this finding is consistent with the results of the relevant

analysis. Except for AB, the model effect created by other

transformed spectral variables is not better than the model

established by the original reflectivity; thus, whether

spectral transformation is required should be determined in

accordance with the actual situation (Wu et al. 2014).

Studies on heavy metals concentrated in the soil of karst

areas are relatively few. The estimation accuracy of the

models constructed in this study meets the requirements of

soil heavy metal Pb, thus providing some ideas for research

on similar areas. Moreover, the results of this study provide

certain technical support for solving the problem of soil

heavy metal pollution in karst areas. A large spatial

heterogeneity is observed in soil heavy metal content

owing to the complex geological background in a karst

region. Future research will consider the effect of other

factors on soil heavy metal content in karst areas and

explore the influence of heavy metal pollution on human

health through isotope tracing.

5 Conclusion

The average value of soil Pb content in the study area is 1.8

times the national background value, and the variation

level is high, indicating that the soil in the Houzhai River

Fig. 6 Applicability of MLR

and PCR models based on

different soil types. a The MLR

model of yellow soil, b the PCR

model of yellow soil, c the MLR

model of limestone soil, d the

PCR model of limestone soil,

e the MLR model of paddy soil

and f the PCR model of paddy

soil
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Watershed shows strong spatial heterogeneity. Moreover,

heavy metal Pb pollution is serious, and corresponding

treatment measures must be taken.

Soil Pb elements are sensitive in the near-infrared region

and are concentrated near several bands of 1440, 1870,

2140, 2160, 2240, 2250, 2260, and 2350 nm. After math-

ematical transformation, except for CR, the other spectral

variables are significantly correlated with soil Pb, and the

correlation of AB is the most significant.

The MLR and PCR models are the most reliable models

with AB as independent variable. The overall R2 and

RMSE reach the maximum and minimum, respectively,

which is consistent with the results of the correlation

analysis. The stability, fitting effect, and prediction capa-

bility of the MLR model are better than the PCR model.

The MLR and PCR models have certain applicability in

different soil types, and the applicability of the MLR model

is stronger. When using the PCR model for prediction,

distinguishing different soil types can achieve improved

results.

In the present study, the model constructed using

hyperspectral technology can predict heavy metal Pb con-

tent in the soil, which is crucial for large-area and large-

scale rapid monitoring of soil heavy metal content. In

future research, the use of airborne and spaceborne

hyperspectral images will be attempted to seek fast and

broad breakthroughs in the monitoring of heavy metals in

soil.
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