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Abstract The Maoping Pb–Zn deposit (* 3 Mt Pb ? Zn

reserves with grades of 12–30 wt%) is one of the largest

Pb–Zn deposits in the Sichuan–Yunnan–Guizhou (SYG)

metallogenic province, which has contributed a tremendous

amount of lead and zinc resources for China. To obtain a

further understanding of the sources of ore-forming mate-

rials and ore genesis of the deposit, S–Pb isotopes of sul-

fides and C–O isotopes of ore-stage calcites were

systematically collected from representative orebodies at

different elevations with a Finnigan MAT-253 mass spec-

trometer. The calcites separated from the sulfides of the No

I and No II orebodies shared identical d13CPDB values

(- 5.3 to - 0.8 %) and d18OSMOW values (? 14.5 to

? 21.8 %) with those of the calcites in the SYG region,

suggesting that CO2 in regional ore-forming fluids possibly

had a homologous C–O source that originated from a

ternary mixture of the dissolution of marine carbonate

rocks, degassing process of the Emeishan mantle plume,

and dehydroxylation of sedimentary organic matter. The

No. I-1 and No. I-2 orebody was hosted in the same strata,

but the sulfur source of No. I-1 orebody (? 13.1 to ? 19.0

%) with equilibrated sulfur fractionation (d34Ssphalerite-

\ d34Sgalena) and No. I-2 orebody (? 18.0 to ? 21.8 %)

with sulfur equilibrium fractionation (d34Ssphalerite [ d34-

Sgalena) were different. They were derived from the

allopatry thermochemical sulfate reduction (TSR) of

overlying Carboniferous sulfates in the ore-hosting strata

and local TSR of sulfates in the ore-bearing Upper Devo-

nian Zaige Formation, respectively. The narrow and uni-

form Pb isotopic ratios of single galena grains collected

from sulfides with 206Pb/204Pb of 18.713–18.759,
207Pb/204Pb of 15.772–15.776 and 208Pb/204Pb of

39.383–39.467 indicate a well-mixed metal source(s) that

consist of Proterozoic Kunyang and Huili Group basement

rocks and Devonian to Middle Permian ore-hosting sedi-

mentary rocks. Besides, the late Permian Emeishan basalts

are difficult to contribute metals for regional Pb–Zn min-

eralization despite a closely spatial relationship with the

distribution of the Pb–Zn deposit. This is supported by Pb

isotopic ratios plotting above the average upper crustal Pb

evolution curves and staying far away from that of the age-

corrected Emeishan basalts. Hence, taking into account of

the similarities in tectonic setting, ore-hosting rock, ore

assemblage, wall rock alteration, ore-controlling structure,

and ore-forming materials and the differences in relation-

ship with regional magmatism, fluid inclusion character-

istic and ore grade between the Maoping deposit and

typical MVT Pb–Zn deposit, the ore genesis of the

Maoping deposit should be an MVT like Pb–Zn deposit.

Keywords Maoping Pb–Zn deposit � Ore-forming

materials � Ore genesis � MVT-like deposit

1 Introduction

The Sichuan–Yunnan–Guizhou (SYG) Pb–Zn metallo-

genic province, including the southern Sichuan, north-

eastern Yunnan and northeastern Guizhou ore districts, is

located in the southwestern Yangtze block (Fig. 1a; Huang
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et al. 2004; Zhang et al. 2005), which is a significant part of

the giant South China low-temperature metallogenic

domain (SCLTMD) and also an important production base

of lead, zinc, germanium, and silver in China (Hu et al.

2016, 2017a, b; Zhou et al. 2018). Several world-class to

large-scale Pb–Zn deposits occur in the northeastern

Yunnan district under a similar metallogenic setting, such

as Huize, Lemachang, Maoping, Fule, Maozu, and Jin-

shachang, etc. (Fig. 1b; Ye et al. 2011; Han et al. 2012;

Zhou et al. 2013a, 2018). These deposits are characterized

by (1) being hosted in the carbonate rocks of the late

Ediacaran to middle Permian strata (Zhou et al. 2018); (2)

being controlled by multi-stage faults and spatially relevant

to the late Permian Emeishan basalts (Fig. 1b; Han et al.

2012; Wang et al. 2017); (3) having stratiform, lenticular

and scrotiform sulfide orebodies with significant epigenetic

features occurred in the fold bedding-planes or steep sul-

fide veins displayed along fault dip planes (Zheng and

Wang 1991; Li et al. 2015; Wei et al. 2015); (4) having

low-moderate temperature (120–280 �C) and medium–

Fig. 1 Geological sketch map of the Sichuan–Yunnan–Guizhou (SYG) Pb–Zn metallogenic province, showing the Geotectonic location (a) and

the distribution of faults, Emeishan flood basalts and Pb–Zn deposits (b, modified after Liu and Lin 1999)
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high salinity (10–22 wt% NaCl equiv.) of the fluid inclu-

sions (Zhang et al. 2015; Liu et al. 2017); and (5) having

high ore grades with 10–35 wt% Pb ? Zn and associated

with Ge, Ag, Cd and Ga, etc. (Zhou et al. 2014a; Zhu et al.

2017).

The Maoping deposit is the second largest Pb–Zn

deposit in the SYG region with more than three million

tons (Mt) of lead and zinc reserves (Tan et al. 2019), which

is just second to the world-class Huize deposit ([ 5 Mt

Pb ? Zn reserves; Huang et al. 2004). During the past

decades, great progresses have been made in geological

features (Wei et al. 2015; Wang et al. 2017), fluid inclu-

sions (Han et al. 2007; Wang et al. 2009; Cui and Han

2014), associated elements (Qiu et al. 2013; Chen et al.

2016), sphalerite Rb–Sr dating (Shen et al. 2016; Yang

et al. 2019), and S–Pb isotopic studies (Ren et al. 2018;

Tan et al. 2019; Xiang et al. 2020) in Maoping deposit.

However, the Maoping deposit had received a little atten-

tion of research, especially on the metallogenic age,

source(s) of ore-forming materials, and relationship

between Emeishan basaltic magmatism and regional Pb–

Zn mineralization. Several aspects of the ore genesis are

still under debate. For example, Shen et al. (2016) obtained

a sphalerite Rb–Sr isochron age of 321.7 ± 5.8 Ma, while

a younger sphalerite Rb–Sr isochron age of

202.5 ± 8.5 Ma was reported by Yang et al. (2019). Fur-

thermore, according to the research of C–H–O isotopes, the

ore-forming fluids were mainly derived from magma and

hosted formation waters with a certain contribution from

metamorphic water (Zou et al. 2004; Han et al. 2007).

However, based on the analyses of S-Pb isotopes, the ore-

forming metals were mainly originated from ore-bearing

rocks with the addition of some basements and basalt

components (Tan et al. 2019; Xiang et al. 2020). Besides, it

is still disputable on whether most epigenetic Pb–Zn

deposits in the SYG region, including the Maoping deposit,

can be classified as the Mississippi Valley-type (MVT) Pb–

Zn deposit (Han et al. 2007; Zhang et al. 2019a, b; Luo

et al. 2020).

Previous studies have proven that C–O–S–Pb isotopic

analyses are powerful means to determine the source(s) of

ore-forming fluid and constrain the origin of the ore deposit

(Li et al. 2015; Zhou et al. 2013a; Tan et al. 2017; Wang

et al. 2018; Luo et al. 2020). In this study, based on the

detailed ore deposit characteristics, systematic C–O iso-

topes of ore-stage calcites from No. I and II orebodies and

comprehensive S–Pb isotopes of sulfides in No. I orebody

(group) from bottom to top with exact elevations are col-

lectively investigated to trace the carbon, oxygen, sulfur,

and metal source(s) and discuss the ore genesis of the

Maoping Pb–Zn deposit. The outcomes will provide further

understanding of the formation of the SYG Pb–Zn metal-

logenic province and similar deposits in the SCLTMD.

2 Geological setting

The SYG Pb–Zn metallogenic province is situated in a

triangle area enclosed by NS-trending Anninghe fault, NE-

trending Shizong-Mile fault and NW-trending Yiliang-

Shuicheng fault (Fig. 1b; Ren et al. 2018). The regional

stratigraphy is mainly composed of Archean to Paleopro-

terozoic crystalline basements, Meso- to Neoproterozoic

folded basements, and cover sequences that consist of

Paleozoic to Early Mesozoic marine sedimentary rocks,

Late Permian Emeishan continental flood basalt and Late

Mesozoic to Cenozoic continental sedimentary rocks (Tan

et al. 2019; Zhang et al. 2019a, b). Folds and faults widely

occurred in the SYG region due to multi-stage tectonic

movements including Caledonian, Hercynian, Indosinian

and Yanshanian periods (Liu and Lin 1999). At about

260 Ma, large-scale mantle-plume-related magmatic

activities took place, which formed widely distributed

Emeishan basalts covering an area of over 250,000 km2

(Fig. 1b; Zhou et al. 2002). Almost all Pb–Zn deposits of

the SYG area are spatially located in the Emeishan Large

Igneous Province (ELIP) (Fig. 1b; Liu and Lin 1999; Cui

and Han 2014; Huang et al. 2004, 2010).

The Maoping Pb–Zn deposit is located in the north-

eastern SYG in Zhaotong City, Yunnan province, South

China (Fig. 1a, b). Within the ore district, exposed strata

mainly include the Silurian to Triassic marine sedimentary

rocks (Fig. 2). Among which, the dolostone and limestone

of the Upper Devonian Zaige Formation (D3zg), Lower

Carboniferous Baizuo Formation (C1b), and Middle Car-

boniferous Weining Formation (C2w) are the most signif-

icant ore-hosting rocks (Fig. 3, Xiang et al. 2020). The

NW-trending fault group including Fangmaba, Maoping,

and Tuogumei faults collectively controlled the distribution

of the Pb–Zn deposits in the region. Most orebodies,

occurring as a ladder shape on the profile (Fig. 3), have a

clear boundary with carbonate wall rocks (Fig. 4b). These

stratoid, lenticular and veined orebodies (No. I, II, and III)

of the Maoping deposit, yielding more than 3 Mt Pb ? Zn

resources at grades of 12–30 wt% (Ren et al. 2018), are

hosted in the interlayer fracture zone in the steeply inclined

strata of the Maomaoshan anticline (Figs. 3, 4a–c) and

structurally controlled by NE-trending Maoping fault

(Fig. 2; Liu and Lin 1999). The No. I orebody (group) can

be further divided into No. I-1 and I-2 orebody, hosted in

the dolostone and limestone of the Upper Devonian Zaige

Formation, which is the largest orebody with the most

abundant Pb–Zn resources grading at 20–45 wt% Pb ? Zn

in the Maoping deposit.

Ore types of the Maoping deposit can be divided into

sulfide and oxidized ores, which were formed in the

hydrothermal and supergene ore-stage, respectively. Ore
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minerals of sulfides include sphalerite, galena, pyrite and

minor chalcopyrite (Fig. 4d–f). The major gangue minerals

are dolomite (Fig. 4b), calcite (Fig. 4f), and minor quartz.

Sulfides ores are characterized by massive (Fig. 4d), veined

(Fig. 4e) and dense disseminated (Fig. 4f) structures, and

occurring as subhedral to anhedral granular (Fig. 4h, i),

metasomatic (Fig. 4f), enclosed (Fig. 4h), coplanar

(Fig. 4g) and interstitial (Fig. 4i) textures. Wall rock

alterations including dolomitization, calcitization, silicifi-

cation, and baritization are common in the Maoping

deposit (Xiang et al. 2020). Among which, the dolomiti-

zation and silicification are closely related to the Pb–Zn

deposits, generally considered as a great pathfinder in

exploration for Pb-Zn deposit in the ore district (Wei et al.

2012, 2014, 2015).

3 Sampling and analytical methods

More than ninety representative sulfide ore samples in the

Maoping Pb–Zn deposit were collected from the 810, 760,

and 720 m adits of the No. I-1 orebody, 720, 670, and

640 m adits of the No. I-2 orebody, 760, and 703 m adits of

the No. II orebody. Twenty-nine typical samples were

Fig. 2 Geological sketch map of the Maoping Pb–Zn deposit, displaying the A–B–C profile and the distribution of the strata, faults, and

surrounding Pb–Zn deposits. Modified after Liu and Lin (1999)
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crushed into 20 to 60 mesh, and ten ore-stage calcites

(seven from No. I and three from No. II orebody) for C–O

isotopic analyses, twenty-four sphalerites (thirteen from

No. I-1 and eleven from No. I-2 orebody) for S isotopic

analysis and fourteen galena samples (eight from No. I-1

and six from No. I-2 orebody) for S-Pb isotopic analyses

were hand-picked under a binocular microscope.

Fig. 3 The comprehensive profile map of the Maoping Pb–Zn deposit, exhibiting the distribution of the orebodies, ore-bearing strata and ore-

controlling fault. Modified after Liu and Lin (1999)
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The carbon and oxygen isotopic compositions of the ore-

stage calcites were performed at the State Key Laboratory of

Ore Deposit Geochemistry (SKLODG), Institute of Geo-

chemistry, Chinese Academy of Sciences (IGCAS), deter-

mined by a Finnigan MAT-253 mass spectrometer. The

analytical precisions (2r) of d13C and d18O values were ± 0.2

and ± 0.4 %, respectively. The Vienna Pee Dee Belemnite

(V-PDB) was considered as standard. d18OSMOW-

= 1.03086 9 d18OPDB ? 30.86 (Friedman and O’Neil 1977).

The sulfur isotopic analysis of the sphalerites and galena

was carried out in the SKLODG of the IGCAS, by using

the MAT-253 mass spectrometer. The Vienna Canyon

Diablo Troilite (V-CDT) was used as a reference standard.

IAEA S-1 (- 0.2 %), IAEA S-2 (? 22.6 %), and IAEA

S-3 (- 32.5 %) were regarded as an external standard to

correct the isotopic values. The analytical precisions (2r)

of d34S values were ± 0.2 %.

The lead isotopic analysis of single galena grain was

carried out by using the multi-collector inductively coupled

plasma mass spectrometry (MC-ICP-MS) at the Radio-

genic Isotope Facility of the University of Queensland,

Australia. Pb purification procedure and analytical methods

for Pb isotopes followed Xun et al. (2014). The measured

Pb isotopic compositions of NBS 981 with 208Pb/204Pb =

36.7046 ± 140, 207Pb/204Pb = 15.4938 ± 38 and
206Pb/204Pb = 16.9361 ± 47(n = 38, 2r) were consistent

with that of reported 208Pb/204Pb of 36.7179, 207Pb/204Pb of

15.4944 and 206Pb/204Pb of 16.9410 (Collerson et al. 2002).

4 Results

4.1 Carbon and oxygen isotopic compositions

The C–O isotopic compositions of ten ore-stage calcite

samples selected from sulfide ores in the Maoping Pb–Zn

deposit are shown in Table 1 and plotted in Fig. 5. The

d13CPDB and d18OSMOW values of calcites from No. I

Fig. 4 Photos of the orebodies (a–c), sulfide samples (d–f) and microscopic characteristic (g–i). a sulfide minerals (pyrite, sphalerite and galena)

replaced and enclosed by calcite; b A clear boundary between sphalerite-galena ores and wall rocks (dolostone); c Veined pyrite, sphalerite, and

galena; d Massive sulfide ore including pyrite, sphalerite and galena; e Pyrite crosscut and replaced by sphalerite; f Dense disseminated sphalerite

and galena replaced by calcite; g The coexisted sphalerite and galena; h pyrite enclosed by sphalerite and galena; i The coexisted subhedral

sphalerite and pyrite. Abbreviations: Py-pyrite; Sp-sphalerite; Gn-galena; Cal-calcite
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orebody range from - 5.3 to - 1.7 % (n = 7, mean = -

3.8 ± 1.5 %) and ? 14.6 to ? 21.8 % (n = 7, mean =

? 18.9 ± 2.8 %), respectively. Calcites from No. II ore-

body have d13CPDB and d18OSMOW values varying from

- 4.3 to - 0.8 % (n = 3, mean = - 2.7 ± 1.7 %) and

? 15.1 to ? 20.7 % (n = 3, mean = ? 18.2 ± 2.8 %).

4.2 Sulfur isotopic compositions

The sulfur isotopic compositions of sulfides from

the Maoping Pb–Zn deposit are listed in Table 2 and

shown in Fig. 6. The d34SCDT values of sphalerites and

galena from No. I-1 orebody vary from ? 13.1 to

? 14.9 % (n = 13, mean = ? 14.0 ± 0.5 %) and ? 16.1

to ? 19.0 % (n = 6, mean = ? 17.7 ± 0.9 %), respec-

tively. Sphalerites and galena from No. I-2 orebody have

d34SCDT values ranging from ? 20.1 to 21.8 % (n = 11,

mean = ? 21.1 ± 0.4 %) and ? 18.0 to ? 19.0 %
(n = 5, mean = ? 18.3 ± 0.4 %).

4.3 Lead isotopic compositions

The lead isotopic compositions of galena from the Maop-

ing Pb–Zn deposit are displayed in Table 3 and plotted in

Figs. 7 and 8. The 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb

ratios of seven galena in No. I-1 orebody are

18.729–18.757 (mean = 18.750), 15.773–17.775 (mean =

17.775) and 39.413–39.466 (mean = 39.451), respec-

tively. Six galena from No. I-2 orebody have Pb isotopic

ratios with 206Pb/204Pb of 18.713–18.759 (mean = 18.746),
207Pb/204Pb of 15.772–15.775 (mean = 15.774) and
208Pb/204Pb of 39.383–39.467 (mean = 39.440).

5 Discussions

5.1 Sources of CO2

C–O isotopic system is one of the powerful tools to trace

the source(s) of the ore-forming fluid (Zheng and Wang

1991; Carr et al. 1995; Li et al. 2015). The carbon and

oxygen in the hydrothermal metallogenic setting are gen-

erally derived from mantle (d13CPDB = - 8 to - 4 %,

d18OSMOW = ? 6 to ? 10 %; Taylor et al. 1967), marine

carbonate rocks (d13CPDB = - 4 to ? 4 %, d18OSMOW-

= ? 20 to ? 30 %; Veizer and Hoefs 1976), and sedi-

mentary organic matter (d13CPDB = - 30 to - 10 %,

d18OSMOW = ? 24 to ? 30 %; Demény et al. 1998; Kump

and Arthur 1999). Although calcites separated from the

Maoping deposit had similar d13CPDB values (- 5.3 to

- 0.8 %) to that of the mantle, its d18OSMOW values

(? 14.6 to ? 21.8 %) are significantly higher than that of

the mantle (Fig. 5), suggesting that the mantle possibly

contributed minor CO2 by degassing process of the

Emeishan mantle plume (Huang et al. 2004, 2010) but it

cannot be a major source of CO2 in the hydrothermal fluid.

These ore-stage calcites have higher d13CPDB values and

relatively lower d18OSMOW values than those of organic

matter (Fig. 5), whereas partial data show a slightly neg-

ative correlation formed by dehydroxylation of organic

matter in the diagram of d13CPDB versus d18OSMOW, indi-

cating that the sedimentary organic matter is a potential

CO2 contributor for hydrothermal fluid. Besides, most

calcites have similar d13CPDB but relatively lower d18-

OSMOW values than that of marine carbonate rocks (Fig. 5),

which may be caused by the carbonate dissolution process

that leads to the C isotopes remaining almost constant

while O isotopic values decreasing (Banner and Hanson

Table 1 Carbon-Oxygen

isotopic compositions of calcite

from the Maoping Pb–Zn

deposit

Sample no. Ore bodies Altitude (m) d13CV-PDB (%) d18OV-SMOW (%) Reference

MP-16-15 I 760 - 3.6 ? 15.4 This paper

MP-16-22 I 760 - 1.8 ? 20.9

MP-16-19 I 760 - 3.7 ? 21.1

MP-16-27 I 720 - 5.2 ? 14.6

MP-16-30 I 720 - 5.0 ? 19.5

MP-16-72 I 720 - 1.7 ? 21.8

MP-16-63 I 640 - 5.3 ? 19.2

MP-16-25 II 760 - 0.8 ? 15.1

MP-16-87 II 760 - 3.2 ? 20.7

MP-16-65 II 703 - 4.0 ? 18.7

MPR-286 III 910 - 2.7 ? 17.2 Han et al. (2007)

MPR-82 II 846 - 1.1 ? 18.0

MPO-5-1 I 846 - 3.7 ? 18.8

Analysis errors of d13C and d18O were generally within 0.2 % and 0.4 %, respectively
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1990). Hence, the origin of CO2 in the hydrothermal fluid

has a closer relationship with the dissolution process of

marine carbonate rocks.

The systematic C–O isotopes in this study are similar

but more scattered than previous d13CPDB (- 3.7 to

- 1.1 %) and d18OSMOW (? 17.2 to ? 18.8 %) values

(Table 1; Han et al. 2007). The C–O isotopic compositions

of calcites in the No. I orebody is consistent with those in

the No. II and III orebodies (Table 1), indicating that the

different orebodies share the same CO2 origin in the

Maoping deposit. Compared with the d13CPDB and d18-

OSMOW values of the Huize (Huang et al. 2004, 2010) and

Tianqiao (Zhou et al. 2012, 2013a) Pb–Zn deposit in the

SYG region, the C–O isotopic data of the Maoping deposit

plot in the similar field to the Huize and Tianqiao deposit

(Fig. 5), which may suggest that regional ore-forming fluid

have a homologous carbon and oxygen source. We thus

consider that a mixture of ternary members that include the

dissolution of marine carbonate rocks, the degassing pro-

cess of the Emeishan mantle plume, and dehydroxylation

of sedimentary organic matter could have collectively

contributed CO2 for ore-forming fluids, but the dissolution

of marine carbonate rocks was the most significant CO2

contributor.

5.2 Source of reduced sulfur

The total sulfur isotope composition (d34SRS) of ore-

forming fluids is essential for tracing sulfur source (Rye

and Ohmoto 1974; Ohmoto 1972, 1979). Sulfur generally

occurs in the form of sulfides rather than sulfate minerals

under the condition of low oxygen fugacity (fo2) (Pinckney

and Rafter 1972). Mineral assemblages mainly consist of

sphalerite, galena, pyrite, dolostone, calcite, and quartz

with the absence of sulfate minerals in the Maoping

deposit, suggesting that d34SCDT values of sulfides repre-

sent d34SRS of the ore-forming fluid (Ohmoto and Gold-

haber 1997). Sulfur isotopic compositions of sulfides

(sphalerite and galena) ranging from 13.1 to 21.8 %
(n = 35, mean = 17.5 ± 3.0 %) are significantly different

from mantle-derived sulfur (- 4 to ? 8 %; Fig. 6;

Chaussidon et al. 1989). Hence, basalts formed by the

Emeishan mantle plume movement were unlikely to pro-

vide sulfur for hydrothermal fluids.

Sulfide samples collected systematically from the No.

I-1 and I-2 orebody to constrain the sulfur source(s) of the

Maoping deposit. Strikingly different d34SCDT values

(Table 2) occur among No. I-1 orebody (? 13.1 to

? 19.0 %, n = 19, mean = ? 15.2 ± 1.8 %), No. I-2

orebody (? 18.03 to ? 21.8 %, n = 16, mean = 20.2 ±

1.4 %), No. II orebody (? 8.6 to ? 17.4 %, n = 8,

mean = ? 12.5 ± 3.1 %; Ren et al. 2018), and sulfides in

unknown locations of the Maoping deposit (? 22.5 to

? 25.7 %, n = 8, mean = ? 24.1 ± 1.2 %; Tan et al.

2019; Xiang et al. 2020), which may be caused by different

sulfur contributors. The d34SCDT values of sphalerites

(? 13.1 to ? 14.9 %) are lower than that of galena

(? 16.1 to ? 19.0 %) from 720 to 810 m adits of No. I-1

orebody (Table 2; Fig. 6), indicating that the sulfur iso-

topic fractionation among sulfides did not reach an equi-

librium. Conversely, sphalerites with d34SCDT values of

? 20.1 to ? 21.8 % are higher than that of galena (? 18.0

to ? 19.0 %) from 720 to 810 m adits of No. I-2 orebody

(Table 2; Fig. 6), suggesting an equilibrated S isotopic

fractionation among sulfides. This sudden change of S

isotopes between No. I-1 orebody over 720 m

Fig. 5 Plots of d13CPDB versus

d18OSMOW of ore-stage calcites

in the Maoping deposit (the

fields modified after Liu and Liu

1997). The data of Huize and

Tianqiao Pb–Zn deposits are

taken from Huang et al. (2010)

and Zhou et al. (2013a),

respectively
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Table 2 Sulfur isotopic compositions of sulfides in the Maoping Pb–Zn deposit

Sample no. Minerals Altitude d34SV-CDT (%) Ore bodies Strata Reference

MP-16-1 Sphalerite 810 m ? 13.9 I-1 This paper

MP-16-7 Sphalerite 760 m ? 14.1 I-1

MP-16-17 Sphalerite 760 m ? 14.2 I-1

MP-16-9 Sphalerite 760 m ? 14.4 I-1

MP-16-8 Sphalerite 760 m ? 13.9 I-1

MP-16-8 Galena 760 m ? 17.5 I-1

MP-16-14 Sphalerite 760 m ? 13.1 I-1

MP-16-14 Galena 760 m ? 19.0 I-1

MP-16-15 Sphalerite 760 m ? 14.9 I-1

MP-16-15 Galena 760 m ? 18.0 I-1

MP-16-16 Sphalerite 760 m ? 14.1 I-1 D3zg

MP-16-16 Galena 760 m ? 16.1 I-1

MP-16-22-1 Sphalerite 760 m ? 14.6 I-1

MP-16-22-2 Sphalerite 760 m ? 14.4 I-1

MP-16-22 Galena 760 m ? 17.5 I-1

MP-16-37-1 Sphalerite 720 m ? 13.8 I-1

MP-16-37-2 Sphalerite 720 m ? 13.8 I-1

MP-16-37 Galena 720 m ? 17.9 I-1

MP-16-32 Sphalerite 720 m ? 13.4 I-1

MP-16-75-1 Sphalerite 720 m ? 21.0 I-2 This paper

MP-16-82 Sphalerite 720 m ? 21.1 I-2

MP-16-86 Sphalerite 720 m ? 21.0 I-2

MP-16-70 Sphalerite 720 m ? 20.1 I-2

MP-16-70 Galena 720 m ? 19.0 I-2

MP-16-40 Sphalerite 670 m ? 21.7 I-2

MP-16-40 Galena 670 m ? 18.1 I-2

MP-16-41 Sphalerite 670 m ? 21.4 I-2

MP-16-41 Galena 670 m ? 18.1 I-2 D3zg

MP-16-45 Sphalerite 670 m ? 21.0 I-2

MP-16-49 Sphalerite 670 m ? 21.8 I-2

MP-16-58 Sphalerite 640 m ? 21.1 I-2

MP-16-58 Galena 640 m ? 18.4 I-2

MP-16-61-2 Sphalerite 640 m ? 21.0 I-2

MP-16-61-3 Sphalerite 640 m ? 21.0 I-2

MP-16-61 Galena 640 m ? 18.0 I-2

MP940-1-1 Pyrite 940 m ? 17.4 II Ren et al. (2018)

MP940-3-1 Pyrite 940 m ? 12.7 II

MP940-4-1 Pyrite 940 m ? 15.3 II

MP940-3-3 Sphalerite 940 m ? 11.6 II

MP940-4-3 Sphalerite 940 m ? 11.3 II C1b

MP940-5-2 Sphalerite 940 m ? 14.1 II

MP940-3-2 Galena 940 m ? 8.6 II

MP940-5-1 Galena 940 m ? 8.8 II

MP-36-1 Pyrite Not mentioned ? 25.7 Not mentioned Not mentioned Xiang et al. (2020)

MP-36-2 Pyrite ? 22.5

MP-38-1 Pyrite ? 24.3

MP-38-2 Pyrite ? 22.9
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(d34Ssphalerite \ d34Sgalena; Fig. 6) and No. I-2 orebody

below 720 m (d34Ssphalerite\ d34Sgalena; Fig. 6) demon-

strate multiple sulfur reservoirs and complex metallogenic

process in the Maoping deposit.

Local sulfate reduction mechanism in the SYG Pb–Zn

metallogenic province has been suggested by many

researchers (Zhou et al. 2013a; Li et al. 2015; Ren et al.

2018; Tan et al. 2019; Xiang et al. 2020). Previous studies

proposed that the sulfur source(s) of the Pb–Zn deposits in

the SYG region, such as Nayongzhi hosted in the Cambrian

carbonate rocks, Huize hosted in the Carboniferous car-

bonate rocks and Fule hosted in the Permian carbonate

rocks, were derived from evaporites in their ore-bearing

strata (Huang et al. 2004; Zhou et al. 2013b, 2014b; Jin

et al. 2016; Wang et al. 2017, Luo et al. 2020). The reduced

sulfur of No. II orebody (group) that hosted in the Lower

Carboniferous Baizuo Formation has been proven to be

derived from the thermochemical sulfate reduction (TSR)

of the marine sulfates in the ore-bearing strata (Ren et al.

2018), which was supported by suitable temperature

(180–218 �C; Han et al. 2007; Liu et al. 2017), the exis-

tence of marine evaporites and reduced sulfur reservoir in

the ore-hosting strata, implications from sulfur isotopic

values of sulfides (? 18.3 to ? 22.7 %) and gypsums

(? 21.9 to ? 25.9 %). However, No. I-1 and I-2 orebodies

with different sulfur isotopic compositions and fractiona-

tion mechanisms are both hosted in carbonate rocks of the

Upper Devonian Zaige Formation. He sulfur isotopic val-

ues of No. I-1 orebody (? 13.1 to ? 19.0 %) and No. I-2

orebody (? 18.0 to ? 21.8 %) in Maoping are respec-

tively consistent with those of Carboniferous marine sul-

fate minerals (gypsum and barite, ? 10.4 % to ? 18.6 %;

Ren et al. 2018) and Devonian marine evaporites (gypsum,

? 21.9 to ? 25.9 %; Ren et al. 2018) in the periphery of

Table 2 continued

Sample no. Minerals Altitude d34SV-CDT (%) Ore bodies Strata Reference

MP-53-1 Sphalerite Not mentioned ? 25.1 Not mentioned Not mentioned Tan et al. (2019)

MP-53-2 Sphalerite ? 24.6

MP-64-1 Sphalerite ? 25.1

MP-64-2 Sphalerite ? 22.9

Analysis errors for d34SV-CDT were within 0.2 %

Fig. 6 Comparison of S

isotopic compositions of

sulfides, sulfates, mantle-

derived sulfur and seawater

among the Pb–Zn deposits

hosted in the different strata in

the SYG metallogenic province.

Sulfur isotopic data sources:

Fule deposit (Zhou et al. 2018),

Huize deposit (Li et al. 2007),

Tianqiao deposit (Zhou et al.

2014a), sulfates in the

Carboniferous and Devonian

strata (Ren et al. 2018),

seawater in different ages

(Claypool et al. 1980) and

mantle-derived sulfur

(Chaussidon et al. 1989)
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Table 3 Lead isotopic compositions of galena from the Maoping Pb–Zn deposit

Sample no. Location 208Pb/204Pb ± 2r 207Pb/204Pb ± 2r 206Pb/204Pb ± 2r Reference

MP-16-8 I-1 39.462 0.002 15.776 0.001 18.757 0.001 This paper

MP-16-9 39.466 0.001 15.776 0.001 18.757 0.001

MP-16-15 39.461 0.001 15.775 0.001 18.756 0.001

MP-16-16 39.466 0.001 15.775 0.001 18.757 0.001

MP-16-17 39.432 0.001 15.774 0.001 18.742 0.001

MP-16-22 39.460 0.002 15.775 0.001 18.756 0.001

MP-16-37 39.413 0.001 15.773 0.001 18.729 0.001

MP-16-40 I-2 39.428 0.001 15.774 0.001 18.740 0.001 This paper

MP-16-41 39.455 0.001 15.774 0.001 18.753 0.001

MP-16-58 39.467 0.001 15.775 0.001 18.759 0.001

MP-16-61 39.454 0.001 15.774 0.001 18.754 0.001

MP-16-70 39.383 0.001 15.772 0.001 18.713 0.001

MP-16-72 39.455 0.001 15.775 0.001 18.754 0.001

MP-28-01 II 39.490 0.007 15.790 0.002 18.763 0.002 Tan et al. (2019)

MP-28-02 39.495 0.006 15.791 0.002 18.763 0.002

MP-28-03 39.484 0.006 15.788 0.002 18.761 0.002

MP-67-01 39.445 0.006 15.789 0.002 18.740 0.002

MP-67-02 39.447 0.006 15.788 0.002 18.739 0.002

MP-67-03 39.467 0.008 15.795 0.003 18.746 0.003

MP-33-01 II 39.530 0.006 15.801 0.002 18.772 0.002 Xiang et al. (2020)

MP-33-02 39.526 0.008 15.802 0.003 18.773 0.003

MP-35-01 39.480 0.006 15.789 0.002 18.759 0.002

MP-35-02 39.484 0.007 15.787 0.003 18.762 0.003

MP-68-01 39.460 0.007 15.793 0.002 18.743 0.002

MP-68-02 39.444 0.006 15.788 0.002 18.739 0.002

MP-71-01 39.475 0.008 15.797 0.003 18.750 0.003

MP-71-02 39.446 0.007 15.788 0.002 18.738 0.002

Fig. 7 Plots of 207Pb/204Pb

versus 206Pb/204Pb of galena in

the Maoping Pb–Zn deposit

(fields modified after Zartman

and Doe 1981). Pb isotopic

compositions sources: Huize

deposit (Huang et al. 2004),

Tianqiao deposit (Zhou et al.

2013a), galena of No. II

orebody in the Maoping deposit

(Tan et al. 2019; Xiang et al.

2020), Devonian to Permian

carbonate rocks, Sinian

Dengying Formation dolostone,

basement rocks in the Kunyang

and Huili Group and Emeishan

flood basalts (Huang et al. 2004)
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ore district (Fig. 6). Hence, we consider that the overlying

Carboniferous sulfates leached by hydrothermal fluids were

transported to ore-hosting strata, and then TSR took place

under the action of organic matter to generate reduced

sulfur reservoirs for No. I-1 orebody. The reduced sulfur of

the No. I-2 orebody should come from the local TSR of

evaporites in the Upper Devonian Zaige Formation.

5.3 Source of metals

The Pb isotopic compositions of sulfides are considered

approximately equal to that of ore-forming fluids owing to

the contents of U and Th in those sulfides are too low to

generate corresponding radiogenic Pb isotopes (Carr et al.

1995; Zhou et al. 2001; Gao et al. 2020). The homogeneous

Pb isotopic ratios with 206Pb/204Pb of 18.713–18.759,
207Pb/204Pb of 15.772–15.776, and 208Pb/204Pb of

39.383–39.467 from No. I orebody analyzed by single

galena grain are similar to those in situ Pb isotopic com-

positions (206Pb/204Pb = 18.738–18.773, 207Pb/204Pb =

15.787–15.802 and 208Pb/204Pb = 39.444–39.530) from

No. II orebody determined by MC-LA-ICPMS (Fig. 7; Tan

et al. 2019; Xiang et al. 2020), suggesting that both the

bulk and in situ analyses obtained accurate Pb isotopic data

and all orebodies had an identical metal source in the

Maoping deposit. This narrow and uniform Pb isotopic

signature also indicates a single or well-mixed metal

source(s) in the Maoping deposit.

Sinian to Middle Permian ore-hosting sedimentary

rocks, Proterozoic Kunyang and Huili Group basements

rocks and Late Permian Emeishan continental flood basalts

are collectively regarded as three potential metal source

rocks for Pb–Zn deposits in the SYG region (Liu and Lin

1999; Huang et al. 2004; Zhou et al. 2018). Until now, the

lack of accurate metallogenic age for the Maoping Pb–Zn

deposit limits the understanding of the source and evolu-

tion of ore-forming fluids. Orebodies of the Maoping

deposit hosted in the interlayer fracture zone of the Mao-

maoshan anticline in which the oldest strata are Permian

(* 250 Ma), which thus suggests that the Pb–Zn miner-

alization should be later than 250 Ma. Also, the main

metallogenic age of 230–200 Ma was universally recog-

nized for Pb–Zn deposits in the Upper Yangtze region (Li

et al. 2007; Zhang et al. 2015; Hu et al. 2016, 2017b),

whereas the Emeishan basalts were formed at 260 Ma ago

(Zhou et al. 2002; Xu et al. 2004). Hence, it was hard for

Emeishan basaltic rocks to contribute metals for Maoping

deposit, which was also supported by Pb isotopic ratios

plotting above the average upper crustal Pb evolution

curves (Zartman and Doe, 1981) and remaining far away

from that of the age-corrected (200 Ma; Xiang et al. 2020)

Emeishan basalts (Fig. 7).

In the diagram of 207Pb/204Pb versus 206Pb/204Pb

(Fig. 7), the Pb isotopic ratios of galena in Maoping plot

between those age-corrected (200 Ma, Xiang et al. 2020)

basement metamorphic rocks and ore-bearing carbonate

rocks but much closer to the latter, which indicate a mixed

rather than single metal source for ore-forming fluids.

Furthermore, all Pb isotopic ratios distributing in a steep

linear trend (Fig. 8) also indicate that the metals may have

been derived from a well-mixed source of different Pb end-

members (Carr et al. 1995; Ding et al. 2016). Thus, this

study tends to suggest that the ore-forming metals for the

Maoping deposit were mainly derived from the Devonian

to Permian sedimentary rocks with a certain contribution

from the Proterozoic Kunyang and Huili Group basement

rocks.

Fig. 8 Plots of 207Pb/204Pb versus 206Pb/204Pb (a) and 208Pb/204Pb versus 206Pb/204Pb (b) of galena in No. I orebody for the Maoping deposit
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5.4 Ore genesis

Controversies about the ore genesis of the Maoping deposit

are mainly on epigenetic sedimentation-reworking (Liu and

Lin 1999), strata-bound (Han et al. 2007; Hu 2004),

hydrothermal reworking sedimentation-exhalative

(SEDEX) (Wang et al. 2009) and MVT (Zhang et al. 2005)

Pb–Zn deposit. The characteristics of epigenetic

hydrothermal mineralization in the Maoping deposit are

strongly supported by the fault-fold ore-controlling system

(Figs. 1, 2, 3), the occurrence of orebodies (Fig. 4a–c), ore

fabrics (Fig. 4d–i) and isotopic features (Figs. 5, 6, 7). The

multilayered Pb–Zn metallogenesis in carbonate rocks of

the D3zg, C1b, and C2w indicates that the origin of the

Maoping deposit is not a syn-sedimentary or SEDEX.

The Maoping deposit has many similar features with

those typical MVT Pb–Zn deposit, such as the tectonic

setting (carbonate platform), ore-hosting carbonate rocks

(dolostone and limestone; Figs. 3, 4), common wall-rock

alteration (dolomitization, calcitization, and silicification;

Fig. 4), simple mineral assemblage (sphalerite, galena,

pyrite, dolostone, calcite, and quartz; Fig. 4), fault-fold-

lithology ore-controlling factors (Figs. 2, 3), marine sulfate

as a sulfur contributor (Fig. 6), and metal sources from

basements and sedimentary rocks (Fig. 7). However, dif-

ferences also exist between the Maoping and typical MVT

deposit as follow: (1) the Maoping deposit was spatially

located in the ELIP (Fig. 1b; Huang et al. 2004; Li et al.

2007), while the typical MVT deposit usually has little

relationship with magmatism (Leach et al. 2005, 2010); (2)

fluid inclusions features (180–218 �C, 4.1–9.5 wt% NaCl

equiv.; Zhang et al. 2015; Liu et al. 2017) are different

from those (50–250 �C, 10–30 wt% NaCl equiv.) of MVT

(Leach et al. 2005, 2010); and (3) high grades (12–30 wt%

Pb ? Zn) of sulfide ores is inconsistent with that (av.

Pb ? Zn\ 10 wt%) of the typical MVT Pb–Zn deposit

(Leach et al. 2005, 2010). Zhang et al. (2019a, b) proposed

that the high grades of sulfide ores in the SYG region was

caused by relatively low pH of the ore-forming fluid

(pH\ 3.6; Zhang et al. 2017), stronger driving forces to

transport large-scale hydrothermal fluid (Han et al.

2012, 2014), and a high degree of earlier formed hydrox-

ides [Pb(OH)2 and Zn(OH)2] converting into stable sul-

fides. Besides, the formation of a large amount of H2O was

also associated with the conversion of hydroxides into

sulfides, which was likely to dilute the ore-forming fluid

resulting in a decrease in salinity. Hence, the similarities

and differences between the Maoping and MVT Pb–Zn

deposit indicate the particularity and complexity of the

mineralization for Maoping deposit, which may be closely

related to the local geological background, chemical con-

ditions (pH, temperature, salinity), driving forces of

transport, degree of hydrolysis, and redox conditions

(Zhang et al. 2019a, b). But these particularities and

complexities cannot deny that the genetic type of the

Maoping deposit belongs to an MVT-like Pb–Zn deposit.

6 Conclusions

(1) The CO2 in ore-forming fluids was generated by the

dissolution of marine carbonate rocks, degassing

process of the Emeishan mantle plume, and dehy-

droxylation of sedimentary organic matter.

(2) Like other Pb–Zn deposits in the SYG region, the

reduced sulfur of the Maoping deposit was mainly

produced by TSR of marine evaporites within the

ore-bearing strata, but the reduced sulfur of the No.

I-1 orebody hosted in the Upper Devonian Zaige

Formation may have been contributed by marine

sulfate in the overlying Carboniferous strata.

(3) The ore-forming fluid in the Maoping deposit has a

mixed metal source involving the Devonian to

Permian sedimentary rocks and the Proterozoic

Kunyang and Huili Group basement rocks with the

absent contribution of the Late Permian Emeishan

basalts.

(4) The Maoping deposit is an MVT-like Pb–Zn deposit.
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Chaussidon M, Albarède F, Sheppard SMF (1989) Sulphur isotope

variations in the mantle from ion microprobe analyses of micro-

sulphide inclusions. Earth Planet Sci Lett 92(2):144–156

Chen SH, Han RS, Shentu LY, Wu P, Qiu WL, Wen DX (2016)

Alteration zoning and geochemical element migration in alter-

ation rock of Zhaotong lead-zinc deposit in northeastern yunnan

mineralization concentration area. J Jilin Univ (Earth Sci Ed)

46(3):711–721 (in Chinese with English abstract)
Claypool GE, Holser WT, Kaplan IR, Sakai H, Zak I (1980) The age

curves of sulfur and oxygen isotopes in marine sulfate and their

mutual interpretation. Chem Geol 28:199–260

Acta Geochim

123



Collerson KD, Kamber BS, Schoenberg R (2002) Applications of

accurate, high-precision Pb isotope ratio measurement by multi-

collector ICP-MS. Chem Geol 188(1–2):65–83

Cui JH, Han RS (2014) Ore-forming fluid evidence of Zhaotong Zn–

Pb deposit genesis in the Zn–Pb deposit concentrated district of

northeast Yunnan. Min Resour Geol 1:18–24 (in Chinese with
English abstract)
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