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A B S T R A C T

China has conducted large-scale eco-afforestation projects in karst areas for mitigating rocky desertification in
recent decades. However, the benefits of karst vegetation productivity restoration and the contributions of in-
fluencing factors are unclear. We analyzed the impacts of climate change (CC) and human activity (HA) on
vegetation productivity change based on the net primary productivity (NPP) by using the partial derivatives and
designing eight different scenarios. Results demonstrated that the average NPP over the entire vegetation-cov-
ered karst area exhibited an unremarkable increasing trend (0.92 g C m−2 yr−1) and a major decline in NPP was
detected in the areas where NDVI increased from 2000 to 2015 (0.44 million km2, 29.07%). Solar radiation
(−0.91 g C m−2 yr−1) was the preponderant climatic factors exhibiting negative contribution to NPP changes. A
significant positive contribution was caused by HA (1.53 g C m−2 yr−1) on NPP variations, while a negative
contribution was induced by CC (−0.61 g C m−2 yr−1). CC and HA showed the more similar contribution
proportion to NPP increasing (51.94% vs 48.06%), but with great difference (68.43% vs 31.57%) for NPP de-
creasing. 39.83% of the areas involved in NPP decreasing was attributed to the accelerating consumption of
autotrophic respiration while the rest (60.17%) was contributed by rapid decrease of gross primary productivity,
respectively. In southern karst area, HA showed a positive impact (59.07%) on NPP increasing. However, the
negative contribution from CC (70.72%) due to the rapid and constant decline of solar radiation completely
counteracted this, leading to a greater NPP decrease. This study stresses the importance of negative effect from
CC on karst vegetation productivity change and provides location guidance for further implementation of
ecological protection projects in southern China.

1. Introduction

As an important part of global vegetation, karst vegetation not only
provides great carbon sink function, but also provides a series of eco-
logical services, which has been the research focus in the field of global
change. Net primary production (NPP), as a key parameter of terrestrial
ecological process, reflects the vegetation productivity under natural
circumstances (Zhao and Running, 2010; Hasenauer et al., 2012; Peng
et al., 2017; He et al., 2018). NPP is widely used to estimate the sup-
porting capacity of the earth and evaluate the sustainable development

of terrestrial ecosystems (Gollnow and Lakes, 2014; Wu et al., 2015; S.
Zhou et al., 2017; W. Zhou et al., 2017; Zhou et al., 2014). Moreover, it
is also an important component and key link of global carbon cycle and
gives significant effect on global carbon balance (Ben et al., 2018;
Gahlot et al., 2017; Li et al., 2018b; Ogle, 2018; Pan et al., 2011; Piao
et al., 2009; Tian et al., 2011; Yu et al., 2013).

Globally, karst rocks are abundant on the earth’s surface and ap-
proximately 15.6% of land comprises karst areas (22 million km2),
where as much as 20% of the global population lives (Jiang et al.,
2014). In China, the karst areas cover approximately 3.44 million km2,
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accounting for more than one-third of its total land area. The karst area
of southern China is one of the largest continuous karst areas world-
wide, which covers 1.9 million km2 and provides a variety of ecosystem
services, such as water and soil conservation, climate control, and
carbon sequestration (Chen et al., 2019b; Jiang et al., 2014; Tian et al.,
2016). This area experienced serious rocky desertification driven by
climate factors, population growth, and agricultural activities before
about 2010, and was regarded as one of the most poverty-stricken areas
in China, with a poverty population of more than 20 million (Zhang
et al., 2017). To mitigate rocky desertification and relieve poverty, the
ambitious afforestation and a large diversity of conservation projects
were conducted there and a large area of farmlands and degraded lands
were converted back to forests and grasslands (Brandt et al., 2017; Tong
et al., 2018; Yang et al., 2019). After decades of efforts, China had
become the country with the largest afforestation area, the highest
conservation effort, and the fastest growth of forest covers in the world
(Chen et al., 2019; Fensholt et al., 2012; Zhu et al., 2016). Afforestation
and ecological engineering protections were particularly significant in
karst area, which provided a great contribution to the greening of the
earth and carbon accumulation (Brandt et al., 2018b; Chen et al.,
2019a; Tong et al., 2018).

Climate change (CC) and human activity (HA) were the main factors
affecting the change of vegetation productivity (Forkel et al., 2014;
Huang et al., 2018; X. Liu et al., 2019; Y. Liu et al., 2019; Tong et al.,
2020; Wang et al., 2016; Zeng et al., 2018). CC was more identified as a
negative factor restricting the growth of vegetation productivity (Piao
et al., 2015; Tong et al., 2018; Wen et al., 2018; Xu et al., 2019; S. Zhou
et al., 2017; W. Zhou et al., 2017; Zhou et al., 2014; Zscheischler et al.,
2014). Although previous studies demonstrated that several critical
climatic constraints to plant growth were eased (Zhao and Running,
2010) and showed a strong promoting effect in middle-high latitudes of
the Northern Hemisphere (Nemani et al., 2003), extensive studies found
that CC was still an important factor restricting vegetation growth in
some regions and its negative contribution even exceeded that of HA
(Heinsch et al., 2006; Peng et al., 2017; Prestele et al., 2017; Bjorkman
et al., 2018). It had been widely reported that recent climate-induced
carbon losses had attracted widespread attention over the past decades
in the large areas of Russia, Argentina and Peru (Peng et al., 2017), the
Southern Hemisphere (Zhao and Running, 2010), Northern Hemisphere
(Liu et al., 2015), Africa and other regions (Brandt et al., 2017, 2018a).
Besides the influence of CC, HA was also an important factor affecting
the growth of vegetation productivity. However, there were many
controversies about the impact of HA on NPP increasing. In the past,
many ecological projects had ignored the vegetation growth char-
acteristics in karst area where plants grew on rocks, tended to absorb
calcium and magnesium, and had a strong tolerance for drought, which
resulted in low survival rate of afforestation and low recovery benefit
(Zhang et al., 2017). This indicated that these positive human activities
were difficult to have beneficial effects on vegetation restoration. By
contrary, human interference was usually diagnosed as the main cause
of land degradation and deforestation (Bai et al., 2013; Hansen et al
2013; Wu et al., 2017; Brandt et al., 2017). Although many studies
suggested that although HA had provided a significant positive role in
improving vegetation coverage and biomass increasing (Fang et al.,
2014; Piao et al., 2015; Mao et al., 2016; Tong et al., 2017; Tong et al.,
2020), the unobvious trend of annual NPP changes in most areas of
China (79.9% of total vegetation covered areas of China) had raised
some doubts about its positive effects (Li and Wang, 2018). This showed
that vegetation productivity change was obviously uncertain in dif-
ferent regions under the combined influence of CC and HA due to dif-
ferent driving mechanisms. Furthermore, since the launch of the Grain
to Green Program (GTGP) in 1999 (Tong et al., 2018; Delang and Yuan,
2015), the government had laid too much stress on how to speed up
vegetation greening, but ignored its quality and benefits. Therefore, at
present, it remained unclear where and at what scale such effects in-
fluenced on vegetation productivity and if vegetation productivity

increased at a large spatial scale as expected, especially in rocky de-
sertification mountainous areas where ecological projects were im-
plemented intensively.

Here, this study aimed to separate effectively and assessed quanti-
tatively the impact of CC and HA to the vegetation productivity evo-
lution. We attempted to select NPP as an indicator to represent vege-
tation productivity and selected T (temperature), P (precipitation), and
SR (solar radiation) as the evaluation indicators of main climatic fac-
tors. Then, the contributions caused by CC and HA to vegetation pro-
ductivity were quantitatively evaluated by using the partial derivatives.
Lastly, the contribution proportions of CC and HA to NPP increasing
and decreasing were also evaluated by setting up eight different sce-
narios with consideration for the complexity of each driving mechanism
and actual assessment needs. We had addressed the following scientific
issues: (1) to investigate the change trend and spatial pattern of NDVI
and NPP during 2000–2015; (2) to separate and quantify the impacts
affected by CC and HA to NPP variations; and (3) to identify the critical
control areas where CC and HA contributed to NPP increasing or de-
creasing. This study has significantly contributed to a better under-
standing of key influence factors contribution on vegetation pro-
ductivity and shed lights on government policy-making and the
reasonable layout of ecological restoration projects.

2. Study area

Karst landforms (buried, covered, and exposed carbonate rock
areas) were widely distributed in China with a total area of 3.44 million
km2 (Jiang et al., 2014) (i.e., approximately 15.64% of global terrestrial
karst area and 35.8% of China’s total land area). In this study, the karst
area (exposed karst area) was approximately 1.88 million km2 (i.e.,
19.58% of the total area of China) on the basis of statistics from spatial
data (Fig. 1). However, the karst area covered by vegetation was only
1.51 million km2, which accounted for 80.35% of the total karst areas
(1.88 million km2) in China. Regionally, it was divided into three major
karst zones of southern China (0.82 million km2), northern China (0.27
million km2), and the Qinghai–Tibet Plateau (0.79 million km2), ac-
counting for 43.62%, 14.36%, and 42.02% of the total karst area, re-
spectively. Notably, a large concentrated contiguous karst area (0.54
million km2) was located in the eight provinces (1.9 million km2, in-
cluding GZ (Guizhou), YN (Yunnan), CQ (Chongqing), HUN (Hunan),
HUB (Hubei), GD (Guangdong), GX (Guangxi), and SC (Sichuan)) of
southern China, accounting for 28.42% of the total areas of eight pro-
vinces. In this study, GZ, YN, HUN, HUB, GX, GD, CQ, SC, JX (Jiangxi),
FJ (Fujian), ZJ (Zhejiang), JS (Jiangsu), AH (Anhui), HAN (Hainan),
and TW (Taiwan) belonged to the southern provinces, QH (Qinhai) and
TB (Tibet) belonged to the Qinghai-Tibet Plateau, and XJ (Xinjiang), GS
(Gansu), NX (Ningxia), IM (Inner Mongolia), SAX (Shaanxi), SX
(Shanxi), HN (Henan), HB (Hebei), SD (Shandong), BJ (Beijing), TJ
(Tianjin), LL (Liaoning), JL (Jilin), and HLJ (Heilongjiang) belonged to
the northern provinces.

3. Data

3.1. GPP and NPP dataset

The Gross Primary Productivity (GPP) and NPP data set on vege-
tated land at a 1 km resolution and an 8 day interval during 2000–2015
were obtained from MOD17A3, which was produced by the Numerical
Terradynamic Simulation Group (NTSG) at the University of Montana
(UMT) (http://www.ntsg.umt.edu/). The projection format was the
equal longitude and latitude projection of WGS-84, and the ratio
coefficient was 0.1. The annual NPP of terrestrial ecosystem was si-
mulated by using the BIOME-BGC ecosystem process model. Since
2000, the MOD17A3 NPP data set was widely used in global and re-
gional vegetation productivity and carbon cycle researches (Gonsamo
et al., 2016; Guo et al., 2012; Haberl et al., 2007; Hasenauer et al.,
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2012; He et al., 2018; Peng et al., 2017; Zhang et al., 2009). The NPP
products had undergone four validation with the 3rd stage to improve
the data quality (Morisette et al., 2002; Zhao et al., 2005; Heinsch et al.,
2006; Nightingale et al., 2008; Hasenauer et al., 2012; Pan et al., 2014;
Pan et al., 2015; Running et al., 2015). Uncertainty in the product was
assessed and effectively quantified by annual NPP observations from
flux sites and ancillary reference data (Running et al., 2015; Peng et al.,
2017), and the data coincidence rate was over 91%. Based on these
validations via multiple aspects from many researchers in the world, the
MOD17A3 NPP product was suitable for use to evaluate vegetation
productivity in karst area.

3.2. NDVI dataset

Vegetation index (NDVI, Normalized Difference Vegetation Index)
could accurately reflect the vegetation cover on the surface. At present,
the NDVI time series data, which was obtained from satellite remote
sensing images based on SPOT/VEGETATION and MODIS, had been
widely used in the monitoring of vegetation dynamic change, land use/
cover change detection, macro-vegetation cover classification, and the
estimation of net primary productivity. The annual vegetation index
(NDVI) spatial distribution data set of China at 1 km resolution during
2000–2015 was the annual vegetation index data set since 1998. This
data set was generated by the maximum synthesis method based on
SPOT/VEGETATION NDVI satellite remote sensing data of continuous
time series (Xu, 2018) and obtained from the Resource and Environ-
ment Data Cloud Platform of Chinese Academy of Sciences (http://
www.resdc.cn/). This data set could effectively reflected the distribu-
tion and change of vegetation cover in different regions of China on
temporal and spatial scales. It was of great significance for monitoring
vegetation change, rational utilization of vegetation resources and
other related fields of ecological environment.

3.3. Climate dataset

Meteorological data on P, T, and SR at the monthly scales were
collected at a spatial resolution of 0.25° × 0.25° from 01/2000 to 12/
2015. The data collected from GLDAS-2.1 data sets of the National
Aeronautics and Space Administration (NASA) (https://www.nasa.gov/
) with the global spatial coverage (60S, 180 W, 90 N, 180E). Combining
ground observation and satellite data products, GLDAS-2.1 generated
optimal near real-time surface state variables by data assimilation,
which had overcome the limitations of ground observation (Rodell
et al., 2004). A large number of studies and evaluation results showed
that GLDAS-2.1 data had high reliability (Kato et al., 2007; Li et al.,
2018b; Piao et al., 2015). To ensure the computational accuracy, all
meteorological data sets were sampled into a unified spatial resolution
of 1 km (the same as the NPP data). The projection method adopted was
Albers Conical Equal Area Projection (krasovsky-1940-albers).

3.4. Karst dataset

The karst boundary used in this study was the exposed karst area,
not including covered and buried karst area. Carbonate rock outcrops
(exposed karst area) of China were based on the v3.0 revision world
map of carbonate rock outcrops obtained from Geography and
Environmental Science, University of Auckland (http://www.sges.
auckland.ac.nz/sges_research/karst.shtm). The region boundaries also
came from this database. The area of carbonate rock -
outcrops provided an upper limit on the area of exposed karst terrain
(Li et al., 2018b). In order to make the karst boundary more accurate,
the carbon rock outcrops data was integrated with the more detailed
and complete exposed karst data of eight southern provinces (GZ, YN,
CQ, HUN, HUB, GD, GX, and SC) provided by the Karst Scientific Data
Center, Institute of Geochemistry, Chinese Academy of Sciences

Fig. 1. Spatial distribution of karst area in China. I, II, and III in attached drawing in the lower right corner represents the northern China, the southern China, and the
Qinghai-Tibet Plateau, respectively.
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(http://www.karstdata.com/). So, the karst area used in this study was
approximately 1.88 million km2, within which the area covered with
vegetation was 1.51 million km2.

4. Methods

4.1. Trend analysis

Linear tendency estimation was used to analyse the temporal dy-
namics of NPP and climatic factors, and statistical test of correlation
coefficient was used to evaluate the significant change trend. With the
time change, NPP and climatic factors tended to increase or decrease in
the entire sequence, change in spatial distribution pattern and turn or
mutate at a certain time. These variables could be considered as linear
regression of time. The linear tendency value was estimated by using
the least square method.
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the study period. j represents the year order; and Mj is the independent
variable corresponding to year j. If the correlation coefficients of re-
gression equation pass through the significant levels of confidence 0.05
and 0.01 (p < 0.05 and p < 0.01), then Mj decreases or increases to
significant and extremely significant levels, respectively.

4.2. Partial derivatives for quantifying the impacts of climate and human-
induced NPP variations

The target variables can been then partitioned into multiple com-
ponents according to Eq. (2) on the support of Roderick et al. (2007),
which has been widely applied into assessing the impacts of various
interfering factor on hydrological and meteorological changes (You
et al., 2013; Liu and Sun, 2016). Thus, the partial derivatives has been
applied in an attempt to estimate the impacts of climate-driven factors
to NPP variations:
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the effect of the other two variables, respectively.

This study assumed that CC and HA were the main causes of

vegetation NPP changes. The contributions of HA to vegetation NPP
variations could be seen as the bias between the observed (K) and cli-
matic estimated NPP (C_con) as follows,
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the change trend of NPP resulted from the interaction of CC and HA,
which is obtained from Eq. (1); C_con is the contribution of CC, re-
presenting the sum of T_con, P_con, and SR_con; H_con is the con-
tribution of HA, which equals the residual between K and Ccon. T_con,
P_con, and SR_con is the contribution of T, P, and SR to NPP variations,
respectively. Here, T, P and SR were considered as the main climatic
factors. Given that all types of factors have a linear influence on the
change in NPP, the second-order partial correlation coefficient between
one factor and NPP could be obtained by eliminating the other two
factors separately. The second-order partial correlation coefficients
were calculated as follows (Xu et al., 2010):
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(4)where Rxy z, represents the second-

order partial correlation coefficient between x and y by eliminating the
impact of factors z and λ; Rx z, and Ry z, have similar definitions to Rxy z,
as above. Judging the significance of the relevance of two variables by
t-test. If p is less than 0.05, it will pass the 95% confidence significance
test, otherwise, it will not be significant.

4.3. Eight scenarios for assessing the contribution proportions of climate and
human-induced NPP variations

By consider in the complexity of each driving mechanism, eight
scenarios supported by previous studies (Li et al., 2016; Xu et al., 2010;
Yan et al., 2019; S. Zhou et al., 2017; W. Zhou et al., 2017; Zhou et al.,
2015) were set up in Table 1 on the basis of K, C_con, and H_con to
estimate the contributions that CC and HA contribute to NPP increasing
and decreasing against the background of ambitious afforestation in
karst areas of China. Here, it was defined as “climate-controlled NPP
increasing or decreasing” in the case of the contribution proportion of
CC to NPP increasing or decreasing exceeded that of HA. Otherwise, it
was defined as “human-controlled NPP increasing or decreasing”.

Note: Scenario 1 or 5: NPP increasing or decreasing resulted from
the disturbance of CC and HA; Scenario 2 or 6: Climate-controlled NPP
increasing or decreasing; Scenario 3 or 7: Human-controlled NPP in-
creasing or decreasing; Scenario 4 or 8: Two scenarios that can not
happen for NPP increasing or decreasing.

4.4. Calculation of net NPP increasing areas

To further clarify the net contributions caused by CC and HA to
regional NPP variations, the proportions of net NPP increasing areas

Table 1
Eight scenarios for quantitatively assessing the contribution proportions of climate-and human-controlled NPP increasing or decreasing.

K Scenario C_con H_con Contribution of CC (%) Contribution of HA (%)

NPP increasing K > 0 Scenario 1 > 0 > 0 ×+ 100C con
C con H con

| _ |
| _ | | _ | ×+ 100H con

C con H con
| _ |

| _ | | _ |

Scenario 2 > 0 < 0 100 0
Scenario 3 < 0 > 0 0 100
Scenario 4 < 0 < 0 Impossible Impossible

NPP decreasing K < 0 Scenario 5 < 0 < 0 ×+ 100C con
C con H con

| _ |
| _ | | _ | ×+ 100H con

C con H con
| _ |

| _ | | _ |

Scenario 6 < 0 > 0 100 0
Scenario 7 > 0 < 0 0 100
Scenario 8 > 0 > 0 Impossible Impossible
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(NNIA) that CC and HA contributed to NPP variations and the total
NNIA of both were calculated as follows:

= +S S SNNIA CC HANNIA NNIA (5)

=S S SCC CC CCNNIA Increa g Decrea gsin sin (6)

=S S SHA HA HANNIA Increa g Decrea gsin sin (7)

where SNNIA is the total net NPP increasing areas that CC and HA
contributed to NPP variations; SCCNNIA is the net NPP increasing areas
that CC contributed to NPP variations; SHANNIA is the net NPP increasing
areas that CC contributed to NPP variations; SCCIncrea gsin is the areas that
CC contributed to NPP increasing; SCCD crea ge sin is the areas that CC con-
tributed to NPP decreasing; SHAIncrea gsin is the area that HA contributed
to NPP increasing; SHAD crea ge sin is the area that HA contributed to NPP
decreasing.

5. Results

5.1. Spatial distribution in NDVI and NPP

The average NDVI value in the vegetation-covered karst (VCK) areas
was 0.52 (Fig. S1) and the average NPP value in this areas was
411.94 g C m−2 yr−1 during 2000–2015 (Fig. S2). Overall, the average
NDVI and NPP values showed the prominently decreased trend from
south to north and east to west. The average NDVI value was higher
than 0.6 in most karst areas in southern and northern China, but lower
than 0.4 in karst areas of the Qinghai-Tibet Plateau. The areas with high
NPP values were mainly distributed in eight southern provinces (on
regional average was 676.31 g C m−2 yr−1 over SC, CQ, GZ, YN, GD,
GX, HN, and HUB). Notably, the largest NPP value was located in HAN
(998.46 g C m−2 yr−1) despite very small karst area distributed in this
province (Fig. S2). By contrary, the lowest average NPP value was
identified in TB (54.07 g C m−2 yr−1) with large karst areas. Viewed
from karst zones, the areas with low NPP values were primarily dis-
tributed in karst areas of northern China (270 g C m−2 yr−1) and the
Qinghai-Tibet Plateau (108 g C m−2 yr−1). Obviously, the average NPP
value was relatively higher (653.38 g C m−2 yr−1) in southern karst
area, which was 2.5 times than that in northern karst area, 6 times than
that in karst areas of the Qinghai-Tibet plateau and 1.6 times than that
of the entire VCK area. Thus, the spatial distribution of average NPP
was very similar to that of average NDVI in karst areas of southern
China and the Qinghai-Tibet Plateau.

5.2. Temporal-spatial changes in NDVI and NPP

The NDVI over the entire VCK area exhibited an unremarkable in-
creasing trend at a rate of 0.004 yr−1 (p > 0.05) during 2000–2015
(Fig. 2a). In the entire VCK area, the area of NDVI significantly in-
creased was 1.35 million km2, accounting for 88.93% of VCK area
(59.76% for significant increase and 29.17% for insignificant increase),
while the area of NDVI decreased was only 0.17 million km2, ac-
counting for 11.07% of VCK area (9.88% for insignificant decrease and
1.19% for significant decrease) (Fig. 2b). This indicated that the ve-
getation in most karst areas exhibited a significant greening trend
(mainly distributed in southern and northern karst areas), but only in
northwestern TB, the vegetation showed a yellowing trend. For three
divided karst zones, the highest NDVI increasing rate was obtained in
southern karst area (0.0054 yr−1, p > 0.05), followed by northern
karst area (0.0053 yr−1, p > 0.05), and the lowest was observed in
karst area of the Qinghai-Tibet Plateau (0.002 yr−1, p > 0.05). In
space, the fastest growing area of NDVI was observed at the junction of
YN-GZ-SC and SX. However, the areas with the most evident NDVI
decline were observed in karst areas of northwestern TB. Furthermore,
the increasing trends in NDVI were observed in all karst provinces

(Table S1), whereas the significant increasing trends of NDVI were
observed in BJ, SX, JL, HLJ, and SAX.

The average NPP over the entire VCK area exhibited an unremark-
able increasing trend at a rate of 0.92 g C m−2 yr−1 (p > 0.05) during
2000–2015 (Table S1). For three divided karst zones, the highest NPP
increasing rate was obtained in northern karst area (2.56 g C m−2 yr−1,
p > 0.05), followed by the karst area of the Qinghai-Tibet Plateau
(1.17 g C m−2 yr−1, p < 0.01), and the lowest was observed in
southern karst area (0.34 g C m−2 yr−1, p > 0.05). The karst area of
Qinghai-Tibet Plateau and northern China contributed 81.98% and
83.55% of their areas for NPP increasing respectively, and these regions
contributed 66.31% of NPP growth area in the entire VCK area. Al-
though NPP overall increased in different karst zones and VCK area, the
variation trend of it presented distinct spatial difference. Not only did
NPP decrease in one third of the VCK area (33.69%), but also in ap-
proximately half (47.58%) of the southern karst areas (Fig. 2c). More-
over, 17.02% for the VCK area exhibited the prominently decreasing
trend (p < 0.05), and 48.28% of which was contributed by the
southern karst areas (Fig. 2d). In space, the fastest growing area of NPP
was located at the junction of YN-GZ-SC and YN-SC-TB. However, the
areas with the most evident NPP decline were located in karst areas of
eastern GZ and northern GX. Furthermore, the increasing trend in NPP
were observed in most provinces of northern China (Table S1), whereas
the insignificant decreasing trends of NPP were observed in FJ, HUN,
GD, GX, and GZ. Specially, the largest areas with NPP decreasing was
obvious observed in GZ, followed by GX, TB and HUN.

5.3. Evolution relationship between NDVI and NPP

The evolution trends of NDVI were not consistent with that of NPP
in some areas from the above analysis. Although there were similar
change trends with an area of 0.98 million km2 (64.46%) for NDVI and
NPP, it was found that NPP showed a downward trend in the areas
where NDVI increased with an area of 0.44 million km2 (29.07%), and
there were even some regions with the area of 9.78 km2 in which NDVI
decreased while NPP increased, which were primarily concentrated in
karst areas of GZ, GX, GD and HUN. In addition, 16 evolution types
coupled with the change trends of NDVI and NPP had been identified in
Fig. 3, within which three obvious coupled types accounted for a large
proportion (66.26%), respectively. The coupled type of NDVI sig-
nificantly increased with NPP insignificantly increased showed the
largest area of 0.45 million km2, accounting for 29.54% of VCK area,
followed by the coupled type of NDVI significantly increased with NPP
insignificantly decreased, and the coupled type of NDVI increased in-
significantly with NPP increased insignificantly, accounting for 19.31%
(0.29 million km2) and 17.41% (0.26 million km2) of VCK area, re-
spectively. Other coupled types had relatively small distribution areas
(the total area was only 0.51 million km2). These results indicated that
vegetation turning green in some karst areas did not mean the in-
creasing in vegetation productivity.

5.4. Contributions of CC and HA to vegetation NPP variations

The contributions of T, P, and SR to NPP variations showed a sig-
nificant spatial differences in the VCK area (Fig. S3). Overall, SR ob-
tained the largest negative contribution in the entire VCK area
(-0.91 g C m−2 yr−1) during 2000 to 2015, whereas P obtained a po-
sitive contribution (0.25 g C m−2 yr−1), and T made the smallest po-
sitive contribution (0.04 g C m−2 yr−1) (Table 2). Moreover, the con-
tributions of three climatic factors to NPP variations also showed
different distributions in three divided karst regions. SR obtained the
largest negative contribution in karst areas of southern China, but
showed a higher positive contribution in the Qinghai-Tibetan plateau
and northern China. P only made a higher negative contribution in
karst areas of the Qinghai-Tibetan plateau. Notablely, T demonstrated a
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small positive contribution in the Qinghai-Tibetan plateau and northern
China and a small negative contribution in most southern karst areas.

To determine the main climatic factors that controlled NPP varia-
tions in karst areas, the climatic factor with the largest absolute con-
tribution on the pixel was selected as the main influence factor for NPP
variations. As shown in Fig. S3d, the areas dominated by T_con, P_con,
and SR_con account for 0.16% (2494.29 km2), 26.64% (0.403 million
km2), and 73.20% (1.11 million km2) of the total VCK area, respec-
tively. The areas dominated by SR and P accounted for 99.84% of the
total VCK area, thereby indicating that they were the two main factors
that affected the annual NPP variation in karst areas. P was critical to
NPP increasing in karst areas of northern China and the junction of YN,
GZ, and SC. The increased SR accelerated the NPP accumulation in
karst areas of the Qinghai-Tibet Plateau and northern China, but the
decreased SR led to the sharp decrease in NPP in eastern GZ, HUN, CQ,
YN, and northern GX.

Furthermore, the contributions caused by CC and HA to NPP
changes were obtained based on Eq. (3) (Fig. 4). We obtained a surprise
discovery that the regions with the greater negative contribution of CC
to NPP changes were also the regions with the greater positive con-
tribution of HA, such as GZ, GX, CQ and HUN, which indicated that the
government was trying to offset the negative effects of CC on vegetation
productivity restoration through ecological projects over the years.
Although HA contributed positively to NPP increasing, CC showed
greater negative impact on it, which resulted in the positive impact of
HA in most karst areas in southern China was greatly weakened by the

negative impact of CC. For the VCK areas, the areas where NPP changes
controlled by CC and HA were 0.87 (60% for NPP increasing and 40%
for NPP decreasing) and 0.64 million km2 (75% for NPP increasing and
25% for decreasing), which accounted for 57.62% and 42.39% of the
total VCK areas, respectively. It was showed that CC
(−0.61 g C m−2 yr−1) caused a negative contribution to NPP variations
in VCK areas (Table 2), whereas HA (1.53 g C m−2 yr−1) obtained the
largest positive contribution. For the three divided karst zones, HA
(2.85 g C m−2 yr−1) caused a larger positive contribution, whereas CC
(−2.51 g C m−2 yr−1) caused a negative contribution in southern karst
zones. Obviously, CC demonstrated a larger positive contribution
(0.77 g C m−2 yr−1) than that of HA (0.40 g C m−2 yr−1) in karst zones
of the Qinghai-Tibetan Plateau. Specially, a positive contribution made
by CC (3.27 g C m−2 yr−1) and a negative contribution made by HA
(−0.71 g C m−2 yr−1) to NPP variations were identified in northern
karst area, respectively, which were contrary to that in southern karst
area. For provinces, CC obtained more positive contributions in most
northern provinces and the Qinghai-Tibetan plateau, whereas HA de-
monstrated more positive contributions in most southern provinces.

5.5. Contribution proportions of CC and HA contribute to NPP increasing
and decreasing

To further accurately identify the dominant areas of each influen-
cing factor, the contribution proportions of CC and HA for NPP in-
creasing and decreasing were calculated according to the eight different

Fig. 2. Variation trend and significant levels for NDVI (a, b) and NPP (c, d) in karst areas based on spatial pixel during 2000 to 2015. The SI, II, ID, and SD in (b, d)
represents the change degree of significant increase, insignificant increase, insignificant decrease, and significant decrease in (a, c) respectively.

L. Wu, et al. Ecological Indicators 115 (2020) 106392

6



designed scenarios in Table 1. As shown in Fig. 5. The contribution
proportions of dominant factors for NPP increasing and decreasing
exhibited significant spatial differences. For entire VCK areas, the per-
centages of climate- and human-controlled accounted for 51.94% and
48.06% for NPP increasing (Fig. 5a, b), whereas 68.43% and 31.57%
for NPP decreasing (Fig. 5c, d), respectively. Thus, CC and HA showed
the more similar contribution proportion for NPP increasing, but with

great difference for NPP decreasing. In southern karst areas, CC domi-
nated the NPP decreasing (70.72%) mainly located in eastern GZ,
northern GX, southern HUN, and the border area along GZ, CQ, and
HUN (Fig. 5e, f). HA dominated the NPP increasing (59.07%) in
southern karst areas, mainly located in YN, the border area between GZ
and SC, central GX, central and southern HUN, and the border area
along YN, GZ, and GX. By contrast, in northern karst area, CC was the

Fig. 3. NPP change trends combined different NDVI change characteristics in karst areas of China. The SI, II, ID, and SD represent the variety characteristics in
significant increase, insignificant increase, insignificant decrease, and significant decrease, respectively.

Table 2
Regional average contribution values caused by CC and HA to NPP variations in different provinces and karst zones (g C m−2 yr−1).

Region T P SR CC HA Region T P SR CC HA

Karst 0.04 0.25 −0.91 −0.61 1.53 HN 0.01 −0.62 5.16 4.55 −2.87
Southern China 0.01 0.42 −2.95 −2.51 2.85 HUB 0.01 −1.79 0.11 −1.68 2.31
Qinghai-Tibetan Plateau 0.10 −0.31 0.98 0.77 0.40 HUN 0.02 −0.09 −7.97 −8.04 6.92
Northern China 0.02 1.12 2.13 3.27 −0.71 GD 0.00 0.09 2.26 2.34 −4.13
BJ 0.01 2.15 0.22 2.38 −1.10 GX 0.00 −0.75 −4.38 −5.13 3.61
TJ 0.04 3.44 1.60 5.08 −1.99 HAN 0.00 −6.11 0.86 −5.26 5.48
HB 0.02 2.00 0.83 2.85 −0.67 CQ 0.02 0.62 −4.52 −3.89 5.08
SX 0.03 2.11 1.10 3.24 −0.33 SC 0.04 0.81 −0.40 0.45 2.09
IM 0.04 2.22 0.54 2.81 −0.60 GZ 0.01 0.16 −6.94 −6.77 5.97
LL 0.04 1.96 2.15 4.15 0.87 YN 0.01 1.39 0.42 1.82 0.52
JL 0.01 1.20 −1.26 −0.05 3.87 TB 0.10 −0.81 1.51 0.80 −0.14
HLJ 0.00 −0.09 9.24 9.15 −5.39 SAX 0.01 0.62 4.50 5.13 −0.58
JS 0.01 1.02 5.48 6.50 −2.54 GS 0.04 0.64 0.53 1.22 1.49
ZJ −0.01 11.61 0.66 12.27 −9.45 QH 0.11 0.20 −0.58 −0.27 0.96
AH 0.00 5.00 3.16 8.16 −4.32 NX 0.04 1.76 5.70 7.49 −2.07
FJ 0.00 −1.99 −0.25 −2.25 −0.20 XJ 0.02 0.39 1.00 1.41 −1.11
JX 0.01 3.98 −0.07 3.91 −3.58 TW 0.00 −1.06 7.27 6.20 0.34
SD 0.02 −0.20 6.14 5.95 −2.42 – – – – – –
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main cause of NPP increasing (71.98%), whereas HA dominated the
NPP decreasing (57.19%). Unexpectedly, CC was the main controlling
factor for NPP increasing (52.84%) and decreasing (67%) in karst areas
of the Qinghai-Tibetan plateau.

For provinces, CC dominated NPP increasing in northern provinces
(Fig. 6a). However, the increasing of NPP in southern provinces was
mainly attributed to HA (mainly ecological afforestation projects) while
the negative effects of CC had led to a large area of NPP decline in this
region (Fig. 6b). NPP decline in northern provinces was mainly caused
by HA. Thus, a large number of ecological projects had promoted the
growth of NPP in southern provinces where karst was concentrated, but
the negative effect of CC had also led to a large reduction of NPP in this
region.

5.6. The net change areas in NPP

As shown in Fig. 6c, the total NNIA of CC and HA was 0.49 million
km2, which accounted for 32.62% of the VCK area. The proportion of
NNIA dominated by HA accounted for 65.09% of the total NNIA in the
VCK area, whereas that dominated by CC was only 34.91%. The pro-
portions of NNIA dominated by CC (52.84%) and HA (47.16%) were
higher in karst areas of the Qinghai-Tibet Plateau. 58.29% of NNIA was
dominated by HA and −41.71% of it was dominated by CC in southern
karst area, whereas 20.86% and 79.14% of NNIA were dominated by
HA and CC in northern karst area, respectively. Hence, HA dominated
NNIA in southern karst areas while CC controlled NNIA in northern
karst areas. Among the provinces, CC dominated a relatively higher
proportion of NNIA in most northern provinces, while it dominated
lower proportion of NNIA in southern provinces. By contrary, the
proportion of NNIA controlled by HA was relatively higher in CQ
(95.40%), SC (64.74%), HUB (65.87%), HAN (56.91%) and YN
(54.16%), but relatively lower in GZ (33.31%), GX (24.02%), mainly
due to the negative effects of CC.

For the total NNIA, the largest proportion of NNIA at 68.05% was
contributed by karst area of the Qinghai-Tibet Plateau with lower NPP,
whereas the lowest proportion of NNIA at 7.96% was observed in
southern karst area with higher NPP. Among the provinces, the lowest
NNIA of −0.07 million km2 was identified in GZ and GX. Surprisingly,
the largest proportion of NNIA was observed in TB (34.02%) and QH
(22.82%). It could been seen that the positive contribution of HA to
NPP changes was largely offset by the negative effect of CC in karst area
of southern China.

6. Discussion

6.1. Comparison of quantitative evaluation methods on vegetation
productivity

Quantifying the impacts that CC and HA contributed to NPP var-
iations had traditionally been a challenge due to the complexity and
uncertainty of driving mechanisms. In the past, many mathematical
statistical method, such as linear regression, Lindeman-Merenda-Gold
method, variance decomposition, principal component analysis, re-
sidual trend, and multivariable analysis, were commonly used methods
to evaluate the relative contributions of driving factors (Gollnow and
Lakes, 2014; Herrmann et al., 2005; Jiang et al., 2017; Ma et al., 2007;
Millington et al., 2007; Schweizer and Matlack, 2014; Ye et al., 2019; S.
Zhou et al., 2017; W. Zhou et al., 2017). However, these statistical
techniques were often criticized for failing to accurately identify the
effect of HA. Recently, some researches were conducted to separate
vegetation carbon increment caused by human activity from multiple
influencing factors by comparing the actual climate-driven above-
ground biomass change without anthropogenic influence via the LPJ-
GUESS ecosystem model (Smith et al., 2014) and Miami models (Adams
et al., 2004; Krausmann et al., 2009; S. Zhou et al., 2017; W. Zhou et al.,
2017; Zhou et al., 2015), which defined the potential NPP (or biomass)
on the basis of potential vegetation by fixing a climate condition or
setting up a variety of climate scenarios. Nevertheless, there was high
uncertainty in the simulation results.

This study aimed to separate effectively and assess quantitatively
the impact of CC and HA on the vegetation productivity evolution. We
attempted to select NPP as an indicator to represent vegetation pro-
ductivity on the support of studies of Roderick et al. (2007) and Xu
et al. (2010) and selected T, P, and SR as the evaluation indicators of
main climatic factors. Then, the contributions caused by CC and HA to
vegetation productivity were quantitatively evaluated by using the
partial derivatives. Lastly, the contribution proportions of CC and HA to
NPP increasing and decreasing were also evaluated by setting up eight
different scenarios with consideration for the complexity of driving
mechanisms.

Moreover, CO2 fertilisation, which seemed to remarkably affect on
the plant growth (Braswell, 1997; Mu et al., 2008; Myneni et al., 1997;
Zhu et al., 2016), was included in HA in this study. Although previous
researches found that the CO2 fertilisation showed a significant effect
on vegetation growth in hot and arid environments where plant growth
was limited by water (Chen et al., 2019a; Donohue et al., 2013;

Fig. 4. The contributions caused by CC (C_con) (a) and HA (H_con) (b) to NPP variations in space.
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Mcmurtrie et al., 2008), such effects had the weakest impact on vege-
tation in the arid environments of northwest China (Mu et al.,2008),
even in all China (Xiao et al., 2015; Piao et al., 2018). Moreover, it was
said that CO2 fertilisation effects explained most of the greening trends
in the tropics, whereas it was not CO2 fertilisation, but CC resulted in
greening in the regions of high latitudes and the Qinghai-Tibet Plateau

(Zhu et al., 2016). Meanwhile, recent researches suggested land use
change dominated by HA (afforestation projects) contributed most to
the regional greening, which was clearly observed in southweastern
China (Piao et al., 2015; Zhu et al., 2016). Overall, it could be seen that
HA was the key role in the residual factors.

The advantage of this method was that the uncertainty of simulated

Fig. 5. The impact of CC and HA on NPP changes. The contribution proportions that CC (Con_clim) (a) and HA (Con_hum) (b) contributed to NPP increasing; The
contribution proportions that CC (Con_clim) (c) and HA (Con_hum) (d) contributed to NPP decreasing; Spatial distributions of the climate- and human-dominated
NPP increase areas (e) and decrease areas (f).
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potential NPP by using Miami model used in previous studies could be
effectively avoided. Moreover, the impact of any actuation factor as-
sociated with CC and HA capable of being effectively decomposed and
accurately calculated regardless of how complex the relationship
among the factors was, even if their expression was unknown.
Therefore, this method was capable of quantitatively analyzing the
evolution process of vegetation productivity and its driving factors in
karst areas, and could be widely used in the researches on eco-hydro-
logical process.

6.2. Comparisons of the results with that in previous studies

We compared our results with previous researches (the study area
included karst area and non-karst area) from different regions and
found some differences.

For the grassland NPP changes in China, the contributions of CC and
HA to NPP decrease were almost equilibrium (47.9% vs 46.4%). But for
the NPP increase, HA was the dominant driving factors (78.1% for HA
and 21.9% for CC) (S. Zhou et al., 2017; W. Zhou et al., 2017). In our
study, CC and HA showed the more similar contribution proportion for
NPP increase (51.94% vs 48.06%) for the entire VCK (vegetation-cov-
ered karst area) areas, but with great difference for NPP decrease
(68.43% vs 31.57%). The two studies were relatively consistent in the
recognition of contributions of CC and HA to NPP changes.

For the grassland NPP changes in northern China, the role of HA in
both NPP increase (55.79%) and decreasing (74.83%) was the main
control factor (Yan et al., 2019). This result that HA was the main
control factor for NPP changes was consistent with the result of Zhou
et al. (2015), who concluded that 69% of NPP decrease was caused by
HA compared with 15.2% induced by CC, and 23.9% of NPP increase
was caused by CC, whereas 54% resulted from HA in the northwest
China. But, this view was different from our result that CC was the main
cause of NPP increase (71.98%), whereas HA dominated the NPP de-
creasing (57.19%) in northern karst area.

For the grassland NPP changes in the Qinghai-Tibet Plateau, 56.7%
of the NPP reduced areas was influenced by CC, and 19.9% was affected
by HA. But HA was the dominant driving factors for NPP increasing
(Wang et al., 2016). However, in our study, CC was the main control-
ling factor for NPP increasing (52.84%) and decreasing (67%) in karst
areas of the Qinghai-Tibetan plateau. For the southern karst areas, this
study suggested that CC dominated the NPP decreasing (70.72%) and
HA dominated the NPP increasing (59.07%) in southern karst areas.
This view was consistent with the latest study that had found a large
increase in carbon sequestration of which about half was caused by
newly planted and managed forests (Tong et al., 2020).

For provinces, most studies suggested that the relative roles of two
factors possessed great spatial heterogeneity in all provinces (Forkel
et al., 2014; Huang et al., 2018; X. Liu et al., 2019; Y. Liu et al., 2019;

Fig. 6. Statistical results of contribution proportions and NNIA controlled by CC and HA to NPP changes in different provinces and karst zones. (a) The contribution
proportions of climate- and human-controlled NPP increasing; (b) The contribution proportions of climate- and human-controlled NPP decreasing; (c) The per-
centages of climate- and human-controlled NNIA and the total NNIA.
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Piao et al., 2015; Wang et al., 2016; Zeng et al., 2018). In one province,
the difference of contribution of CC between in karst and non-karst
areas was mainly caused by the spatial heterogeneity of climate factors
such as precipitation, radiation, and temperature, etc. The difference of
contribution of CC between regions was related to the change char-
acteristics of climate factors. But, the difference of HA might be larger,
which was mainly because the ecological projects were mainly im-
plemented in the karst area (Tong et al., 2018; Delang and Yuan, 2015),
while the intensity of implementation in the non karst area was rela-
tively small. So the contribution of HA in karst area was higher than
that in non-karst area. In our study, It also found that there were some
differences of contribution values caused by CC and HA for the same
province. As shown in Fig. 4 and Fig. 5, it was obvious that there were
some differences of main control factors for NPP changes in karst areas
of each province. CC dominated NPP increasing while HA dominated
NPP decreasing in northern karst provinces. However, the increasing of
NPP in southern karst provinces was mainly attributed to HA (mainly
ecological afforestation projects) and the negative effects of CC had led
to a large area of NPP decline in the region.

6.3. Effect of CC on vegetation productivity

In recent decades, lots of trees were planted by several large-scale
afforestation projects in southern karst areas (Brandt et al., 2018b;
Chen et al., 2019a). Biomass accumulated rapidly due to vegetation
growth (Tong et al., 2018). However, we found that NPP decrease was
most evident in southern karst areas, especially in GZ, GX, and HUN,
which was the largest areas of net NPP reduction despite abundant
hydrothermal conditions. This result supported the previous conclusion
that NPP showed a slow downward trend in northeastern Guilin and
Liuzhou of GX (Li et al., 2018), and even the downward trend was less
than −0.05 g C m−2 yr−1 in certain areas (Li et al., 2014).

Previous researches had found that the interactions of T, water and
light showed different effects on plant growth in different regions
(Nemani et al., 2003). Lower P was the main constrain factor for ve-
getation productivity increasing in northern China (Yan et al., 2019). In
forests, plant growth was often delayed by insufficient light. The lack of
light became a major limiting factor for plant growth (Zhu et al., 2007),
especially when the cloud cover was considerable and the duration was
long (i.e., GZ, GX, CQ, and HUN, etc). In our study, we got a consistent
finding that SR obtained a larger contribution value to NPP variations
than T or P in most karst areas (73.20%), especially in southern karst
area (Table S1d). Among all provinces, P contributed to the largest
positive contribution to NPP variations in most provinces (i.e., SX, HB,
AH, ZJ) where the increasing P reduced the restriction of water on
vegetation growth and significantly promoted photosynthesis effi-
ciency.

Although climatic stress was loosening in global (Nemani et al.,
2003), the NPP growth in southern karst region was continuously
hindered by the severe negative effects of SR. CC dominated the NPP
decreasing in karst areas of southern China (i.e., eastern GZ, northern
GX, and southern HUN) (Fig. 5c), owing mainly to increased cloud
cover caused by increased P that resulted in the rapid reduction in SR
(Nemani et al., 2003; Gonsamo et al., 2016). In that case, vegetation
growth was constrained by a short-growing season length under these
circumstances. This result confirmed the findings of Zhu et al. (2007),
who assumed that NPP increasing in most areas of east and south China
(29% of China’s total land area) was mainly limited by light stress and
also indicated that the higher NPP value raised the higher requirements
of water and heat allocation conditions. Therefore, despite P increased
in southern karst region, the lack of sunlight gave lower energy and
subsequently caused an imbalance of water and heat conditions, which
remarkably inhibited the time and efficiency of photosynthesis of ve-
getation and hindered carbon sequestration. However, although P
showed a decreasing trend in karst region of YN (Fig. 7a), CC played a
strong role in NPP recovery due to obvious higher SR than that in other

areas in southern China (Fig. 7e, f). This finding was contrary to the
case in the Amazon rainforest where 42% of NPP increasing benefit
from increased SR caused by reduced cloud amount (Nemani et al.,
2003). The negative contribution of CC to NPP variations in southern
karst region was basically consistent with that of Tong et al. (2018),
who found that the above-ground biomass and leaf area index simu-
lated from the ecosystem model LPJ-GUESS without human disturbance
(2000–2015) were declining due to drought. In addition, this finding
was also consistent with that of Brandt et al. (2018b) who suggested
that vegetation productivity decrease associated with the decline of
rainfall and soil moisture.

Moreover, water stress was an important limiting factor that con-
trolled terrestrial NPP (Mu et al., 2008), and large-scale droughts have
reduced regional NPP globally from 1982 to 1999 (Zhao et al., 2006).
The recovery of karst vegetation productivity in the majority of
northern provinces mainly benefit from increased P (Fig. 7a, b). This
study found that NPP increasing benefited from the contribution of CC
controlled by increased P in the majority of karst areas of northwestern
China (Fig. S3a), which agreed well with the findings of Zhou et al.
(2014) that CC changed from warm-dry to warm-wet in northwestern
China (Shi et al., 2007). However, vegetation productivity surprisingly
increased remarkably under the scenario of reduced rainfall in some
karst areas of the Qinghai-Tibet Plateau. This result was mainly at-
tributed to the rapid growth in SR, which promoted the photosynthesis
rate and carbon absorption efficiency in plants growth (Liu et al., 2018;
X. Liu et al., 2019; Y. Liu et al., 2019). The increased SR sufficiently
offset the restrictions on NPP increasing caused by reduced P. As shown
in Fig. S4, the second-order partial correlation between NPP and SR by
eliminating the impact of P and T in southern karst areas was higher
than that in other karst areas. Moreover, T and P showed high positive
correlation with NPP mainly in the areas over 26° N, which also ex-
hibited that SR was the main driving factor for NPP decreasing there.
Although the high correlation between NPP and T was shown in VCK
area, lower T remained as the main limiting factor for vegetation
growth (S. Zhou et al., 2017; W. Zhou et al., 2017), thus contributing
less. In addition, the vegetation in karst areas of the Qinghai-Tibet
Plateau was mainly covered by grassland with very low productivity
(< 100 g C m−2 yr−1) (Yan et al., 2019). So, the hydrothermal con-
ditions were not as strict as those in southern karst area with high NPP
values (> 500 g C m−2 yr−1). Despite the decrease in P, the increased T
and SR prolonged the vegetation growth season in the region. There-
fore, grassland productivity there exhibited a slower increasing trend.
These results were consistent with the result of Li et al. (2016) who
demonstrated CC was the dominant factor for mitigation of desertifi-
cation through accelerating NPP increase there. At the same period,
recent climate-induced carbon losses was revealed in African drylands
associated with water restriction through satellite passive microwaves
(Brandt et al., 2018a), which stressed the importance of water for NPP
increasing.

Overall, CC was the dominant factor for vegetation NPP increasing
in northern karst areas and controlled the downward trend of vegeta-
tion NPP in most southern karst areas. This study also indicated that
both T and P obtained the largest negative contributions to NPP var-
iations in TB among all provinces (Fig. 7c,d). As regards the contribu-
tion of T in this study was consistent with previous result that the effect
of T on NPP variations was very small (Piao et al., 2017; Wang et al.,
2003; Yan et al., 2019).

6.4. Effect of endogenous respiration on vegetation productivity

It was observed that the decreased area of GPP was significantly
larger than that of autotrophic respiration (Ra), and Ra in many areas
where GPP decreased showed an increasing trend (Fig. S5), which in-
dicated that the organic matter accumulated by vegetation through
photosynthesis might be consumed by respiration. Pre-
vious researches suggested that the increased T and P significantly
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accelerated vegetation Ra (Ryan et al., 1995; Piao et al., 2010; Ben
et al., 2018), and promoted the GPP consumption (Ogle, 2018), then
reduced NPP storage in vegetation ecosystems, especially in the warm
and rainy southern karst area where the growth rate of Ra was much
higher than that of carbon sequestration through photosynthesis. Con-
versely, vegetation required relatively less energy to support metabo-
lism in colder areas of the Qinghai-Tibet Plateau where GPP increasing

dominated NPP increasing, resulting in relatively lower Ra consump-
tion (Peng et al., 2017). In southern karst area, photosynthesis was
limited by SR, but endogenous Ra increased remarkably due to the
significant impact of T and P, which might greatly reduce the net NPP
storage. As shown in Fig. 8, 93.41% of NPP growth regions was at-
tributed to the result of GPP accumulation more quickly than Ra con-
sumption. Only 6.59% of that areas was controlled by Ra, which was

Fig. 7. Variation trends and the significance levels for T (a, b), P (c, d), and SR (e, f) based on spatial pixel. The k in (b, d, and f) represent the slope in (a, c, and e),
respectively.
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mainly because the decrease rate of Ra was greater than the increase
rate of GPP. However, 39.83% of the areas involved in NPP decreasing
was attributed to the accelerating consumption of Ra and the rest
(60.17%) was contributed by the rapid decrease of GPP.

6.5. Effect of HA on vegetation productivity

Compared with CC, HA was an external driving factor affecting the
change of vegetation productivity (Pan et al., 2015). Positive human
activities could quickly restore vegetation through ecological en-
gineering and then promoted carbon capture (Tong et al., 2018),
whereas negative HA could reduce vegetation rapidly through defor-
estation and then accelerated carbon release. HA, such as reclamation
and deforestation, slash-and-burn cultivation, excessive felling of for-
ests, and overexploitation of water resources, would lead to NPP de-
creasing, which in turn released more carbon (Jiang et al., 2014; Li
et al., 2018a; S. Zhou et al., 2017; W. Zhou et al., 2017). Previous
studies showed that HA was an important role in NPP variations by
changing the land use structures (Piao et al., 2009). In this study, HA
was the major factor in NPP decreasing only in northern GD and eastern
YN, and in most northern provinces where the contribution proportions
of NPP increasing dominated by HA were less than that dominated by
CC. By contrast, HA was the main reason for the reduction in NPP there.
This result was consistent with the finding of Zhou et al. (2014) in
northwestern China. A similar situation was also observed in sub-Sa-
haran Africa where human population growth offset the climate-driven
increase in woody vegetation (Brandt et al., 2017).

But, HA, such as closing mountains for forestry and conversion of
farmland to forestry, also promoted the disappearance of rocky de-
sertification and increased vegetation cover and carbon stock (Brandt
et al., 2018b; Zhang et al., 2014, 2018). Previous studies sugges-
ted that afforestation contributed 25.5% to the greening of vegetation
in China (Xiao et al., 2015). The afforestation speed in karst areas had
remarkably increased since the launch of the GTGP which was a na-
tionwide ecological project and was started in 2000 in GZ, and con-
tinued in GX and YN in 2001. The GTGP was expanded from the ori-
ginal 27 key counties to all counties in three provinces (GZ, GX, and
YN) in the following years and a number of conservation projects were
implemented in karst areas between 534 m and 1378 m. Large scale
afforestation had been carried out involved 325 counties with the
conservation areas of 33,094 km2 during the period 2000–2010 (Tong
et al., 2018). 37 counties showed high conservation effort with an
average areas of 264 km2, 96 counties showed moderate conservation
effort with an average areas of 141 km2, 104 counties showed low
conservation effort with an average areas of 76 km2, and only 58

counties showed very low conservation effort with an average areas of
32 km2 (Tong et al., 2018). In this period, a large area of slope farmland
has been converted back to forests and grasslands via ecological pro-
jects, which was crucial in promoting NPP increasing in karst areas. We
found that the recovery rate of NPP was the fastest at the junction of
YN, SC and GZ (Fig. 2c) where HA was the main factor that controlled
NPP increasing, which was consistent with the conclusions of Zhou
et al. (2017a) and directly corroborated the results of Brandt et al.
(2018b) and Tong et al. (2018). Moreover, the influences of HA to NPP
variations were positive in southern karst area (i.e., QH, TB, HUB, SC,
GZ, GX, HUN, and CQ), which also showed no obvious difference with
that from Tong et al. (2018) who demonstrated that HA was the key
driving forces for carbon stock through ecological protection measures.
Furthermore, the latest study had found a large increase in carbon se-
questration of which about half was caused by newly planted and
managed forests in southern karst area (Tong et al., 2020). This view
also indirectly supported our conclusion that HA contributed positively
to vegetation restoration.

Large-scale conservation and ecological projects could contribute to
an increasing NPP with positive impacts on carbon storage in karst area.
At a small scale, such ecological engineering effects could offset the
probabilities of NPP decreasing caused by CC in rocky desertification
areas by increasing the vegetation cover. Fortunately, as shown in
Fig. 4, CC contributed positively in the regions where ecological pro-
jects were implemented by government, such as northwest of GZ, GX,
and the border areas of CQ, HUN, and HUB. The low conservation ef-
forts were implemented on a relatively small scale in eastern GZ and
northern GX where CC contributed negatively in this study, which was
also consistent with the result of Tong et al. (2017) and Tong et al.
(2018). These results showed that the conservation projects im-
plemented in these areas were very scientific and reasonable. Un-
fortunately, the areas where HA continuously showed negative con-
tributions and CC showed weaker positive contributions for NPP
increasing were also observed in eastern YN and northern GD. But,
some positive changes had also been found in many areas where the
total NPP storage reduced due to CC but was compensated by effective
ecological projects, which concluded that the positive contribution of
HA to NPP increasing could offset the negative contribution of CC.
Thus, a large number of ecological projects to promote the restoration
of vegetation productivity should be combined with the effects of CC in
karst areas of southern China.

Finally, previous studies had shown that China was turning green,
and karst vegetation growth made a great contribution to the overall
greening (Brandt et al., 2018a; Chen et al., 2002; Yang et al., 2019).
Following the start of the GTGP in 2000, the vegetation cover rapidly

Fig. 8. The GPP- and Ra-dominated NPP increasing zones (a) and decreasing zones (b) in space.
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increased (+7%) over the karst areas from 1999 to 2012 (Brandt et al.,
2018a) and ~5% of the areas with a significant positive biomass trend
cover globally were located in southern karst area. However, we had
found that vegetation greening (NDVI growth) did not indicate the
increase in vegetation productivity. On the contrary, there was also a
large area with NPP increasing in the areas where NDVI was decreasing.
The possible reason for this inconsistency was that these area might had
grown native vegetation and undergone the process of deforestation
and reforestation. This was because people had to cultivate a lot of
sloping land for cultivation in the early stage of GTGP due to the higher
population density in karst area which was much higher than that in
non karst area. The areas where deforested first and then reforested
would turn green quickly and showed NDVI growth. However, the ac-
cumulation process of NPP needed a long time, and it was strongly
consumed by respiration, which might lead to the decrease of NPP in
some areas.

6.6. Uncertainty and limitation

This study effectively separated and quantitatively assessed the
impacts of CC and HA on vegetation productivity in karst area based on
partial derivative method, and promoted the deep understanding of the
mechanisms of vegetation carbon accumulation. However, we noted
that some uncertainties and limitations still remained in our study.
Uncertainties in the present study were primarily related to the spatial
resolution of the data sets. The resolution of 1 km of the MODIS17A3
data represented mixtures of different vegetation changes, since neither
NPP increasing nor decreasing usually covered the full extent of a grid
cell. Frequent changes between forestation and vegetation degradation
at small scales posed challenges for accurate identification. Although
the data source used in this paper was the latest version of MODIS data,
it was still the indirect remote sensing data simulated by the model. The
main reason was that the measured data in most alpine areas was dif-
ficult to obtain. In addition, there were fewer meteorological stations in
the Qinghai-Tibet Plateau where karst area was widely distributed, so
the widely used and accepted GLDAS 2.1 dataset was used in this study.
Moreover, the response of vegetation to CC often showed a lagging
effect, which might influence the NPP storage. However, this study
failed to consider the lagging effect of NPP caused by meteorological
limiting factors. Furthermore, the contributions of CC and HA to NPP
changes on multi-time scale were not taken into account in this paper.
Due to data limitation, this study had also not further studied the im-
pact of different human management measures on vegetation restora-
tion and its effect identification. These uncertainties and limitations
might affect the comprehensiveness of understanding the driving me-
chanism of vegetation restoration.

6.7. Prospects for future research

This study revealed the key driving factors of ecological restoration
and quantified the contribution of these factors to vegetation restora-
tion, and also identified their key control areas. Based on the current
research progress, the next study should reveal the differences of con-
tribution values caused by CC and HA between in karst region and non-
karst region, especially in the same province. In the future, the main
works should focus on the impact of different human management
measures on the vegetation ecosystem and its multiscale effect identi-
fication on the regional scale on the basis of the preliminary
‘Greenization’ in the southwest karst area in the early stage, and
quantify the carbon sequestration effect and its difference generated by
different restoration management measures, especially the carbon
water process and its ecological service effect of the plantation re-
storation. In addition, we should put forward some ideas on how to
effectively balance the impact of different restoration management
measures on vegetation restoration capacity, such as natural recovery,

afforestation, closure and protection. Moreover, we should also at-
tach great importance to the response mechanism of vegetation re-
storation to drought and extreme climate change, and clarify whether
soil moisture will limit the sustainable recovery and growth of forests,
so as to prevent the failure of our effort in afforestation over the years.
Due to extremely strong human interference, the most important task is
to reveal the mutual feeding mechanism between ecological and social
systems in the southwest karst region as soon as possible.

7. Conclusions

In this study, the impacts caused by CC and HA on vegetation
productivity in karst areas of China were assessed based on partial
derivatives to clarify the effect of ecological engineering associated
with CC. Then, the contribution proportions of both to NPP increasing
and decreasing were further evaluated by setting up eight different
scenarios, respectively. The conclusions are as follows:

1) The average NPP over the entire VCK area exhibited an unremark-
able increasing trend (0.92 g C m−2 yr−1) from 2000 to 2015 and a
major decline in NPP was detected in the areas where NDVI in-
creased (0.44 million km2, 29.07%).

2) Solar radiation (−0.91 g C m−2 yr−1) was the preponderant cli-
matic factors exhibiting negative contribution to NPP change.

3) A significant positive contribution was caused by HA
(1.53 g C m−2 yr−1) on NPP variations, while a negative con-
tribution was induced by CC (−0.61 g C m−2 yr−1). For contribu-
tion proportions, CC and HA showed the more similar contribution
proportion to NPP increasing (51.94% vs 48.06%), but with great
difference (68.43% vs 31.57%) for NPP decreasing.

4) 39.83% of the areas involved in NPP decreasing was attributed to
the accelerating consumption of Ra and the rest (60.17%) was
contributed by the rapid decrease of GPP. But, 93.41% of NPP
growth regions was attributed to the result of GPP accumulation
more quickly than Ra consumption.

5) In southern karst area, HA showed a positive impact (59.07%) on
NPP increasing. However, the negative contribution from CC
(70.72%) due to the rapid and constant decline of solar radiation
completely counteracted this, leading to a greater NPP decrease.

This study identified the critical control areas in which CC and HA
contributed to NPP increasing or decreasing, and suggested that CC
weakened the positive effect of ecological engineering on vegetation
productivity in southern karst areas. Such insights stressed the im-
portance of negative effect from CC on karst vegetation productivity
change and provided location guidance for further implementation of
ecological protection projects in southern China. In the future, ecolo-
gical engineering measures and spatial differences of climate effects
should be considered together in karst areas of southern China.
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